Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.17
      1 /*	$NetBSD: kvm_proc.c,v 1.17 1997/06/20 05:18:22 mikel Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
      5  * Copyright (c) 1989, 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This code is derived from software developed by the Computer Systems
      9  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     10  * BG 91-66 and contributed to Berkeley.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  */
     40 
     41 #if defined(LIBC_SCCS) && !defined(lint)
     42 #if 0
     43 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     44 #else
     45 static char *rcsid = "$NetBSD: kvm_proc.c,v 1.17 1997/06/20 05:18:22 mikel Exp $";
     46 #endif
     47 #endif /* LIBC_SCCS and not lint */
     48 
     49 /*
     50  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     51  * users of this code, so we've factored it out into a separate module.
     52  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     53  * most other applications are interested only in open/close/read/nlist).
     54  */
     55 
     56 #include <sys/param.h>
     57 #include <sys/user.h>
     58 #include <sys/proc.h>
     59 #include <sys/exec.h>
     60 #include <sys/stat.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/tty.h>
     63 #include <stdlib.h>
     64 #include <string.h>
     65 #include <unistd.h>
     66 #include <nlist.h>
     67 #include <kvm.h>
     68 
     69 #include <vm/vm.h>
     70 #include <vm/vm_param.h>
     71 #include <vm/swap_pager.h>
     72 
     73 #include <sys/sysctl.h>
     74 
     75 #include <limits.h>
     76 #include <db.h>
     77 #include <paths.h>
     78 
     79 #include "kvm_private.h"
     80 
     81 #define KREAD(kd, addr, obj) \
     82 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
     83 
     84 int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
     85 int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
     86 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
     87 		    size_t));
     88 
     89 static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
     90 		    int));
     91 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
     92 static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
     93 		    void (*)(struct ps_strings *, u_long *, int *)));
     94 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
     95 		    struct kinfo_proc *, int));
     96 static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
     97 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
     98 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
     99 
    100 char *
    101 _kvm_uread(kd, p, va, cnt)
    102 	kvm_t *kd;
    103 	const struct proc *p;
    104 	u_long va;
    105 	u_long *cnt;
    106 {
    107 	register u_long addr, head;
    108 	register u_long offset;
    109 	struct vm_map_entry vme;
    110 	struct vm_object vmo;
    111 	int rv;
    112 
    113 	if (kd->swapspc == 0) {
    114 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
    115 		if (kd->swapspc == 0)
    116 			return (0);
    117 	}
    118 
    119 	/*
    120 	 * Look through the address map for the memory object
    121 	 * that corresponds to the given virtual address.
    122 	 * The header just has the entire valid range.
    123 	 */
    124 	head = (u_long)&p->p_vmspace->vm_map.header;
    125 	addr = head;
    126 	while (1) {
    127 		if (KREAD(kd, addr, &vme))
    128 			return (0);
    129 
    130 		if (va >= vme.start && va < vme.end &&
    131 		    vme.object.vm_object != 0)
    132 			break;
    133 
    134 		addr = (u_long)vme.next;
    135 		if (addr == head)
    136 			return (0);
    137 	}
    138 
    139 	/*
    140 	 * We found the right object -- follow shadow links.
    141 	 */
    142 	offset = va - vme.start + vme.offset;
    143 	addr = (u_long)vme.object.vm_object;
    144 
    145 	while (1) {
    146 		/* Try reading the page from core first. */
    147 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
    148 			break;
    149 
    150 		if (KREAD(kd, addr, &vmo))
    151 			return (0);
    152 
    153 		/* If there is a pager here, see if it has the page. */
    154 		if (vmo.pager != 0 &&
    155 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
    156 			break;
    157 
    158 		/* Move down the shadow chain. */
    159 		addr = (u_long)vmo.shadow;
    160 		if (addr == 0)
    161 			return (0);
    162 		offset += vmo.shadow_offset;
    163 	}
    164 
    165 	if (rv == -1)
    166 		return (0);
    167 
    168 	/* Found the page. */
    169 	offset %= kd->nbpg;
    170 	*cnt = kd->nbpg - offset;
    171 	return (&kd->swapspc[offset]);
    172 }
    173 
    174 #define	vm_page_hash(kd, object, offset) \
    175 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
    176 
    177 int
    178 _kvm_coreinit(kd)
    179 	kvm_t *kd;
    180 {
    181 	struct nlist nlist[3];
    182 
    183 	nlist[0].n_name = "_vm_page_buckets";
    184 	nlist[1].n_name = "_vm_page_hash_mask";
    185 	nlist[2].n_name = 0;
    186 	if (kvm_nlist(kd, nlist) != 0)
    187 		return (-1);
    188 
    189 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
    190 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
    191 		return (-1);
    192 
    193 	return (0);
    194 }
    195 
    196 int
    197 _kvm_readfromcore(kd, object, offset)
    198 	kvm_t *kd;
    199 	u_long object, offset;
    200 {
    201 	u_long addr;
    202 	struct pglist bucket;
    203 	struct vm_page mem;
    204 	off_t seekpoint;
    205 
    206 	if (kd->vm_page_buckets == 0 &&
    207 	    _kvm_coreinit(kd))
    208 		return (-1);
    209 
    210 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
    211 	if (KREAD(kd, addr, &bucket))
    212 		return (-1);
    213 
    214 	addr = (u_long)bucket.tqh_first;
    215 	offset &= ~(kd->nbpg -1);
    216 	while (1) {
    217 		if (addr == 0)
    218 			return (0);
    219 
    220 		if (KREAD(kd, addr, &mem))
    221 			return (-1);
    222 
    223 		if ((u_long)mem.object == object &&
    224 		    (u_long)mem.offset == offset)
    225 			break;
    226 
    227 		addr = (u_long)mem.hashq.tqe_next;
    228 	}
    229 
    230 	seekpoint = mem.phys_addr;
    231 
    232 	if (lseek(kd->pmfd, seekpoint, 0) == -1)
    233 		return (-1);
    234 	if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    235 		return (-1);
    236 
    237 	return (1);
    238 }
    239 
    240 int
    241 _kvm_readfrompager(kd, vmop, offset)
    242 	kvm_t *kd;
    243 	struct vm_object *vmop;
    244 	u_long offset;
    245 {
    246 	u_long addr;
    247 	struct pager_struct pager;
    248 	struct swpager swap;
    249 	int ix;
    250 	struct swblock swb;
    251 	off_t seekpoint;
    252 
    253 	/* Read in the pager info and make sure it's a swap device. */
    254 	addr = (u_long)vmop->pager;
    255 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    256 		return (-1);
    257 
    258 	/* Read in the swap_pager private data. */
    259 	addr = (u_long)pager.pg_data;
    260 	if (KREAD(kd, addr, &swap))
    261 		return (-1);
    262 
    263 	/*
    264 	 * Calculate the paging offset, and make sure it's within the
    265 	 * bounds of the pager.
    266 	 */
    267 	offset += vmop->paging_offset;
    268 	ix = offset / dbtob(swap.sw_bsize);
    269 #if 0
    270 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    271 		return (-1);
    272 #else
    273 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    274 		int i;
    275 		printf("BUG BUG BUG BUG:\n");
    276 		printf("object %p offset %lx pgoffset %lx ",
    277 		    vmop, offset - vmop->paging_offset,
    278 		    (u_long)vmop->paging_offset);
    279 		printf("pager %p swpager %p\n",
    280 		    vmop->pager, pager.pg_data);
    281 		printf("osize %lx bsize %x blocks %p nblocks %x\n",
    282 		    (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    283 		    swap.sw_nblocks);
    284 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
    285 			addr = (u_long)&swap.sw_blocks[ix];
    286 			if (KREAD(kd, addr, &swb))
    287 				return (0);
    288 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
    289 			    swb.swb_block, swb.swb_mask);
    290 		}
    291 		return (-1);
    292 	}
    293 #endif
    294 
    295 	/* Read in the swap records. */
    296 	addr = (u_long)&swap.sw_blocks[ix];
    297 	if (KREAD(kd, addr, &swb))
    298 		return (-1);
    299 
    300 	/* Calculate offset within pager. */
    301 	offset %= dbtob(swap.sw_bsize);
    302 
    303 	/* Check that the page is actually present. */
    304 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    305 		return (0);
    306 
    307 	if (!ISALIVE(kd))
    308 		return (-1);
    309 
    310 	/* Calculate the physical address and read the page. */
    311 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    312 
    313 	if (lseek(kd->swfd, seekpoint, 0) == -1)
    314 		return (-1);
    315 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    316 		return (-1);
    317 
    318 	return (1);
    319 }
    320 
    321 /*
    322  * Read proc's from memory file into buffer bp, which has space to hold
    323  * at most maxcnt procs.
    324  */
    325 static int
    326 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    327 	kvm_t *kd;
    328 	int what, arg;
    329 	struct proc *p;
    330 	struct kinfo_proc *bp;
    331 	int maxcnt;
    332 {
    333 	register int cnt = 0;
    334 	struct eproc eproc;
    335 	struct pgrp pgrp;
    336 	struct session sess;
    337 	struct tty tty;
    338 	struct proc proc;
    339 
    340 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    341 		if (KREAD(kd, (u_long)p, &proc)) {
    342 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    343 			return (-1);
    344 		}
    345 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    346 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    347 			      &eproc.e_ucred);
    348 
    349 		switch(what) {
    350 
    351 		case KERN_PROC_PID:
    352 			if (proc.p_pid != (pid_t)arg)
    353 				continue;
    354 			break;
    355 
    356 		case KERN_PROC_UID:
    357 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    358 				continue;
    359 			break;
    360 
    361 		case KERN_PROC_RUID:
    362 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    363 				continue;
    364 			break;
    365 		}
    366 		/*
    367 		 * We're going to add another proc to the set.  If this
    368 		 * will overflow the buffer, assume the reason is because
    369 		 * nprocs (or the proc list) is corrupt and declare an error.
    370 		 */
    371 		if (cnt >= maxcnt) {
    372 			_kvm_err(kd, kd->program, "nprocs corrupt");
    373 			return (-1);
    374 		}
    375 		/*
    376 		 * gather eproc
    377 		 */
    378 		eproc.e_paddr = p;
    379 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    380 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    381 				 proc.p_pgrp);
    382 			return (-1);
    383 		}
    384 		eproc.e_sess = pgrp.pg_session;
    385 		eproc.e_pgid = pgrp.pg_id;
    386 		eproc.e_jobc = pgrp.pg_jobc;
    387 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    388 			_kvm_err(kd, kd->program, "can't read session at %x",
    389 				pgrp.pg_session);
    390 			return (-1);
    391 		}
    392 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    393 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    394 				_kvm_err(kd, kd->program,
    395 					 "can't read tty at %x", sess.s_ttyp);
    396 				return (-1);
    397 			}
    398 			eproc.e_tdev = tty.t_dev;
    399 			eproc.e_tsess = tty.t_session;
    400 			if (tty.t_pgrp != NULL) {
    401 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    402 					_kvm_err(kd, kd->program,
    403 						 "can't read tpgrp at &x",
    404 						tty.t_pgrp);
    405 					return (-1);
    406 				}
    407 				eproc.e_tpgid = pgrp.pg_id;
    408 			} else
    409 				eproc.e_tpgid = -1;
    410 		} else
    411 			eproc.e_tdev = NODEV;
    412 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    413 		if (sess.s_leader == p)
    414 			eproc.e_flag |= EPROC_SLEADER;
    415 		if (proc.p_wmesg)
    416 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    417 			    eproc.e_wmesg, WMESGLEN);
    418 
    419 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    420 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    421 
    422 		eproc.e_xsize = eproc.e_xrssize = 0;
    423 		eproc.e_xccount = eproc.e_xswrss = 0;
    424 
    425 		switch (what) {
    426 
    427 		case KERN_PROC_PGRP:
    428 			if (eproc.e_pgid != (pid_t)arg)
    429 				continue;
    430 			break;
    431 
    432 		case KERN_PROC_TTY:
    433 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    434 			     eproc.e_tdev != (dev_t)arg)
    435 				continue;
    436 			break;
    437 		}
    438 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
    439 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
    440 		++bp;
    441 		++cnt;
    442 	}
    443 	return (cnt);
    444 }
    445 
    446 /*
    447  * Build proc info array by reading in proc list from a crash dump.
    448  * Return number of procs read.  maxcnt is the max we will read.
    449  */
    450 static int
    451 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    452 	kvm_t *kd;
    453 	int what, arg;
    454 	u_long a_allproc;
    455 	u_long a_zombproc;
    456 	int maxcnt;
    457 {
    458 	register struct kinfo_proc *bp = kd->procbase;
    459 	register int acnt, zcnt;
    460 	struct proc *p;
    461 
    462 	if (KREAD(kd, a_allproc, &p)) {
    463 		_kvm_err(kd, kd->program, "cannot read allproc");
    464 		return (-1);
    465 	}
    466 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    467 	if (acnt < 0)
    468 		return (acnt);
    469 
    470 	if (KREAD(kd, a_zombproc, &p)) {
    471 		_kvm_err(kd, kd->program, "cannot read zombproc");
    472 		return (-1);
    473 	}
    474 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    475 	if (zcnt < 0)
    476 		zcnt = 0;
    477 
    478 	return (acnt + zcnt);
    479 }
    480 
    481 struct kinfo_proc *
    482 kvm_getprocs(kd, op, arg, cnt)
    483 	kvm_t *kd;
    484 	int op, arg;
    485 	int *cnt;
    486 {
    487 	size_t size;
    488 	int mib[4], st, nprocs;
    489 
    490 	if (kd->procbase != 0) {
    491 		free((void *)kd->procbase);
    492 		/*
    493 		 * Clear this pointer in case this call fails.  Otherwise,
    494 		 * kvm_close() will free it again.
    495 		 */
    496 		kd->procbase = 0;
    497 	}
    498 	if (ISALIVE(kd)) {
    499 		size = 0;
    500 		mib[0] = CTL_KERN;
    501 		mib[1] = KERN_PROC;
    502 		mib[2] = op;
    503 		mib[3] = arg;
    504 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    505 		if (st == -1) {
    506 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    507 			return (0);
    508 		}
    509 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    510 		if (kd->procbase == 0)
    511 			return (0);
    512 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    513 		if (st == -1) {
    514 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    515 			return (0);
    516 		}
    517 		if (size % sizeof(struct kinfo_proc) != 0) {
    518 			_kvm_err(kd, kd->program,
    519 				"proc size mismatch (%d total, %d chunks)",
    520 				size, sizeof(struct kinfo_proc));
    521 			return (0);
    522 		}
    523 		nprocs = size / sizeof(struct kinfo_proc);
    524 	} else {
    525 		struct nlist nl[4], *p;
    526 
    527 		nl[0].n_name = "_nprocs";
    528 		nl[1].n_name = "_allproc";
    529 		nl[2].n_name = "_zombproc";
    530 		nl[3].n_name = 0;
    531 
    532 		if (kvm_nlist(kd, nl) != 0) {
    533 			for (p = nl; p->n_type != 0; ++p)
    534 				;
    535 			_kvm_err(kd, kd->program,
    536 				 "%s: no such symbol", p->n_name);
    537 			return (0);
    538 		}
    539 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    540 			_kvm_err(kd, kd->program, "can't read nprocs");
    541 			return (0);
    542 		}
    543 		size = nprocs * sizeof(struct kinfo_proc);
    544 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    545 		if (kd->procbase == 0)
    546 			return (0);
    547 
    548 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    549 				      nl[2].n_value, nprocs);
    550 #ifdef notdef
    551 		size = nprocs * sizeof(struct kinfo_proc);
    552 		(void)realloc(kd->procbase, size);
    553 #endif
    554 	}
    555 	*cnt = nprocs;
    556 	return (kd->procbase);
    557 }
    558 
    559 void
    560 _kvm_freeprocs(kd)
    561 	kvm_t *kd;
    562 {
    563 	if (kd->procbase) {
    564 		free(kd->procbase);
    565 		kd->procbase = 0;
    566 	}
    567 }
    568 
    569 void *
    570 _kvm_realloc(kd, p, n)
    571 	kvm_t *kd;
    572 	void *p;
    573 	size_t n;
    574 {
    575 	void *np = (void *)realloc(p, n);
    576 
    577 	if (np == 0)
    578 		_kvm_err(kd, kd->program, "out of memory");
    579 	return (np);
    580 }
    581 
    582 #ifndef MAX
    583 #define MAX(a, b) ((a) > (b) ? (a) : (b))
    584 #endif
    585 
    586 /*
    587  * Read in an argument vector from the user address space of process p.
    588  * addr if the user-space base address of narg null-terminated contiguous
    589  * strings.  This is used to read in both the command arguments and
    590  * environment strings.  Read at most maxcnt characters of strings.
    591  */
    592 static char **
    593 kvm_argv(kd, p, addr, narg, maxcnt)
    594 	kvm_t *kd;
    595 	const struct proc *p;
    596 	register u_long addr;
    597 	register int narg;
    598 	register int maxcnt;
    599 {
    600 	register char *np, *cp, *ep, *ap;
    601 	register u_long oaddr = -1;
    602 	register int len, cc;
    603 	register char **argv;
    604 
    605 	/*
    606 	 * Check that there aren't an unreasonable number of agruments,
    607 	 * and that the address is in user space.
    608 	 */
    609 	if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
    610 		return (0);
    611 
    612 	if (kd->argv == 0) {
    613 		/*
    614 		 * Try to avoid reallocs.
    615 		 */
    616 		kd->argc = MAX(narg + 1, 32);
    617 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    618 						sizeof(*kd->argv));
    619 		if (kd->argv == 0)
    620 			return (0);
    621 	} else if (narg + 1 > kd->argc) {
    622 		kd->argc = MAX(2 * kd->argc, narg + 1);
    623 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    624 						sizeof(*kd->argv));
    625 		if (kd->argv == 0)
    626 			return (0);
    627 	}
    628 	if (kd->argspc == 0) {
    629 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
    630 		if (kd->argspc == 0)
    631 			return (0);
    632 		kd->arglen = kd->nbpg;
    633 	}
    634 	if (kd->argbuf == 0) {
    635 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
    636 		if (kd->argbuf == 0)
    637 			return (0);
    638 	}
    639 	cc = sizeof(char *) * narg;
    640 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
    641 		return (0);
    642 	ap = np = kd->argspc;
    643 	argv = kd->argv;
    644 	len = 0;
    645 	/*
    646 	 * Loop over pages, filling in the argument vector.
    647 	 */
    648 	while (argv < kd->argv + narg && *argv != 0) {
    649 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    650 		if (addr != oaddr) {
    651 			if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
    652 			    kd->nbpg)
    653 				return (0);
    654 			oaddr = addr;
    655 		}
    656 		addr = (u_long)*argv & (kd->nbpg - 1);
    657 		cp = kd->argbuf + addr;
    658 		cc = kd->nbpg - addr;
    659 		if (maxcnt > 0 && cc > maxcnt - len)
    660 			cc = maxcnt - len;;
    661 		ep = memchr(cp, '\0', cc);
    662 		if (ep != 0)
    663 			cc = ep - cp + 1;
    664 		if (len + cc > kd->arglen) {
    665 			register int off;
    666 			register char **pp;
    667 			register char *op = kd->argspc;
    668 
    669 			kd->arglen *= 2;
    670 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    671 							  kd->arglen);
    672 			if (kd->argspc == 0)
    673 				return (0);
    674 			/*
    675 			 * Adjust argv pointers in case realloc moved
    676 			 * the string space.
    677 			 */
    678 			off = kd->argspc - op;
    679 			for (pp = kd->argv; pp < argv; pp++)
    680 				*pp += off;
    681 			ap += off;
    682 			np += off;
    683 		}
    684 		memcpy(np, cp, cc);
    685 		np += cc;
    686 		len += cc;
    687 		if (ep != 0) {
    688 			*argv++ = ap;
    689 			ap = np;
    690 		} else
    691 			*argv += cc;
    692 		if (maxcnt > 0 && len >= maxcnt) {
    693 			/*
    694 			 * We're stopping prematurely.  Terminate the
    695 			 * current string.
    696 			 */
    697 			if (ep == 0) {
    698 				*np = '\0';
    699 				*argv++ = ap;
    700 			}
    701 			break;
    702 		}
    703 	}
    704 	/* Make sure argv is terminated. */
    705 	*argv = 0;
    706 	return (kd->argv);
    707 }
    708 
    709 static void
    710 ps_str_a(p, addr, n)
    711 	struct ps_strings *p;
    712 	u_long *addr;
    713 	int *n;
    714 {
    715 	*addr = (u_long)p->ps_argvstr;
    716 	*n = p->ps_nargvstr;
    717 }
    718 
    719 static void
    720 ps_str_e(p, addr, n)
    721 	struct ps_strings *p;
    722 	u_long *addr;
    723 	int *n;
    724 {
    725 	*addr = (u_long)p->ps_envstr;
    726 	*n = p->ps_nenvstr;
    727 }
    728 
    729 /*
    730  * Determine if the proc indicated by p is still active.
    731  * This test is not 100% foolproof in theory, but chances of
    732  * being wrong are very low.
    733  */
    734 static int
    735 proc_verify(kd, kernp, p)
    736 	kvm_t *kd;
    737 	u_long kernp;
    738 	const struct proc *p;
    739 {
    740 	struct proc kernproc;
    741 
    742 	/*
    743 	 * Just read in the whole proc.  It's not that big relative
    744 	 * to the cost of the read system call.
    745 	 */
    746 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    747 	    sizeof(kernproc))
    748 		return (0);
    749 	return (p->p_pid == kernproc.p_pid &&
    750 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    751 }
    752 
    753 static char **
    754 kvm_doargv(kd, kp, nchr, info)
    755 	kvm_t *kd;
    756 	const struct kinfo_proc *kp;
    757 	int nchr;
    758 	void (*info)(struct ps_strings *, u_long *, int *);
    759 {
    760 	register const struct proc *p = &kp->kp_proc;
    761 	register char **ap;
    762 	u_long addr;
    763 	int cnt;
    764 	struct ps_strings arginfo;
    765 
    766 	/*
    767 	 * Pointers are stored at the top of the user stack.
    768 	 */
    769 	if (p->p_stat == SZOMB ||
    770 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
    771 		      sizeof(arginfo)) != sizeof(arginfo))
    772 		return (0);
    773 
    774 	(*info)(&arginfo, &addr, &cnt);
    775 	if (cnt == 0)
    776 		return (0);
    777 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    778 	/*
    779 	 * For live kernels, make sure this process didn't go away.
    780 	 */
    781 	if (ap != 0 && ISALIVE(kd) &&
    782 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    783 		ap = 0;
    784 	return (ap);
    785 }
    786 
    787 /*
    788  * Get the command args.  This code is now machine independent.
    789  */
    790 char **
    791 kvm_getargv(kd, kp, nchr)
    792 	kvm_t *kd;
    793 	const struct kinfo_proc *kp;
    794 	int nchr;
    795 {
    796 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    797 }
    798 
    799 char **
    800 kvm_getenvv(kd, kp, nchr)
    801 	kvm_t *kd;
    802 	const struct kinfo_proc *kp;
    803 	int nchr;
    804 {
    805 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    806 }
    807 
    808 /*
    809  * Read from user space.  The user context is given by p.
    810  */
    811 ssize_t
    812 kvm_uread(kd, p, uva, buf, len)
    813 	kvm_t *kd;
    814 	register const struct proc *p;
    815 	register u_long uva;
    816 	register char *buf;
    817 	register size_t len;
    818 {
    819 	register char *cp;
    820 
    821 	cp = buf;
    822 	while (len > 0) {
    823 		register int cc;
    824 		register char *dp;
    825 		u_long cnt;
    826 
    827 		dp = _kvm_uread(kd, p, uva, &cnt);
    828 		if (dp == 0) {
    829 			_kvm_err(kd, 0, "invalid address (%x)", uva);
    830 			return (0);
    831 		}
    832 		cc = MIN(cnt, len);
    833 		bcopy(dp, cp, cc);
    834 
    835 		cp += cc;
    836 		uva += cc;
    837 		len -= cc;
    838 	}
    839 	return (ssize_t)(cp - buf);
    840 }
    841