kvm_proc.c revision 1.19 1 /* $NetBSD: kvm_proc.c,v 1.19 1997/08/15 02:22:02 mikel Exp $ */
2
3 /*-
4 * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
5 * Copyright (c) 1989, 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software developed by the Computer Systems
9 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
10 * BG 91-66 and contributed to Berkeley.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 */
40
41 #include <sys/cdefs.h>
42 #if defined(LIBC_SCCS) && !defined(lint)
43 #if 0
44 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
45 #else
46 __RCSID("$NetBSD: kvm_proc.c,v 1.19 1997/08/15 02:22:02 mikel Exp $");
47 #endif
48 #endif /* LIBC_SCCS and not lint */
49
50 /*
51 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
52 * users of this code, so we've factored it out into a separate module.
53 * Thus, we keep this grunge out of the other kvm applications (i.e.,
54 * most other applications are interested only in open/close/read/nlist).
55 */
56
57 #include <sys/param.h>
58 #include <sys/user.h>
59 #include <sys/proc.h>
60 #include <sys/exec.h>
61 #include <sys/stat.h>
62 #include <sys/ioctl.h>
63 #include <sys/tty.h>
64 #include <stdlib.h>
65 #include <string.h>
66 #include <unistd.h>
67 #include <nlist.h>
68 #include <kvm.h>
69
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/swap_pager.h>
73
74 #include <sys/sysctl.h>
75
76 #include <limits.h>
77 #include <db.h>
78 #include <paths.h>
79
80 #include "kvm_private.h"
81
82 #define KREAD(kd, addr, obj) \
83 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
84
85 int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
86 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
87 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
88 size_t));
89
90 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
91 int));
92 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
93 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
94 void (*)(struct ps_strings *, u_long *, int *)));
95 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
96 struct kinfo_proc *, int));
97 static int proc_verify __P((kvm_t *, u_long, const struct proc *));
98 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
99 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
100
101 char *
102 _kvm_uread(kd, p, va, cnt)
103 kvm_t *kd;
104 const struct proc *p;
105 u_long va;
106 u_long *cnt;
107 {
108 register u_long addr, head;
109 register u_long offset;
110 struct vm_map_entry vme;
111 struct vm_object vmo;
112 int rv;
113
114 if (kd->swapspc == 0) {
115 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
116 if (kd->swapspc == 0)
117 return (0);
118 }
119
120 /*
121 * Look through the address map for the memory object
122 * that corresponds to the given virtual address.
123 * The header just has the entire valid range.
124 */
125 head = (u_long)&p->p_vmspace->vm_map.header;
126 addr = head;
127 while (1) {
128 if (KREAD(kd, addr, &vme))
129 return (0);
130
131 if (va >= vme.start && va < vme.end &&
132 vme.object.vm_object != 0)
133 break;
134
135 addr = (u_long)vme.next;
136 if (addr == head)
137 return (0);
138 }
139
140 /*
141 * We found the right object -- follow shadow links.
142 */
143 offset = va - vme.start + vme.offset;
144 addr = (u_long)vme.object.vm_object;
145
146 while (1) {
147 /* Try reading the page from core first. */
148 if ((rv = _kvm_readfromcore(kd, addr, offset)))
149 break;
150
151 if (KREAD(kd, addr, &vmo))
152 return (0);
153
154 /* If there is a pager here, see if it has the page. */
155 if (vmo.pager != 0 &&
156 (rv = _kvm_readfrompager(kd, &vmo, offset)))
157 break;
158
159 /* Move down the shadow chain. */
160 addr = (u_long)vmo.shadow;
161 if (addr == 0)
162 return (0);
163 offset += vmo.shadow_offset;
164 }
165
166 if (rv == -1)
167 return (0);
168
169 /* Found the page. */
170 offset %= kd->nbpg;
171 *cnt = kd->nbpg - offset;
172 return (&kd->swapspc[offset]);
173 }
174
175 #define vm_page_hash(kd, object, offset) \
176 (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
177
178 int
179 _kvm_coreinit(kd)
180 kvm_t *kd;
181 {
182 struct nlist nlist[3];
183
184 nlist[0].n_name = "_vm_page_buckets";
185 nlist[1].n_name = "_vm_page_hash_mask";
186 nlist[2].n_name = 0;
187 if (kvm_nlist(kd, nlist) != 0)
188 return (-1);
189
190 if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
191 KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
192 return (-1);
193
194 return (0);
195 }
196
197 int
198 _kvm_readfromcore(kd, object, offset)
199 kvm_t *kd;
200 u_long object, offset;
201 {
202 u_long addr;
203 struct pglist bucket;
204 struct vm_page mem;
205 off_t seekpoint;
206
207 if (kd->vm_page_buckets == 0 &&
208 _kvm_coreinit(kd))
209 return (-1);
210
211 addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
212 if (KREAD(kd, addr, &bucket))
213 return (-1);
214
215 addr = (u_long)bucket.tqh_first;
216 offset &= ~(kd->nbpg -1);
217 while (1) {
218 if (addr == 0)
219 return (0);
220
221 if (KREAD(kd, addr, &mem))
222 return (-1);
223
224 if ((u_long)mem.object == object &&
225 (u_long)mem.offset == offset)
226 break;
227
228 addr = (u_long)mem.hashq.tqe_next;
229 }
230
231 seekpoint = mem.phys_addr;
232
233 if (lseek(kd->pmfd, seekpoint, 0) == -1)
234 return (-1);
235 if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
236 return (-1);
237
238 return (1);
239 }
240
241 int
242 _kvm_readfrompager(kd, vmop, offset)
243 kvm_t *kd;
244 struct vm_object *vmop;
245 u_long offset;
246 {
247 u_long addr;
248 struct pager_struct pager;
249 struct swpager swap;
250 int ix;
251 struct swblock swb;
252 off_t seekpoint;
253
254 /* Read in the pager info and make sure it's a swap device. */
255 addr = (u_long)vmop->pager;
256 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
257 return (-1);
258
259 /* Read in the swap_pager private data. */
260 addr = (u_long)pager.pg_data;
261 if (KREAD(kd, addr, &swap))
262 return (-1);
263
264 /*
265 * Calculate the paging offset, and make sure it's within the
266 * bounds of the pager.
267 */
268 offset += vmop->paging_offset;
269 ix = offset / dbtob(swap.sw_bsize);
270 #if 0
271 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
272 return (-1);
273 #else
274 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
275 int i;
276 printf("BUG BUG BUG BUG:\n");
277 printf("object %p offset %lx pgoffset %lx ",
278 vmop, offset - vmop->paging_offset,
279 (u_long)vmop->paging_offset);
280 printf("pager %p swpager %p\n",
281 vmop->pager, pager.pg_data);
282 printf("osize %lx bsize %x blocks %p nblocks %x\n",
283 (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
284 swap.sw_nblocks);
285 for (ix = 0; ix < swap.sw_nblocks; ix++) {
286 addr = (u_long)&swap.sw_blocks[ix];
287 if (KREAD(kd, addr, &swb))
288 return (0);
289 printf("sw_blocks[%d]: block %x mask %x\n", ix,
290 swb.swb_block, swb.swb_mask);
291 }
292 return (-1);
293 }
294 #endif
295
296 /* Read in the swap records. */
297 addr = (u_long)&swap.sw_blocks[ix];
298 if (KREAD(kd, addr, &swb))
299 return (-1);
300
301 /* Calculate offset within pager. */
302 offset %= dbtob(swap.sw_bsize);
303
304 /* Check that the page is actually present. */
305 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
306 return (0);
307
308 if (!ISALIVE(kd))
309 return (-1);
310
311 /* Calculate the physical address and read the page. */
312 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
313
314 if (lseek(kd->swfd, seekpoint, 0) == -1)
315 return (-1);
316 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
317 return (-1);
318
319 return (1);
320 }
321
322 /*
323 * Read proc's from memory file into buffer bp, which has space to hold
324 * at most maxcnt procs.
325 */
326 static int
327 kvm_proclist(kd, what, arg, p, bp, maxcnt)
328 kvm_t *kd;
329 int what, arg;
330 struct proc *p;
331 struct kinfo_proc *bp;
332 int maxcnt;
333 {
334 register int cnt = 0;
335 struct eproc eproc;
336 struct pgrp pgrp;
337 struct session sess;
338 struct tty tty;
339 struct proc proc;
340
341 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
342 if (KREAD(kd, (u_long)p, &proc)) {
343 _kvm_err(kd, kd->program, "can't read proc at %x", p);
344 return (-1);
345 }
346 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
347 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
348 &eproc.e_ucred);
349
350 switch(what) {
351
352 case KERN_PROC_PID:
353 if (proc.p_pid != (pid_t)arg)
354 continue;
355 break;
356
357 case KERN_PROC_UID:
358 if (eproc.e_ucred.cr_uid != (uid_t)arg)
359 continue;
360 break;
361
362 case KERN_PROC_RUID:
363 if (eproc.e_pcred.p_ruid != (uid_t)arg)
364 continue;
365 break;
366 }
367 /*
368 * We're going to add another proc to the set. If this
369 * will overflow the buffer, assume the reason is because
370 * nprocs (or the proc list) is corrupt and declare an error.
371 */
372 if (cnt >= maxcnt) {
373 _kvm_err(kd, kd->program, "nprocs corrupt");
374 return (-1);
375 }
376 /*
377 * gather eproc
378 */
379 eproc.e_paddr = p;
380 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
381 _kvm_err(kd, kd->program, "can't read pgrp at %x",
382 proc.p_pgrp);
383 return (-1);
384 }
385 eproc.e_sess = pgrp.pg_session;
386 eproc.e_pgid = pgrp.pg_id;
387 eproc.e_jobc = pgrp.pg_jobc;
388 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
389 _kvm_err(kd, kd->program, "can't read session at %x",
390 pgrp.pg_session);
391 return (-1);
392 }
393 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
394 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
395 _kvm_err(kd, kd->program,
396 "can't read tty at %x", sess.s_ttyp);
397 return (-1);
398 }
399 eproc.e_tdev = tty.t_dev;
400 eproc.e_tsess = tty.t_session;
401 if (tty.t_pgrp != NULL) {
402 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
403 _kvm_err(kd, kd->program,
404 "can't read tpgrp at &x",
405 tty.t_pgrp);
406 return (-1);
407 }
408 eproc.e_tpgid = pgrp.pg_id;
409 } else
410 eproc.e_tpgid = -1;
411 } else
412 eproc.e_tdev = NODEV;
413 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
414 if (sess.s_leader == p)
415 eproc.e_flag |= EPROC_SLEADER;
416 if (proc.p_wmesg)
417 (void)kvm_read(kd, (u_long)proc.p_wmesg,
418 eproc.e_wmesg, WMESGLEN);
419
420 (void)kvm_read(kd, (u_long)proc.p_vmspace,
421 (char *)&eproc.e_vm, sizeof(eproc.e_vm));
422
423 eproc.e_xsize = eproc.e_xrssize = 0;
424 eproc.e_xccount = eproc.e_xswrss = 0;
425
426 switch (what) {
427
428 case KERN_PROC_PGRP:
429 if (eproc.e_pgid != (pid_t)arg)
430 continue;
431 break;
432
433 case KERN_PROC_TTY:
434 if ((proc.p_flag & P_CONTROLT) == 0 ||
435 eproc.e_tdev != (dev_t)arg)
436 continue;
437 break;
438 }
439 bcopy(&proc, &bp->kp_proc, sizeof(proc));
440 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
441 ++bp;
442 ++cnt;
443 }
444 return (cnt);
445 }
446
447 /*
448 * Build proc info array by reading in proc list from a crash dump.
449 * Return number of procs read. maxcnt is the max we will read.
450 */
451 static int
452 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
453 kvm_t *kd;
454 int what, arg;
455 u_long a_allproc;
456 u_long a_zombproc;
457 int maxcnt;
458 {
459 register struct kinfo_proc *bp = kd->procbase;
460 register int acnt, zcnt;
461 struct proc *p;
462
463 if (KREAD(kd, a_allproc, &p)) {
464 _kvm_err(kd, kd->program, "cannot read allproc");
465 return (-1);
466 }
467 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
468 if (acnt < 0)
469 return (acnt);
470
471 if (KREAD(kd, a_zombproc, &p)) {
472 _kvm_err(kd, kd->program, "cannot read zombproc");
473 return (-1);
474 }
475 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
476 if (zcnt < 0)
477 zcnt = 0;
478
479 return (acnt + zcnt);
480 }
481
482 struct kinfo_proc *
483 kvm_getprocs(kd, op, arg, cnt)
484 kvm_t *kd;
485 int op, arg;
486 int *cnt;
487 {
488 size_t size;
489 int mib[4], st, nprocs;
490
491 if (kd->procbase != 0) {
492 free((void *)kd->procbase);
493 /*
494 * Clear this pointer in case this call fails. Otherwise,
495 * kvm_close() will free it again.
496 */
497 kd->procbase = 0;
498 }
499 if (ISALIVE(kd)) {
500 size = 0;
501 mib[0] = CTL_KERN;
502 mib[1] = KERN_PROC;
503 mib[2] = op;
504 mib[3] = arg;
505 st = sysctl(mib, 4, NULL, &size, NULL, 0);
506 if (st == -1) {
507 _kvm_syserr(kd, kd->program, "kvm_getprocs");
508 return (0);
509 }
510 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
511 if (kd->procbase == 0)
512 return (0);
513 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
514 if (st == -1) {
515 _kvm_syserr(kd, kd->program, "kvm_getprocs");
516 return (0);
517 }
518 if (size % sizeof(struct kinfo_proc) != 0) {
519 _kvm_err(kd, kd->program,
520 "proc size mismatch (%d total, %d chunks)",
521 size, sizeof(struct kinfo_proc));
522 return (0);
523 }
524 nprocs = size / sizeof(struct kinfo_proc);
525 } else {
526 struct nlist nl[4], *p;
527
528 nl[0].n_name = "_nprocs";
529 nl[1].n_name = "_allproc";
530 nl[2].n_name = "_zombproc";
531 nl[3].n_name = 0;
532
533 if (kvm_nlist(kd, nl) != 0) {
534 for (p = nl; p->n_type != 0; ++p)
535 ;
536 _kvm_err(kd, kd->program,
537 "%s: no such symbol", p->n_name);
538 return (0);
539 }
540 if (KREAD(kd, nl[0].n_value, &nprocs)) {
541 _kvm_err(kd, kd->program, "can't read nprocs");
542 return (0);
543 }
544 size = nprocs * sizeof(struct kinfo_proc);
545 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
546 if (kd->procbase == 0)
547 return (0);
548
549 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
550 nl[2].n_value, nprocs);
551 #ifdef notdef
552 size = nprocs * sizeof(struct kinfo_proc);
553 (void)realloc(kd->procbase, size);
554 #endif
555 }
556 *cnt = nprocs;
557 return (kd->procbase);
558 }
559
560 void
561 _kvm_freeprocs(kd)
562 kvm_t *kd;
563 {
564 if (kd->procbase) {
565 free(kd->procbase);
566 kd->procbase = 0;
567 }
568 }
569
570 void *
571 _kvm_realloc(kd, p, n)
572 kvm_t *kd;
573 void *p;
574 size_t n;
575 {
576 void *np = (void *)realloc(p, n);
577
578 if (np == 0)
579 _kvm_err(kd, kd->program, "out of memory");
580 return (np);
581 }
582
583 #ifndef MAX
584 #define MAX(a, b) ((a) > (b) ? (a) : (b))
585 #endif
586
587 /*
588 * Read in an argument vector from the user address space of process p.
589 * addr if the user-space base address of narg null-terminated contiguous
590 * strings. This is used to read in both the command arguments and
591 * environment strings. Read at most maxcnt characters of strings.
592 */
593 static char **
594 kvm_argv(kd, p, addr, narg, maxcnt)
595 kvm_t *kd;
596 const struct proc *p;
597 register u_long addr;
598 register int narg;
599 register int maxcnt;
600 {
601 register char *np, *cp, *ep, *ap;
602 register u_long oaddr = -1;
603 register int len, cc;
604 register char **argv;
605
606 /*
607 * Check that there aren't an unreasonable number of agruments,
608 * and that the address is in user space.
609 */
610 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
611 return (0);
612
613 if (kd->argv == 0) {
614 /*
615 * Try to avoid reallocs.
616 */
617 kd->argc = MAX(narg + 1, 32);
618 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
619 sizeof(*kd->argv));
620 if (kd->argv == 0)
621 return (0);
622 } else if (narg + 1 > kd->argc) {
623 kd->argc = MAX(2 * kd->argc, narg + 1);
624 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
625 sizeof(*kd->argv));
626 if (kd->argv == 0)
627 return (0);
628 }
629 if (kd->argspc == 0) {
630 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
631 if (kd->argspc == 0)
632 return (0);
633 kd->arglen = kd->nbpg;
634 }
635 if (kd->argbuf == 0) {
636 kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
637 if (kd->argbuf == 0)
638 return (0);
639 }
640 cc = sizeof(char *) * narg;
641 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
642 return (0);
643 ap = np = kd->argspc;
644 argv = kd->argv;
645 len = 0;
646 /*
647 * Loop over pages, filling in the argument vector.
648 */
649 while (argv < kd->argv + narg && *argv != 0) {
650 addr = (u_long)*argv & ~(kd->nbpg - 1);
651 if (addr != oaddr) {
652 if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
653 kd->nbpg)
654 return (0);
655 oaddr = addr;
656 }
657 addr = (u_long)*argv & (kd->nbpg - 1);
658 cp = kd->argbuf + addr;
659 cc = kd->nbpg - addr;
660 if (maxcnt > 0 && cc > maxcnt - len)
661 cc = maxcnt - len;;
662 ep = memchr(cp, '\0', cc);
663 if (ep != 0)
664 cc = ep - cp + 1;
665 if (len + cc > kd->arglen) {
666 register int off;
667 register char **pp;
668 register char *op = kd->argspc;
669
670 kd->arglen *= 2;
671 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
672 kd->arglen);
673 if (kd->argspc == 0)
674 return (0);
675 /*
676 * Adjust argv pointers in case realloc moved
677 * the string space.
678 */
679 off = kd->argspc - op;
680 for (pp = kd->argv; pp < argv; pp++)
681 *pp += off;
682 ap += off;
683 np += off;
684 }
685 memcpy(np, cp, cc);
686 np += cc;
687 len += cc;
688 if (ep != 0) {
689 *argv++ = ap;
690 ap = np;
691 } else
692 *argv += cc;
693 if (maxcnt > 0 && len >= maxcnt) {
694 /*
695 * We're stopping prematurely. Terminate the
696 * current string.
697 */
698 if (ep == 0) {
699 *np = '\0';
700 *argv++ = ap;
701 }
702 break;
703 }
704 }
705 /* Make sure argv is terminated. */
706 *argv = 0;
707 return (kd->argv);
708 }
709
710 static void
711 ps_str_a(p, addr, n)
712 struct ps_strings *p;
713 u_long *addr;
714 int *n;
715 {
716 *addr = (u_long)p->ps_argvstr;
717 *n = p->ps_nargvstr;
718 }
719
720 static void
721 ps_str_e(p, addr, n)
722 struct ps_strings *p;
723 u_long *addr;
724 int *n;
725 {
726 *addr = (u_long)p->ps_envstr;
727 *n = p->ps_nenvstr;
728 }
729
730 /*
731 * Determine if the proc indicated by p is still active.
732 * This test is not 100% foolproof in theory, but chances of
733 * being wrong are very low.
734 */
735 static int
736 proc_verify(kd, kernp, p)
737 kvm_t *kd;
738 u_long kernp;
739 const struct proc *p;
740 {
741 struct proc kernproc;
742
743 /*
744 * Just read in the whole proc. It's not that big relative
745 * to the cost of the read system call.
746 */
747 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
748 sizeof(kernproc))
749 return (0);
750 return (p->p_pid == kernproc.p_pid &&
751 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
752 }
753
754 static char **
755 kvm_doargv(kd, kp, nchr, info)
756 kvm_t *kd;
757 const struct kinfo_proc *kp;
758 int nchr;
759 void (*info)(struct ps_strings *, u_long *, int *);
760 {
761 register const struct proc *p = &kp->kp_proc;
762 register char **ap;
763 u_long addr;
764 int cnt;
765 struct ps_strings arginfo;
766
767 /*
768 * Pointers are stored at the top of the user stack.
769 */
770 if (p->p_stat == SZOMB)
771 return (0);
772 cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
773 (char *)&arginfo, sizeof(arginfo));
774 if (cnt != sizeof(arginfo))
775 return (0);
776
777 (*info)(&arginfo, &addr, &cnt);
778 if (cnt == 0)
779 return (0);
780 ap = kvm_argv(kd, p, addr, cnt, nchr);
781 /*
782 * For live kernels, make sure this process didn't go away.
783 */
784 if (ap != 0 && ISALIVE(kd) &&
785 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
786 ap = 0;
787 return (ap);
788 }
789
790 /*
791 * Get the command args. This code is now machine independent.
792 */
793 char **
794 kvm_getargv(kd, kp, nchr)
795 kvm_t *kd;
796 const struct kinfo_proc *kp;
797 int nchr;
798 {
799 return (kvm_doargv(kd, kp, nchr, ps_str_a));
800 }
801
802 char **
803 kvm_getenvv(kd, kp, nchr)
804 kvm_t *kd;
805 const struct kinfo_proc *kp;
806 int nchr;
807 {
808 return (kvm_doargv(kd, kp, nchr, ps_str_e));
809 }
810
811 /*
812 * Read from user space. The user context is given by p.
813 */
814 ssize_t
815 kvm_uread(kd, p, uva, buf, len)
816 kvm_t *kd;
817 register const struct proc *p;
818 register u_long uva;
819 register char *buf;
820 register size_t len;
821 {
822 register char *cp;
823
824 cp = buf;
825 while (len > 0) {
826 register int cc;
827 register char *dp;
828 u_long cnt;
829
830 dp = _kvm_uread(kd, p, uva, &cnt);
831 if (dp == 0) {
832 _kvm_err(kd, 0, "invalid address (%x)", uva);
833 return (0);
834 }
835 cc = MIN(cnt, len);
836 bcopy(dp, cp, cc);
837
838 cp += cc;
839 uva += cc;
840 len -= cc;
841 }
842 return (ssize_t)(cp - buf);
843 }
844