Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.20
      1 /*	$NetBSD: kvm_proc.c,v 1.20 1997/08/15 17:52:46 drochner Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
      5  * Copyright (c) 1989, 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This code is derived from software developed by the Computer Systems
      9  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     10  * BG 91-66 and contributed to Berkeley.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 #if defined(LIBC_SCCS) && !defined(lint)
     43 #if 0
     44 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     45 #else
     46 __RCSID("$NetBSD: kvm_proc.c,v 1.20 1997/08/15 17:52:46 drochner Exp $");
     47 #endif
     48 #endif /* LIBC_SCCS and not lint */
     49 
     50 /*
     51  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     52  * users of this code, so we've factored it out into a separate module.
     53  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     54  * most other applications are interested only in open/close/read/nlist).
     55  */
     56 
     57 #include <sys/param.h>
     58 #include <sys/user.h>
     59 #include <sys/proc.h>
     60 #include <sys/exec.h>
     61 #include <sys/stat.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/tty.h>
     64 #include <stdlib.h>
     65 #include <string.h>
     66 #include <unistd.h>
     67 #include <nlist.h>
     68 #include <kvm.h>
     69 
     70 #include <vm/vm.h>
     71 #include <vm/vm_param.h>
     72 #include <vm/swap_pager.h>
     73 
     74 #include <sys/sysctl.h>
     75 
     76 #include <limits.h>
     77 #include <db.h>
     78 #include <paths.h>
     79 
     80 #include "kvm_private.h"
     81 
     82 #define KREAD(kd, addr, obj) \
     83 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
     84 
     85 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
     86 int		_kvm_coreinit __P((kvm_t *));
     87 int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
     88 int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
     89 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
     90 		    size_t));
     91 
     92 static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
     93 		    int));
     94 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
     95 static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
     96 		    void (*)(struct ps_strings *, u_long *, int *)));
     97 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
     98 		    struct kinfo_proc *, int));
     99 static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
    100 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    101 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    102 
    103 char *
    104 _kvm_uread(kd, p, va, cnt)
    105 	kvm_t *kd;
    106 	const struct proc *p;
    107 	u_long va;
    108 	u_long *cnt;
    109 {
    110 	register u_long addr, head;
    111 	register u_long offset;
    112 	struct vm_map_entry vme;
    113 	struct vm_object vmo;
    114 	int rv;
    115 
    116 	if (kd->swapspc == 0) {
    117 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
    118 		if (kd->swapspc == 0)
    119 			return (0);
    120 	}
    121 
    122 	/*
    123 	 * Look through the address map for the memory object
    124 	 * that corresponds to the given virtual address.
    125 	 * The header just has the entire valid range.
    126 	 */
    127 	head = (u_long)&p->p_vmspace->vm_map.header;
    128 	addr = head;
    129 	while (1) {
    130 		if (KREAD(kd, addr, &vme))
    131 			return (0);
    132 
    133 		if (va >= vme.start && va < vme.end &&
    134 		    vme.object.vm_object != 0)
    135 			break;
    136 
    137 		addr = (u_long)vme.next;
    138 		if (addr == head)
    139 			return (0);
    140 	}
    141 
    142 	/*
    143 	 * We found the right object -- follow shadow links.
    144 	 */
    145 	offset = va - vme.start + vme.offset;
    146 	addr = (u_long)vme.object.vm_object;
    147 
    148 	while (1) {
    149 		/* Try reading the page from core first. */
    150 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
    151 			break;
    152 
    153 		if (KREAD(kd, addr, &vmo))
    154 			return (0);
    155 
    156 		/* If there is a pager here, see if it has the page. */
    157 		if (vmo.pager != 0 &&
    158 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
    159 			break;
    160 
    161 		/* Move down the shadow chain. */
    162 		addr = (u_long)vmo.shadow;
    163 		if (addr == 0)
    164 			return (0);
    165 		offset += vmo.shadow_offset;
    166 	}
    167 
    168 	if (rv == -1)
    169 		return (0);
    170 
    171 	/* Found the page. */
    172 	offset %= kd->nbpg;
    173 	*cnt = kd->nbpg - offset;
    174 	return (&kd->swapspc[offset]);
    175 }
    176 
    177 #define	vm_page_hash(kd, object, offset) \
    178 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
    179 
    180 int
    181 _kvm_coreinit(kd)
    182 	kvm_t *kd;
    183 {
    184 	struct nlist nlist[3];
    185 
    186 	nlist[0].n_name = "_vm_page_buckets";
    187 	nlist[1].n_name = "_vm_page_hash_mask";
    188 	nlist[2].n_name = 0;
    189 	if (kvm_nlist(kd, nlist) != 0)
    190 		return (-1);
    191 
    192 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
    193 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
    194 		return (-1);
    195 
    196 	return (0);
    197 }
    198 
    199 int
    200 _kvm_readfromcore(kd, object, offset)
    201 	kvm_t *kd;
    202 	u_long object, offset;
    203 {
    204 	u_long addr;
    205 	struct pglist bucket;
    206 	struct vm_page mem;
    207 	off_t seekpoint;
    208 
    209 	if (kd->vm_page_buckets == 0 &&
    210 	    _kvm_coreinit(kd))
    211 		return (-1);
    212 
    213 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
    214 	if (KREAD(kd, addr, &bucket))
    215 		return (-1);
    216 
    217 	addr = (u_long)bucket.tqh_first;
    218 	offset &= ~(kd->nbpg -1);
    219 	while (1) {
    220 		if (addr == 0)
    221 			return (0);
    222 
    223 		if (KREAD(kd, addr, &mem))
    224 			return (-1);
    225 
    226 		if ((u_long)mem.object == object &&
    227 		    (u_long)mem.offset == offset)
    228 			break;
    229 
    230 		addr = (u_long)mem.hashq.tqe_next;
    231 	}
    232 
    233 	seekpoint = mem.phys_addr;
    234 
    235 	if (lseek(kd->pmfd, seekpoint, 0) == -1)
    236 		return (-1);
    237 	if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    238 		return (-1);
    239 
    240 	return (1);
    241 }
    242 
    243 int
    244 _kvm_readfrompager(kd, vmop, offset)
    245 	kvm_t *kd;
    246 	struct vm_object *vmop;
    247 	u_long offset;
    248 {
    249 	u_long addr;
    250 	struct pager_struct pager;
    251 	struct swpager swap;
    252 	int ix;
    253 	struct swblock swb;
    254 	off_t seekpoint;
    255 
    256 	/* Read in the pager info and make sure it's a swap device. */
    257 	addr = (u_long)vmop->pager;
    258 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    259 		return (-1);
    260 
    261 	/* Read in the swap_pager private data. */
    262 	addr = (u_long)pager.pg_data;
    263 	if (KREAD(kd, addr, &swap))
    264 		return (-1);
    265 
    266 	/*
    267 	 * Calculate the paging offset, and make sure it's within the
    268 	 * bounds of the pager.
    269 	 */
    270 	offset += vmop->paging_offset;
    271 	ix = offset / dbtob(swap.sw_bsize);
    272 #if 0
    273 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    274 		return (-1);
    275 #else
    276 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    277 		int i;
    278 		printf("BUG BUG BUG BUG:\n");
    279 		printf("object %p offset %lx pgoffset %lx ",
    280 		    vmop, offset - vmop->paging_offset,
    281 		    (u_long)vmop->paging_offset);
    282 		printf("pager %p swpager %p\n",
    283 		    vmop->pager, pager.pg_data);
    284 		printf("osize %lx bsize %x blocks %p nblocks %x\n",
    285 		    (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    286 		    swap.sw_nblocks);
    287 		for (i = 0; i < swap.sw_nblocks; i++) {
    288 			addr = (u_long)&swap.sw_blocks[i];
    289 			if (KREAD(kd, addr, &swb))
    290 				return (0);
    291 			printf("sw_blocks[%d]: block %x mask %x\n", i,
    292 			    swb.swb_block, swb.swb_mask);
    293 		}
    294 		return (-1);
    295 	}
    296 #endif
    297 
    298 	/* Read in the swap records. */
    299 	addr = (u_long)&swap.sw_blocks[ix];
    300 	if (KREAD(kd, addr, &swb))
    301 		return (-1);
    302 
    303 	/* Calculate offset within pager. */
    304 	offset %= dbtob(swap.sw_bsize);
    305 
    306 	/* Check that the page is actually present. */
    307 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    308 		return (0);
    309 
    310 	if (!ISALIVE(kd))
    311 		return (-1);
    312 
    313 	/* Calculate the physical address and read the page. */
    314 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    315 
    316 	if (lseek(kd->swfd, seekpoint, 0) == -1)
    317 		return (-1);
    318 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    319 		return (-1);
    320 
    321 	return (1);
    322 }
    323 
    324 /*
    325  * Read proc's from memory file into buffer bp, which has space to hold
    326  * at most maxcnt procs.
    327  */
    328 static int
    329 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    330 	kvm_t *kd;
    331 	int what, arg;
    332 	struct proc *p;
    333 	struct kinfo_proc *bp;
    334 	int maxcnt;
    335 {
    336 	register int cnt = 0;
    337 	struct eproc eproc;
    338 	struct pgrp pgrp;
    339 	struct session sess;
    340 	struct tty tty;
    341 	struct proc proc;
    342 
    343 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    344 		if (KREAD(kd, (u_long)p, &proc)) {
    345 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    346 			return (-1);
    347 		}
    348 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    349 			(void)KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    350 			      &eproc.e_ucred);
    351 
    352 		switch(what) {
    353 
    354 		case KERN_PROC_PID:
    355 			if (proc.p_pid != (pid_t)arg)
    356 				continue;
    357 			break;
    358 
    359 		case KERN_PROC_UID:
    360 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    361 				continue;
    362 			break;
    363 
    364 		case KERN_PROC_RUID:
    365 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    366 				continue;
    367 			break;
    368 		}
    369 		/*
    370 		 * We're going to add another proc to the set.  If this
    371 		 * will overflow the buffer, assume the reason is because
    372 		 * nprocs (or the proc list) is corrupt and declare an error.
    373 		 */
    374 		if (cnt >= maxcnt) {
    375 			_kvm_err(kd, kd->program, "nprocs corrupt");
    376 			return (-1);
    377 		}
    378 		/*
    379 		 * gather eproc
    380 		 */
    381 		eproc.e_paddr = p;
    382 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    383 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    384 				 proc.p_pgrp);
    385 			return (-1);
    386 		}
    387 		eproc.e_sess = pgrp.pg_session;
    388 		eproc.e_pgid = pgrp.pg_id;
    389 		eproc.e_jobc = pgrp.pg_jobc;
    390 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    391 			_kvm_err(kd, kd->program, "can't read session at %x",
    392 				pgrp.pg_session);
    393 			return (-1);
    394 		}
    395 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    396 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    397 				_kvm_err(kd, kd->program,
    398 					 "can't read tty at %x", sess.s_ttyp);
    399 				return (-1);
    400 			}
    401 			eproc.e_tdev = tty.t_dev;
    402 			eproc.e_tsess = tty.t_session;
    403 			if (tty.t_pgrp != NULL) {
    404 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    405 					_kvm_err(kd, kd->program,
    406 						 "can't read tpgrp at &x",
    407 						tty.t_pgrp);
    408 					return (-1);
    409 				}
    410 				eproc.e_tpgid = pgrp.pg_id;
    411 			} else
    412 				eproc.e_tpgid = -1;
    413 		} else
    414 			eproc.e_tdev = NODEV;
    415 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    416 		if (sess.s_leader == p)
    417 			eproc.e_flag |= EPROC_SLEADER;
    418 		if (proc.p_wmesg)
    419 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    420 			    eproc.e_wmesg, WMESGLEN);
    421 
    422 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    423 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    424 
    425 		eproc.e_xsize = eproc.e_xrssize = 0;
    426 		eproc.e_xccount = eproc.e_xswrss = 0;
    427 
    428 		switch (what) {
    429 
    430 		case KERN_PROC_PGRP:
    431 			if (eproc.e_pgid != (pid_t)arg)
    432 				continue;
    433 			break;
    434 
    435 		case KERN_PROC_TTY:
    436 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    437 			     eproc.e_tdev != (dev_t)arg)
    438 				continue;
    439 			break;
    440 		}
    441 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
    442 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
    443 		++bp;
    444 		++cnt;
    445 	}
    446 	return (cnt);
    447 }
    448 
    449 /*
    450  * Build proc info array by reading in proc list from a crash dump.
    451  * Return number of procs read.  maxcnt is the max we will read.
    452  */
    453 static int
    454 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    455 	kvm_t *kd;
    456 	int what, arg;
    457 	u_long a_allproc;
    458 	u_long a_zombproc;
    459 	int maxcnt;
    460 {
    461 	register struct kinfo_proc *bp = kd->procbase;
    462 	register int acnt, zcnt;
    463 	struct proc *p;
    464 
    465 	if (KREAD(kd, a_allproc, &p)) {
    466 		_kvm_err(kd, kd->program, "cannot read allproc");
    467 		return (-1);
    468 	}
    469 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    470 	if (acnt < 0)
    471 		return (acnt);
    472 
    473 	if (KREAD(kd, a_zombproc, &p)) {
    474 		_kvm_err(kd, kd->program, "cannot read zombproc");
    475 		return (-1);
    476 	}
    477 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    478 	if (zcnt < 0)
    479 		zcnt = 0;
    480 
    481 	return (acnt + zcnt);
    482 }
    483 
    484 struct kinfo_proc *
    485 kvm_getprocs(kd, op, arg, cnt)
    486 	kvm_t *kd;
    487 	int op, arg;
    488 	int *cnt;
    489 {
    490 	size_t size;
    491 	int mib[4], st, nprocs;
    492 
    493 	if (kd->procbase != 0) {
    494 		free((void *)kd->procbase);
    495 		/*
    496 		 * Clear this pointer in case this call fails.  Otherwise,
    497 		 * kvm_close() will free it again.
    498 		 */
    499 		kd->procbase = 0;
    500 	}
    501 	if (ISALIVE(kd)) {
    502 		size = 0;
    503 		mib[0] = CTL_KERN;
    504 		mib[1] = KERN_PROC;
    505 		mib[2] = op;
    506 		mib[3] = arg;
    507 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    508 		if (st == -1) {
    509 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    510 			return (0);
    511 		}
    512 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    513 		if (kd->procbase == 0)
    514 			return (0);
    515 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    516 		if (st == -1) {
    517 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    518 			return (0);
    519 		}
    520 		if (size % sizeof(struct kinfo_proc) != 0) {
    521 			_kvm_err(kd, kd->program,
    522 				"proc size mismatch (%d total, %d chunks)",
    523 				size, sizeof(struct kinfo_proc));
    524 			return (0);
    525 		}
    526 		nprocs = size / sizeof(struct kinfo_proc);
    527 	} else {
    528 		struct nlist nl[4], *p;
    529 
    530 		nl[0].n_name = "_nprocs";
    531 		nl[1].n_name = "_allproc";
    532 		nl[2].n_name = "_zombproc";
    533 		nl[3].n_name = 0;
    534 
    535 		if (kvm_nlist(kd, nl) != 0) {
    536 			for (p = nl; p->n_type != 0; ++p)
    537 				;
    538 			_kvm_err(kd, kd->program,
    539 				 "%s: no such symbol", p->n_name);
    540 			return (0);
    541 		}
    542 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    543 			_kvm_err(kd, kd->program, "can't read nprocs");
    544 			return (0);
    545 		}
    546 		size = nprocs * sizeof(struct kinfo_proc);
    547 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    548 		if (kd->procbase == 0)
    549 			return (0);
    550 
    551 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    552 				      nl[2].n_value, nprocs);
    553 #ifdef notdef
    554 		size = nprocs * sizeof(struct kinfo_proc);
    555 		(void)realloc(kd->procbase, size);
    556 #endif
    557 	}
    558 	*cnt = nprocs;
    559 	return (kd->procbase);
    560 }
    561 
    562 void
    563 _kvm_freeprocs(kd)
    564 	kvm_t *kd;
    565 {
    566 	if (kd->procbase) {
    567 		free(kd->procbase);
    568 		kd->procbase = 0;
    569 	}
    570 }
    571 
    572 void *
    573 _kvm_realloc(kd, p, n)
    574 	kvm_t *kd;
    575 	void *p;
    576 	size_t n;
    577 {
    578 	void *np = (void *)realloc(p, n);
    579 
    580 	if (np == 0)
    581 		_kvm_err(kd, kd->program, "out of memory");
    582 	return (np);
    583 }
    584 
    585 #ifndef MAX
    586 #define MAX(a, b) ((a) > (b) ? (a) : (b))
    587 #endif
    588 
    589 /*
    590  * Read in an argument vector from the user address space of process p.
    591  * addr if the user-space base address of narg null-terminated contiguous
    592  * strings.  This is used to read in both the command arguments and
    593  * environment strings.  Read at most maxcnt characters of strings.
    594  */
    595 static char **
    596 kvm_argv(kd, p, addr, narg, maxcnt)
    597 	kvm_t *kd;
    598 	const struct proc *p;
    599 	register u_long addr;
    600 	register int narg;
    601 	register int maxcnt;
    602 {
    603 	register char *np, *cp, *ep, *ap;
    604 	register u_long oaddr = -1;
    605 	register int len, cc;
    606 	register char **argv;
    607 
    608 	/*
    609 	 * Check that there aren't an unreasonable number of agruments,
    610 	 * and that the address is in user space.
    611 	 */
    612 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    613 		return (0);
    614 
    615 	if (kd->argv == 0) {
    616 		/*
    617 		 * Try to avoid reallocs.
    618 		 */
    619 		kd->argc = MAX(narg + 1, 32);
    620 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    621 						sizeof(*kd->argv));
    622 		if (kd->argv == 0)
    623 			return (0);
    624 	} else if (narg + 1 > kd->argc) {
    625 		kd->argc = MAX(2 * kd->argc, narg + 1);
    626 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    627 						sizeof(*kd->argv));
    628 		if (kd->argv == 0)
    629 			return (0);
    630 	}
    631 	if (kd->argspc == 0) {
    632 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
    633 		if (kd->argspc == 0)
    634 			return (0);
    635 		kd->arglen = kd->nbpg;
    636 	}
    637 	if (kd->argbuf == 0) {
    638 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
    639 		if (kd->argbuf == 0)
    640 			return (0);
    641 	}
    642 	cc = sizeof(char *) * narg;
    643 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
    644 		return (0);
    645 	ap = np = kd->argspc;
    646 	argv = kd->argv;
    647 	len = 0;
    648 	/*
    649 	 * Loop over pages, filling in the argument vector.
    650 	 */
    651 	while (argv < kd->argv + narg && *argv != 0) {
    652 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    653 		if (addr != oaddr) {
    654 			if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
    655 			    kd->nbpg)
    656 				return (0);
    657 			oaddr = addr;
    658 		}
    659 		addr = (u_long)*argv & (kd->nbpg - 1);
    660 		cp = kd->argbuf + addr;
    661 		cc = kd->nbpg - addr;
    662 		if (maxcnt > 0 && cc > maxcnt - len)
    663 			cc = maxcnt - len;;
    664 		ep = memchr(cp, '\0', cc);
    665 		if (ep != 0)
    666 			cc = ep - cp + 1;
    667 		if (len + cc > kd->arglen) {
    668 			register int off;
    669 			register char **pp;
    670 			register char *op = kd->argspc;
    671 
    672 			kd->arglen *= 2;
    673 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    674 							  kd->arglen);
    675 			if (kd->argspc == 0)
    676 				return (0);
    677 			/*
    678 			 * Adjust argv pointers in case realloc moved
    679 			 * the string space.
    680 			 */
    681 			off = kd->argspc - op;
    682 			for (pp = kd->argv; pp < argv; pp++)
    683 				*pp += off;
    684 			ap += off;
    685 			np += off;
    686 		}
    687 		memcpy(np, cp, cc);
    688 		np += cc;
    689 		len += cc;
    690 		if (ep != 0) {
    691 			*argv++ = ap;
    692 			ap = np;
    693 		} else
    694 			*argv += cc;
    695 		if (maxcnt > 0 && len >= maxcnt) {
    696 			/*
    697 			 * We're stopping prematurely.  Terminate the
    698 			 * current string.
    699 			 */
    700 			if (ep == 0) {
    701 				*np = '\0';
    702 				*argv++ = ap;
    703 			}
    704 			break;
    705 		}
    706 	}
    707 	/* Make sure argv is terminated. */
    708 	*argv = 0;
    709 	return (kd->argv);
    710 }
    711 
    712 static void
    713 ps_str_a(p, addr, n)
    714 	struct ps_strings *p;
    715 	u_long *addr;
    716 	int *n;
    717 {
    718 	*addr = (u_long)p->ps_argvstr;
    719 	*n = p->ps_nargvstr;
    720 }
    721 
    722 static void
    723 ps_str_e(p, addr, n)
    724 	struct ps_strings *p;
    725 	u_long *addr;
    726 	int *n;
    727 {
    728 	*addr = (u_long)p->ps_envstr;
    729 	*n = p->ps_nenvstr;
    730 }
    731 
    732 /*
    733  * Determine if the proc indicated by p is still active.
    734  * This test is not 100% foolproof in theory, but chances of
    735  * being wrong are very low.
    736  */
    737 static int
    738 proc_verify(kd, kernp, p)
    739 	kvm_t *kd;
    740 	u_long kernp;
    741 	const struct proc *p;
    742 {
    743 	struct proc kernproc;
    744 
    745 	/*
    746 	 * Just read in the whole proc.  It's not that big relative
    747 	 * to the cost of the read system call.
    748 	 */
    749 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    750 	    sizeof(kernproc))
    751 		return (0);
    752 	return (p->p_pid == kernproc.p_pid &&
    753 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    754 }
    755 
    756 static char **
    757 kvm_doargv(kd, kp, nchr, info)
    758 	kvm_t *kd;
    759 	const struct kinfo_proc *kp;
    760 	int nchr;
    761 	void (*info)(struct ps_strings *, u_long *, int *);
    762 {
    763 	register const struct proc *p = &kp->kp_proc;
    764 	register char **ap;
    765 	u_long addr;
    766 	int cnt;
    767 	struct ps_strings arginfo;
    768 
    769 	/*
    770 	 * Pointers are stored at the top of the user stack.
    771 	 */
    772 	if (p->p_stat == SZOMB)
    773 		return (0);
    774 	cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
    775 	    (char *)&arginfo, sizeof(arginfo));
    776 	if (cnt != sizeof(arginfo))
    777 		return (0);
    778 
    779 	(*info)(&arginfo, &addr, &cnt);
    780 	if (cnt == 0)
    781 		return (0);
    782 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    783 	/*
    784 	 * For live kernels, make sure this process didn't go away.
    785 	 */
    786 	if (ap != 0 && ISALIVE(kd) &&
    787 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    788 		ap = 0;
    789 	return (ap);
    790 }
    791 
    792 /*
    793  * Get the command args.  This code is now machine independent.
    794  */
    795 char **
    796 kvm_getargv(kd, kp, nchr)
    797 	kvm_t *kd;
    798 	const struct kinfo_proc *kp;
    799 	int nchr;
    800 {
    801 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    802 }
    803 
    804 char **
    805 kvm_getenvv(kd, kp, nchr)
    806 	kvm_t *kd;
    807 	const struct kinfo_proc *kp;
    808 	int nchr;
    809 {
    810 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    811 }
    812 
    813 /*
    814  * Read from user space.  The user context is given by p.
    815  */
    816 ssize_t
    817 kvm_uread(kd, p, uva, buf, len)
    818 	kvm_t *kd;
    819 	register const struct proc *p;
    820 	register u_long uva;
    821 	register char *buf;
    822 	register size_t len;
    823 {
    824 	register char *cp;
    825 
    826 	cp = buf;
    827 	while (len > 0) {
    828 		register int cc;
    829 		register char *dp;
    830 		u_long cnt;
    831 
    832 		dp = _kvm_uread(kd, p, uva, &cnt);
    833 		if (dp == 0) {
    834 			_kvm_err(kd, 0, "invalid address (%x)", uva);
    835 			return (0);
    836 		}
    837 		cc = MIN(cnt, len);
    838 		bcopy(dp, cp, cc);
    839 
    840 		cp += cc;
    841 		uva += cc;
    842 		len -= cc;
    843 	}
    844 	return (ssize_t)(cp - buf);
    845 }
    846