kvm_proc.c revision 1.22 1 /* $NetBSD: kvm_proc.c,v 1.22 1998/02/11 12:00:37 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
5 * Copyright (c) 1989, 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software developed by the Computer Systems
9 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
10 * BG 91-66 and contributed to Berkeley.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 */
40
41 #include <sys/cdefs.h>
42 #if defined(LIBC_SCCS) && !defined(lint)
43 #if 0
44 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
45 #else
46 __RCSID("$NetBSD: kvm_proc.c,v 1.22 1998/02/11 12:00:37 mrg Exp $");
47 #endif
48 #endif /* LIBC_SCCS and not lint */
49
50 /*
51 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
52 * users of this code, so we've factored it out into a separate module.
53 * Thus, we keep this grunge out of the other kvm applications (i.e.,
54 * most other applications are interested only in open/close/read/nlist).
55 */
56
57 #include <sys/param.h>
58 #include <sys/user.h>
59 #include <sys/proc.h>
60 #include <sys/exec.h>
61 #include <sys/stat.h>
62 #include <sys/ioctl.h>
63 #include <sys/tty.h>
64 #include <stdlib.h>
65 #include <string.h>
66 #include <unistd.h>
67 #include <nlist.h>
68 #include <kvm.h>
69
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/swap_pager.h>
73
74 #include <sys/sysctl.h>
75
76 #include <limits.h>
77 #include <db.h>
78 #include <paths.h>
79
80 #include "kvm_private.h"
81
82 #define KREAD(kd, addr, obj) \
83 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
84
85 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
86 int _kvm_coreinit __P((kvm_t *));
87 int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
88 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
89 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
90 size_t));
91
92 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
93 int));
94 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
95 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
96 void (*)(struct ps_strings *, u_long *, int *)));
97 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
98 struct kinfo_proc *, int));
99 static int proc_verify __P((kvm_t *, u_long, const struct proc *));
100 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
101 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
102
103 char *
104 _kvm_uread(kd, p, va, cnt)
105 kvm_t *kd;
106 const struct proc *p;
107 u_long va;
108 u_long *cnt;
109 {
110 u_long addr, head;
111 u_long offset;
112 struct vm_map_entry vme;
113 struct vm_object vmo;
114 int rv;
115
116 if (kd->swapspc == 0) {
117 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
118 if (kd->swapspc == 0)
119 return (0);
120 }
121
122 /*
123 * Look through the address map for the memory object
124 * that corresponds to the given virtual address.
125 * The header just has the entire valid range.
126 */
127 head = (u_long)&p->p_vmspace->vm_map.header;
128 addr = head;
129 while (1) {
130 if (KREAD(kd, addr, &vme))
131 return (0);
132
133 if (va >= vme.start && va < vme.end &&
134 vme.object.vm_object != 0)
135 break;
136
137 addr = (u_long)vme.next;
138 if (addr == head)
139 return (0);
140 }
141
142 /*
143 * We found the right object -- follow shadow links.
144 */
145 offset = va - vme.start + vme.offset;
146 addr = (u_long)vme.object.vm_object;
147
148 while (1) {
149 /* Try reading the page from core first. */
150 if ((rv = _kvm_readfromcore(kd, addr, offset)))
151 break;
152
153 if (KREAD(kd, addr, &vmo))
154 return (0);
155
156 /* If there is a pager here, see if it has the page. */
157 if (vmo.pager != 0 &&
158 (rv = _kvm_readfrompager(kd, &vmo, offset)))
159 break;
160
161 /* Move down the shadow chain. */
162 addr = (u_long)vmo.shadow;
163 if (addr == 0)
164 return (0);
165 offset += vmo.shadow_offset;
166 }
167
168 if (rv == -1)
169 return (0);
170
171 /* Found the page. */
172 offset %= kd->nbpg;
173 *cnt = kd->nbpg - offset;
174 return (&kd->swapspc[offset]);
175 }
176
177 #define vm_page_hash(kd, object, offset) \
178 (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
179
180 int
181 _kvm_coreinit(kd)
182 kvm_t *kd;
183 {
184 struct nlist nlist[3];
185
186 nlist[0].n_name = "_vm_page_buckets";
187 nlist[1].n_name = "_vm_page_hash_mask";
188 nlist[2].n_name = 0;
189 if (kvm_nlist(kd, nlist) != 0)
190 return (-1);
191
192 if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
193 KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
194 return (-1);
195
196 return (0);
197 }
198
199 int
200 _kvm_readfromcore(kd, object, offset)
201 kvm_t *kd;
202 u_long object, offset;
203 {
204 u_long addr;
205 struct pglist bucket;
206 struct vm_page mem;
207 off_t seekpoint;
208
209 if (kd->vm_page_buckets == 0 &&
210 _kvm_coreinit(kd))
211 return (-1);
212
213 addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
214 if (KREAD(kd, addr, &bucket))
215 return (-1);
216
217 addr = (u_long)bucket.tqh_first;
218 offset &= ~(kd->nbpg -1);
219 while (1) {
220 if (addr == 0)
221 return (0);
222
223 if (KREAD(kd, addr, &mem))
224 return (-1);
225
226 #if defined(UVM)
227 if ((u_long)mem.uobject == object &&
228 (u_long)mem.offset == offset)
229 #else
230 if ((u_long)mem.object == object &&
231 (u_long)mem.offset == offset)
232 #endif
233 break;
234
235 addr = (u_long)mem.hashq.tqe_next;
236 }
237
238 seekpoint = mem.phys_addr;
239
240 if (lseek(kd->pmfd, seekpoint, 0) == -1)
241 return (-1);
242 if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
243 return (-1);
244
245 return (1);
246 }
247
248 int
249 _kvm_readfrompager(kd, vmop, offset)
250 kvm_t *kd;
251 struct vm_object *vmop;
252 u_long offset;
253 {
254 u_long addr;
255 struct pager_struct pager;
256 struct swpager swap;
257 int ix;
258 struct swblock swb;
259 off_t seekpoint;
260
261 /* Read in the pager info and make sure it's a swap device. */
262 addr = (u_long)vmop->pager;
263 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
264 return (-1);
265
266 /* Read in the swap_pager private data. */
267 addr = (u_long)pager.pg_data;
268 if (KREAD(kd, addr, &swap))
269 return (-1);
270
271 /*
272 * Calculate the paging offset, and make sure it's within the
273 * bounds of the pager.
274 */
275 offset += vmop->paging_offset;
276 ix = offset / dbtob(swap.sw_bsize);
277 #if 0
278 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
279 return (-1);
280 #else
281 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
282 int i;
283 printf("BUG BUG BUG BUG:\n");
284 printf("object %p offset %lx pgoffset %lx ",
285 vmop, offset - vmop->paging_offset,
286 (u_long)vmop->paging_offset);
287 printf("pager %p swpager %p\n",
288 vmop->pager, pager.pg_data);
289 printf("osize %lx bsize %x blocks %p nblocks %x\n",
290 (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
291 swap.sw_nblocks);
292 for (i = 0; i < swap.sw_nblocks; i++) {
293 addr = (u_long)&swap.sw_blocks[i];
294 if (KREAD(kd, addr, &swb))
295 return (0);
296 printf("sw_blocks[%d]: block %x mask %x\n", i,
297 swb.swb_block, swb.swb_mask);
298 }
299 return (-1);
300 }
301 #endif
302
303 /* Read in the swap records. */
304 addr = (u_long)&swap.sw_blocks[ix];
305 if (KREAD(kd, addr, &swb))
306 return (-1);
307
308 /* Calculate offset within pager. */
309 offset %= dbtob(swap.sw_bsize);
310
311 /* Check that the page is actually present. */
312 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
313 return (0);
314
315 if (!ISALIVE(kd))
316 return (-1);
317
318 /* Calculate the physical address and read the page. */
319 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
320
321 if (lseek(kd->swfd, seekpoint, 0) == -1)
322 return (-1);
323 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
324 return (-1);
325
326 return (1);
327 }
328
329 /*
330 * Read proc's from memory file into buffer bp, which has space to hold
331 * at most maxcnt procs.
332 */
333 static int
334 kvm_proclist(kd, what, arg, p, bp, maxcnt)
335 kvm_t *kd;
336 int what, arg;
337 struct proc *p;
338 struct kinfo_proc *bp;
339 int maxcnt;
340 {
341 int cnt = 0;
342 struct eproc eproc;
343 struct pgrp pgrp;
344 struct session sess;
345 struct tty tty;
346 struct proc proc;
347
348 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
349 if (KREAD(kd, (u_long)p, &proc)) {
350 _kvm_err(kd, kd->program, "can't read proc at %x", p);
351 return (-1);
352 }
353 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
354 (void)KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
355 &eproc.e_ucred);
356
357 switch(what) {
358
359 case KERN_PROC_PID:
360 if (proc.p_pid != (pid_t)arg)
361 continue;
362 break;
363
364 case KERN_PROC_UID:
365 if (eproc.e_ucred.cr_uid != (uid_t)arg)
366 continue;
367 break;
368
369 case KERN_PROC_RUID:
370 if (eproc.e_pcred.p_ruid != (uid_t)arg)
371 continue;
372 break;
373 }
374 /*
375 * We're going to add another proc to the set. If this
376 * will overflow the buffer, assume the reason is because
377 * nprocs (or the proc list) is corrupt and declare an error.
378 */
379 if (cnt >= maxcnt) {
380 _kvm_err(kd, kd->program, "nprocs corrupt");
381 return (-1);
382 }
383 /*
384 * gather eproc
385 */
386 eproc.e_paddr = p;
387 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
388 _kvm_err(kd, kd->program, "can't read pgrp at %x",
389 proc.p_pgrp);
390 return (-1);
391 }
392 eproc.e_sess = pgrp.pg_session;
393 eproc.e_pgid = pgrp.pg_id;
394 eproc.e_jobc = pgrp.pg_jobc;
395 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
396 _kvm_err(kd, kd->program, "can't read session at %x",
397 pgrp.pg_session);
398 return (-1);
399 }
400 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
401 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
402 _kvm_err(kd, kd->program,
403 "can't read tty at %x", sess.s_ttyp);
404 return (-1);
405 }
406 eproc.e_tdev = tty.t_dev;
407 eproc.e_tsess = tty.t_session;
408 if (tty.t_pgrp != NULL) {
409 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
410 _kvm_err(kd, kd->program,
411 "can't read tpgrp at &x",
412 tty.t_pgrp);
413 return (-1);
414 }
415 eproc.e_tpgid = pgrp.pg_id;
416 } else
417 eproc.e_tpgid = -1;
418 } else
419 eproc.e_tdev = NODEV;
420 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
421 if (sess.s_leader == p)
422 eproc.e_flag |= EPROC_SLEADER;
423 if (proc.p_wmesg)
424 (void)kvm_read(kd, (u_long)proc.p_wmesg,
425 eproc.e_wmesg, WMESGLEN);
426
427 (void)kvm_read(kd, (u_long)proc.p_vmspace,
428 (char *)&eproc.e_vm, sizeof(eproc.e_vm));
429
430 eproc.e_xsize = eproc.e_xrssize = 0;
431 eproc.e_xccount = eproc.e_xswrss = 0;
432
433 switch (what) {
434
435 case KERN_PROC_PGRP:
436 if (eproc.e_pgid != (pid_t)arg)
437 continue;
438 break;
439
440 case KERN_PROC_TTY:
441 if ((proc.p_flag & P_CONTROLT) == 0 ||
442 eproc.e_tdev != (dev_t)arg)
443 continue;
444 break;
445 }
446 bcopy(&proc, &bp->kp_proc, sizeof(proc));
447 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
448 ++bp;
449 ++cnt;
450 }
451 return (cnt);
452 }
453
454 /*
455 * Build proc info array by reading in proc list from a crash dump.
456 * Return number of procs read. maxcnt is the max we will read.
457 */
458 static int
459 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
460 kvm_t *kd;
461 int what, arg;
462 u_long a_allproc;
463 u_long a_zombproc;
464 int maxcnt;
465 {
466 struct kinfo_proc *bp = kd->procbase;
467 int acnt, zcnt;
468 struct proc *p;
469
470 if (KREAD(kd, a_allproc, &p)) {
471 _kvm_err(kd, kd->program, "cannot read allproc");
472 return (-1);
473 }
474 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
475 if (acnt < 0)
476 return (acnt);
477
478 if (KREAD(kd, a_zombproc, &p)) {
479 _kvm_err(kd, kd->program, "cannot read zombproc");
480 return (-1);
481 }
482 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
483 if (zcnt < 0)
484 zcnt = 0;
485
486 return (acnt + zcnt);
487 }
488
489 struct kinfo_proc *
490 kvm_getprocs(kd, op, arg, cnt)
491 kvm_t *kd;
492 int op, arg;
493 int *cnt;
494 {
495 size_t size;
496 int mib[4], st, nprocs;
497
498 if (kd->procbase != 0) {
499 free((void *)kd->procbase);
500 /*
501 * Clear this pointer in case this call fails. Otherwise,
502 * kvm_close() will free it again.
503 */
504 kd->procbase = 0;
505 }
506 if (ISALIVE(kd)) {
507 size = 0;
508 mib[0] = CTL_KERN;
509 mib[1] = KERN_PROC;
510 mib[2] = op;
511 mib[3] = arg;
512 st = sysctl(mib, 4, NULL, &size, NULL, 0);
513 if (st == -1) {
514 _kvm_syserr(kd, kd->program, "kvm_getprocs");
515 return (0);
516 }
517 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
518 if (kd->procbase == 0)
519 return (0);
520 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
521 if (st == -1) {
522 _kvm_syserr(kd, kd->program, "kvm_getprocs");
523 return (0);
524 }
525 if (size % sizeof(struct kinfo_proc) != 0) {
526 _kvm_err(kd, kd->program,
527 "proc size mismatch (%d total, %d chunks)",
528 size, sizeof(struct kinfo_proc));
529 return (0);
530 }
531 nprocs = size / sizeof(struct kinfo_proc);
532 } else {
533 struct nlist nl[4], *p;
534
535 nl[0].n_name = "_nprocs";
536 nl[1].n_name = "_allproc";
537 nl[2].n_name = "_zombproc";
538 nl[3].n_name = 0;
539
540 if (kvm_nlist(kd, nl) != 0) {
541 for (p = nl; p->n_type != 0; ++p)
542 ;
543 _kvm_err(kd, kd->program,
544 "%s: no such symbol", p->n_name);
545 return (0);
546 }
547 if (KREAD(kd, nl[0].n_value, &nprocs)) {
548 _kvm_err(kd, kd->program, "can't read nprocs");
549 return (0);
550 }
551 size = nprocs * sizeof(struct kinfo_proc);
552 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
553 if (kd->procbase == 0)
554 return (0);
555
556 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
557 nl[2].n_value, nprocs);
558 #ifdef notdef
559 size = nprocs * sizeof(struct kinfo_proc);
560 (void)realloc(kd->procbase, size);
561 #endif
562 }
563 *cnt = nprocs;
564 return (kd->procbase);
565 }
566
567 void
568 _kvm_freeprocs(kd)
569 kvm_t *kd;
570 {
571 if (kd->procbase) {
572 free(kd->procbase);
573 kd->procbase = 0;
574 }
575 }
576
577 void *
578 _kvm_realloc(kd, p, n)
579 kvm_t *kd;
580 void *p;
581 size_t n;
582 {
583 void *np = (void *)realloc(p, n);
584
585 if (np == 0)
586 _kvm_err(kd, kd->program, "out of memory");
587 return (np);
588 }
589
590 #ifndef MAX
591 #define MAX(a, b) ((a) > (b) ? (a) : (b))
592 #endif
593
594 /*
595 * Read in an argument vector from the user address space of process p.
596 * addr if the user-space base address of narg null-terminated contiguous
597 * strings. This is used to read in both the command arguments and
598 * environment strings. Read at most maxcnt characters of strings.
599 */
600 static char **
601 kvm_argv(kd, p, addr, narg, maxcnt)
602 kvm_t *kd;
603 const struct proc *p;
604 u_long addr;
605 int narg;
606 int maxcnt;
607 {
608 char *np, *cp, *ep, *ap;
609 u_long oaddr = -1;
610 int len, cc;
611 char **argv;
612
613 /*
614 * Check that there aren't an unreasonable number of agruments,
615 * and that the address is in user space.
616 */
617 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
618 return (0);
619
620 if (kd->argv == 0) {
621 /*
622 * Try to avoid reallocs.
623 */
624 kd->argc = MAX(narg + 1, 32);
625 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
626 sizeof(*kd->argv));
627 if (kd->argv == 0)
628 return (0);
629 } else if (narg + 1 > kd->argc) {
630 kd->argc = MAX(2 * kd->argc, narg + 1);
631 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
632 sizeof(*kd->argv));
633 if (kd->argv == 0)
634 return (0);
635 }
636 if (kd->argspc == 0) {
637 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
638 if (kd->argspc == 0)
639 return (0);
640 kd->arglen = kd->nbpg;
641 }
642 if (kd->argbuf == 0) {
643 kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
644 if (kd->argbuf == 0)
645 return (0);
646 }
647 cc = sizeof(char *) * narg;
648 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
649 return (0);
650 ap = np = kd->argspc;
651 argv = kd->argv;
652 len = 0;
653 /*
654 * Loop over pages, filling in the argument vector.
655 */
656 while (argv < kd->argv + narg && *argv != 0) {
657 addr = (u_long)*argv & ~(kd->nbpg - 1);
658 if (addr != oaddr) {
659 if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
660 kd->nbpg)
661 return (0);
662 oaddr = addr;
663 }
664 addr = (u_long)*argv & (kd->nbpg - 1);
665 cp = kd->argbuf + addr;
666 cc = kd->nbpg - addr;
667 if (maxcnt > 0 && cc > maxcnt - len)
668 cc = maxcnt - len;;
669 ep = memchr(cp, '\0', cc);
670 if (ep != 0)
671 cc = ep - cp + 1;
672 if (len + cc > kd->arglen) {
673 int off;
674 char **pp;
675 char *op = kd->argspc;
676
677 kd->arglen *= 2;
678 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
679 kd->arglen);
680 if (kd->argspc == 0)
681 return (0);
682 /*
683 * Adjust argv pointers in case realloc moved
684 * the string space.
685 */
686 off = kd->argspc - op;
687 for (pp = kd->argv; pp < argv; pp++)
688 *pp += off;
689 ap += off;
690 np += off;
691 }
692 memcpy(np, cp, cc);
693 np += cc;
694 len += cc;
695 if (ep != 0) {
696 *argv++ = ap;
697 ap = np;
698 } else
699 *argv += cc;
700 if (maxcnt > 0 && len >= maxcnt) {
701 /*
702 * We're stopping prematurely. Terminate the
703 * current string.
704 */
705 if (ep == 0) {
706 *np = '\0';
707 *argv++ = ap;
708 }
709 break;
710 }
711 }
712 /* Make sure argv is terminated. */
713 *argv = 0;
714 return (kd->argv);
715 }
716
717 static void
718 ps_str_a(p, addr, n)
719 struct ps_strings *p;
720 u_long *addr;
721 int *n;
722 {
723 *addr = (u_long)p->ps_argvstr;
724 *n = p->ps_nargvstr;
725 }
726
727 static void
728 ps_str_e(p, addr, n)
729 struct ps_strings *p;
730 u_long *addr;
731 int *n;
732 {
733 *addr = (u_long)p->ps_envstr;
734 *n = p->ps_nenvstr;
735 }
736
737 /*
738 * Determine if the proc indicated by p is still active.
739 * This test is not 100% foolproof in theory, but chances of
740 * being wrong are very low.
741 */
742 static int
743 proc_verify(kd, kernp, p)
744 kvm_t *kd;
745 u_long kernp;
746 const struct proc *p;
747 {
748 struct proc kernproc;
749
750 /*
751 * Just read in the whole proc. It's not that big relative
752 * to the cost of the read system call.
753 */
754 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
755 sizeof(kernproc))
756 return (0);
757 return (p->p_pid == kernproc.p_pid &&
758 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
759 }
760
761 static char **
762 kvm_doargv(kd, kp, nchr, info)
763 kvm_t *kd;
764 const struct kinfo_proc *kp;
765 int nchr;
766 void (*info)(struct ps_strings *, u_long *, int *);
767 {
768 const struct proc *p = &kp->kp_proc;
769 char **ap;
770 u_long addr;
771 int cnt;
772 struct ps_strings arginfo;
773
774 /*
775 * Pointers are stored at the top of the user stack.
776 */
777 if (p->p_stat == SZOMB)
778 return (0);
779 cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
780 (char *)&arginfo, sizeof(arginfo));
781 if (cnt != sizeof(arginfo))
782 return (0);
783
784 (*info)(&arginfo, &addr, &cnt);
785 if (cnt == 0)
786 return (0);
787 ap = kvm_argv(kd, p, addr, cnt, nchr);
788 /*
789 * For live kernels, make sure this process didn't go away.
790 */
791 if (ap != 0 && ISALIVE(kd) &&
792 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
793 ap = 0;
794 return (ap);
795 }
796
797 /*
798 * Get the command args. This code is now machine independent.
799 */
800 char **
801 kvm_getargv(kd, kp, nchr)
802 kvm_t *kd;
803 const struct kinfo_proc *kp;
804 int nchr;
805 {
806 return (kvm_doargv(kd, kp, nchr, ps_str_a));
807 }
808
809 char **
810 kvm_getenvv(kd, kp, nchr)
811 kvm_t *kd;
812 const struct kinfo_proc *kp;
813 int nchr;
814 {
815 return (kvm_doargv(kd, kp, nchr, ps_str_e));
816 }
817
818 /*
819 * Read from user space. The user context is given by p.
820 */
821 ssize_t
822 kvm_uread(kd, p, uva, buf, len)
823 kvm_t *kd;
824 const struct proc *p;
825 u_long uva;
826 char *buf;
827 size_t len;
828 {
829 char *cp;
830
831 cp = buf;
832 while (len > 0) {
833 int cc;
834 char *dp;
835 u_long cnt;
836
837 dp = _kvm_uread(kd, p, uva, &cnt);
838 if (dp == 0) {
839 _kvm_err(kd, 0, "invalid address (%x)", uva);
840 return (0);
841 }
842 cc = MIN(cnt, len);
843 bcopy(dp, cp, cc);
844
845 cp += cc;
846 uva += cc;
847 len -= cc;
848 }
849 return (ssize_t)(cp - buf);
850 }
851