Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.23
      1 /*	$NetBSD: kvm_proc.c,v 1.23 1998/02/12 06:55:29 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
      5  * Copyright (c) 1989, 1992, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * This code is derived from software developed by the Computer Systems
      9  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     10  * BG 91-66 and contributed to Berkeley.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 #if defined(LIBC_SCCS) && !defined(lint)
     43 #if 0
     44 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     45 #else
     46 __RCSID("$NetBSD: kvm_proc.c,v 1.23 1998/02/12 06:55:29 chs Exp $");
     47 #endif
     48 #endif /* LIBC_SCCS and not lint */
     49 
     50 /*
     51  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     52  * users of this code, so we've factored it out into a separate module.
     53  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     54  * most other applications are interested only in open/close/read/nlist).
     55  */
     56 
     57 #include <sys/param.h>
     58 #include <sys/user.h>
     59 #include <sys/proc.h>
     60 #include <sys/exec.h>
     61 #include <sys/stat.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/tty.h>
     64 #include <stdlib.h>
     65 #include <string.h>
     66 #include <unistd.h>
     67 #include <nlist.h>
     68 #include <kvm.h>
     69 
     70 #include <vm/vm.h>
     71 #include <vm/vm_param.h>
     72 #include <vm/swap_pager.h>
     73 
     74 #if defined(UVM)
     75 #include <uvm/uvm_extern.h>
     76 #endif
     77 
     78 #include <sys/sysctl.h>
     79 
     80 #include <limits.h>
     81 #include <db.h>
     82 #include <paths.h>
     83 
     84 #include "kvm_private.h"
     85 
     86 #define KREAD(kd, addr, obj) \
     87 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
     88 
     89 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
     90 #if !defined(UVM)
     91 int		_kvm_coreinit __P((kvm_t *));
     92 int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
     93 int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
     94 #endif
     95 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
     96 		    size_t));
     97 
     98 static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
     99 		    int));
    100 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
    101 static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
    102 		    void (*)(struct ps_strings *, u_long *, int *)));
    103 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    104 		    struct kinfo_proc *, int));
    105 static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
    106 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    107 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    108 
    109 char *
    110 _kvm_uread(kd, p, va, cnt)
    111 	kvm_t *kd;
    112 	const struct proc *p;
    113 	u_long va;
    114 	u_long *cnt;
    115 {
    116 	u_long addr, head;
    117 	u_long offset;
    118 	struct vm_map_entry vme;
    119 #if defined(UVM)
    120 	struct vm_amap amap;
    121 	struct vm_anon *anonp, anon;
    122 	struct vm_page pg;
    123 	int slot;
    124 #else
    125 	struct vm_object vmo;
    126 	int rv;
    127 #endif
    128 
    129 	if (kd->swapspc == 0) {
    130 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
    131 		if (kd->swapspc == 0)
    132 			return (0);
    133 	}
    134 
    135 	/*
    136 	 * Look through the address map for the memory object
    137 	 * that corresponds to the given virtual address.
    138 	 * The header just has the entire valid range.
    139 	 */
    140 	head = (u_long)&p->p_vmspace->vm_map.header;
    141 	addr = head;
    142 	while (1) {
    143 		if (KREAD(kd, addr, &vme))
    144 			return (0);
    145 
    146 #if defined(UVM)
    147 		if (va >= vme.start && va < vme.end &&
    148 		    vme.aref.ar_amap != NULL)
    149 			break;
    150 
    151 #else
    152 		if (va >= vme.start && va < vme.end &&
    153 		    vme.object.vm_object != 0)
    154 			break;
    155 #endif
    156 
    157 		addr = (u_long)vme.next;
    158 		if (addr == head)
    159 			return (0);
    160 
    161 	}
    162 #if defined(UVM)
    163 
    164 	/*
    165 	 * we found the map entry, now to find the object...
    166 	 */
    167 	if (vme.aref.ar_amap == NULL)
    168 		return NULL;
    169 
    170 	addr = (u_long)vme.aref.ar_amap;
    171 	if (KREAD(kd, addr, &amap))
    172 		return NULL;
    173 
    174 	offset = va - vme.start;
    175 	slot = offset / kd->nbpg + vme.aref.ar_slotoff;
    176 	/* sanity-check slot number */
    177 	if (slot  > amap.am_nslot)
    178 		return NULL;
    179 
    180 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    181 	if (KREAD(kd, addr, &anonp))
    182 		return NULL;
    183 
    184 	addr = (u_long)anonp;
    185 	if (KREAD(kd, addr, &anon))
    186 		return NULL;
    187 
    188 	addr = (u_long)anon.u.an_page;
    189 	if (addr) {
    190 		if (KREAD(kd, addr, &pg))
    191 			return NULL;
    192 
    193 		if (lseek(kd->pmfd, (off_t)pg.phys_addr, SEEK_SET) == -1)
    194 			return NULL;
    195 
    196 		if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    197 			return NULL;
    198 	}
    199 	else {
    200 		if (lseek(kd->swfd, anon.an_swslot * kd->nbpg, SEEK_SET) == -1)
    201 			return NULL;
    202 		if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    203 			return NULL;
    204 	}
    205 #else
    206 	/*
    207 	 * We found the right object -- follow shadow links.
    208 	 */
    209 	offset = va - vme.start + vme.offset;
    210 	addr = (u_long)vme.object.vm_object;
    211 
    212 	while (1) {
    213 		/* Try reading the page from core first. */
    214 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
    215 			break;
    216 
    217 		if (KREAD(kd, addr, &vmo))
    218 			return (0);
    219 
    220 		/* If there is a pager here, see if it has the page. */
    221 		if (vmo.pager != 0 &&
    222 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
    223 			break;
    224 
    225 		/* Move down the shadow chain. */
    226 		addr = (u_long)vmo.shadow;
    227 		if (addr == 0)
    228 			return (0);
    229 		offset += vmo.shadow_offset;
    230 	}
    231 
    232 	if (rv == -1)
    233 		return (0);
    234 #endif
    235 
    236 	/* Found the page. */
    237 	offset %= kd->nbpg;
    238 	*cnt = kd->nbpg - offset;
    239 	return (&kd->swapspc[offset]);
    240 }
    241 
    242 #if !defined(UVM)
    243 
    244 #define	vm_page_hash(kd, object, offset) \
    245 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
    246 
    247 int
    248 _kvm_coreinit(kd)
    249 	kvm_t *kd;
    250 {
    251 	struct nlist nlist[3];
    252 
    253 	nlist[0].n_name = "_vm_page_buckets";
    254 	nlist[1].n_name = "_vm_page_hash_mask";
    255 	nlist[2].n_name = 0;
    256 	if (kvm_nlist(kd, nlist) != 0)
    257 		return (-1);
    258 
    259 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
    260 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
    261 		return (-1);
    262 
    263 	return (0);
    264 }
    265 
    266 int
    267 _kvm_readfromcore(kd, object, offset)
    268 	kvm_t *kd;
    269 	u_long object, offset;
    270 {
    271 	u_long addr;
    272 	struct pglist bucket;
    273 	struct vm_page mem;
    274 	off_t seekpoint;
    275 
    276 	if (kd->vm_page_buckets == 0 &&
    277 	    _kvm_coreinit(kd))
    278 		return (-1);
    279 
    280 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
    281 	if (KREAD(kd, addr, &bucket))
    282 		return (-1);
    283 
    284 	addr = (u_long)bucket.tqh_first;
    285 	offset &= ~(kd->nbpg -1);
    286 	while (1) {
    287 		if (addr == 0)
    288 			return (0);
    289 
    290 		if (KREAD(kd, addr, &mem))
    291 			return (-1);
    292 
    293 		if ((u_long)mem.object == object &&
    294 		    (u_long)mem.offset == offset)
    295 			break;
    296 
    297 		addr = (u_long)mem.hashq.tqe_next;
    298 	}
    299 
    300 	seekpoint = mem.phys_addr;
    301 
    302 	if (lseek(kd->pmfd, seekpoint, 0) == -1)
    303 		return (-1);
    304 	if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    305 		return (-1);
    306 
    307 	return (1);
    308 }
    309 
    310 int
    311 _kvm_readfrompager(kd, vmop, offset)
    312 	kvm_t *kd;
    313 	struct vm_object *vmop;
    314 	u_long offset;
    315 {
    316 	u_long addr;
    317 	struct pager_struct pager;
    318 	struct swpager swap;
    319 	int ix;
    320 	struct swblock swb;
    321 	off_t seekpoint;
    322 
    323 	/* Read in the pager info and make sure it's a swap device. */
    324 	addr = (u_long)vmop->pager;
    325 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    326 		return (-1);
    327 
    328 	/* Read in the swap_pager private data. */
    329 	addr = (u_long)pager.pg_data;
    330 	if (KREAD(kd, addr, &swap))
    331 		return (-1);
    332 
    333 	/*
    334 	 * Calculate the paging offset, and make sure it's within the
    335 	 * bounds of the pager.
    336 	 */
    337 	offset += vmop->paging_offset;
    338 	ix = offset / dbtob(swap.sw_bsize);
    339 #if 0
    340 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    341 		return (-1);
    342 #else
    343 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    344 		int i;
    345 		printf("BUG BUG BUG BUG:\n");
    346 		printf("object %p offset %lx pgoffset %lx ",
    347 		    vmop, offset - vmop->paging_offset,
    348 		    (u_long)vmop->paging_offset);
    349 		printf("pager %p swpager %p\n",
    350 		    vmop->pager, pager.pg_data);
    351 		printf("osize %lx bsize %x blocks %p nblocks %x\n",
    352 		    (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    353 		    swap.sw_nblocks);
    354 		for (i = 0; i < swap.sw_nblocks; i++) {
    355 			addr = (u_long)&swap.sw_blocks[i];
    356 			if (KREAD(kd, addr, &swb))
    357 				return (0);
    358 			printf("sw_blocks[%d]: block %x mask %x\n", i,
    359 			    swb.swb_block, swb.swb_mask);
    360 		}
    361 		return (-1);
    362 	}
    363 #endif
    364 
    365 	/* Read in the swap records. */
    366 	addr = (u_long)&swap.sw_blocks[ix];
    367 	if (KREAD(kd, addr, &swb))
    368 		return (-1);
    369 
    370 	/* Calculate offset within pager. */
    371 	offset %= dbtob(swap.sw_bsize);
    372 
    373 	/* Check that the page is actually present. */
    374 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    375 		return (0);
    376 
    377 	if (!ISALIVE(kd))
    378 		return (-1);
    379 
    380 	/* Calculate the physical address and read the page. */
    381 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    382 
    383 	if (lseek(kd->swfd, seekpoint, 0) == -1)
    384 		return (-1);
    385 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    386 		return (-1);
    387 
    388 	return (1);
    389 }
    390 #endif /* !defined(UVM) */
    391 
    392 /*
    393  * Read proc's from memory file into buffer bp, which has space to hold
    394  * at most maxcnt procs.
    395  */
    396 static int
    397 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    398 	kvm_t *kd;
    399 	int what, arg;
    400 	struct proc *p;
    401 	struct kinfo_proc *bp;
    402 	int maxcnt;
    403 {
    404 	int cnt = 0;
    405 	struct eproc eproc;
    406 	struct pgrp pgrp;
    407 	struct session sess;
    408 	struct tty tty;
    409 	struct proc proc;
    410 
    411 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    412 		if (KREAD(kd, (u_long)p, &proc)) {
    413 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    414 			return (-1);
    415 		}
    416 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    417 			(void)KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    418 			      &eproc.e_ucred);
    419 
    420 		switch(what) {
    421 
    422 		case KERN_PROC_PID:
    423 			if (proc.p_pid != (pid_t)arg)
    424 				continue;
    425 			break;
    426 
    427 		case KERN_PROC_UID:
    428 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    429 				continue;
    430 			break;
    431 
    432 		case KERN_PROC_RUID:
    433 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    434 				continue;
    435 			break;
    436 		}
    437 		/*
    438 		 * We're going to add another proc to the set.  If this
    439 		 * will overflow the buffer, assume the reason is because
    440 		 * nprocs (or the proc list) is corrupt and declare an error.
    441 		 */
    442 		if (cnt >= maxcnt) {
    443 			_kvm_err(kd, kd->program, "nprocs corrupt");
    444 			return (-1);
    445 		}
    446 		/*
    447 		 * gather eproc
    448 		 */
    449 		eproc.e_paddr = p;
    450 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    451 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    452 				 proc.p_pgrp);
    453 			return (-1);
    454 		}
    455 		eproc.e_sess = pgrp.pg_session;
    456 		eproc.e_pgid = pgrp.pg_id;
    457 		eproc.e_jobc = pgrp.pg_jobc;
    458 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    459 			_kvm_err(kd, kd->program, "can't read session at %x",
    460 				pgrp.pg_session);
    461 			return (-1);
    462 		}
    463 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    464 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    465 				_kvm_err(kd, kd->program,
    466 					 "can't read tty at %x", sess.s_ttyp);
    467 				return (-1);
    468 			}
    469 			eproc.e_tdev = tty.t_dev;
    470 			eproc.e_tsess = tty.t_session;
    471 			if (tty.t_pgrp != NULL) {
    472 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    473 					_kvm_err(kd, kd->program,
    474 						 "can't read tpgrp at &x",
    475 						tty.t_pgrp);
    476 					return (-1);
    477 				}
    478 				eproc.e_tpgid = pgrp.pg_id;
    479 			} else
    480 				eproc.e_tpgid = -1;
    481 		} else
    482 			eproc.e_tdev = NODEV;
    483 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    484 		if (sess.s_leader == p)
    485 			eproc.e_flag |= EPROC_SLEADER;
    486 		if (proc.p_wmesg)
    487 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    488 			    eproc.e_wmesg, WMESGLEN);
    489 
    490 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    491 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    492 
    493 		eproc.e_xsize = eproc.e_xrssize = 0;
    494 		eproc.e_xccount = eproc.e_xswrss = 0;
    495 
    496 		switch (what) {
    497 
    498 		case KERN_PROC_PGRP:
    499 			if (eproc.e_pgid != (pid_t)arg)
    500 				continue;
    501 			break;
    502 
    503 		case KERN_PROC_TTY:
    504 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    505 			     eproc.e_tdev != (dev_t)arg)
    506 				continue;
    507 			break;
    508 		}
    509 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
    510 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
    511 		++bp;
    512 		++cnt;
    513 	}
    514 	return (cnt);
    515 }
    516 
    517 /*
    518  * Build proc info array by reading in proc list from a crash dump.
    519  * Return number of procs read.  maxcnt is the max we will read.
    520  */
    521 static int
    522 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    523 	kvm_t *kd;
    524 	int what, arg;
    525 	u_long a_allproc;
    526 	u_long a_zombproc;
    527 	int maxcnt;
    528 {
    529 	struct kinfo_proc *bp = kd->procbase;
    530 	int acnt, zcnt;
    531 	struct proc *p;
    532 
    533 	if (KREAD(kd, a_allproc, &p)) {
    534 		_kvm_err(kd, kd->program, "cannot read allproc");
    535 		return (-1);
    536 	}
    537 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    538 	if (acnt < 0)
    539 		return (acnt);
    540 
    541 	if (KREAD(kd, a_zombproc, &p)) {
    542 		_kvm_err(kd, kd->program, "cannot read zombproc");
    543 		return (-1);
    544 	}
    545 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    546 	if (zcnt < 0)
    547 		zcnt = 0;
    548 
    549 	return (acnt + zcnt);
    550 }
    551 
    552 struct kinfo_proc *
    553 kvm_getprocs(kd, op, arg, cnt)
    554 	kvm_t *kd;
    555 	int op, arg;
    556 	int *cnt;
    557 {
    558 	size_t size;
    559 	int mib[4], st, nprocs;
    560 
    561 	if (kd->procbase != 0) {
    562 		free((void *)kd->procbase);
    563 		/*
    564 		 * Clear this pointer in case this call fails.  Otherwise,
    565 		 * kvm_close() will free it again.
    566 		 */
    567 		kd->procbase = 0;
    568 	}
    569 	if (ISALIVE(kd)) {
    570 		size = 0;
    571 		mib[0] = CTL_KERN;
    572 		mib[1] = KERN_PROC;
    573 		mib[2] = op;
    574 		mib[3] = arg;
    575 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    576 		if (st == -1) {
    577 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    578 			return (0);
    579 		}
    580 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    581 		if (kd->procbase == 0)
    582 			return (0);
    583 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    584 		if (st == -1) {
    585 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    586 			return (0);
    587 		}
    588 		if (size % sizeof(struct kinfo_proc) != 0) {
    589 			_kvm_err(kd, kd->program,
    590 				"proc size mismatch (%d total, %d chunks)",
    591 				size, sizeof(struct kinfo_proc));
    592 			return (0);
    593 		}
    594 		nprocs = size / sizeof(struct kinfo_proc);
    595 	} else {
    596 		struct nlist nl[4], *p;
    597 
    598 		nl[0].n_name = "_nprocs";
    599 		nl[1].n_name = "_allproc";
    600 		nl[2].n_name = "_zombproc";
    601 		nl[3].n_name = 0;
    602 
    603 		if (kvm_nlist(kd, nl) != 0) {
    604 			for (p = nl; p->n_type != 0; ++p)
    605 				;
    606 			_kvm_err(kd, kd->program,
    607 				 "%s: no such symbol", p->n_name);
    608 			return (0);
    609 		}
    610 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    611 			_kvm_err(kd, kd->program, "can't read nprocs");
    612 			return (0);
    613 		}
    614 		size = nprocs * sizeof(struct kinfo_proc);
    615 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    616 		if (kd->procbase == 0)
    617 			return (0);
    618 
    619 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    620 				      nl[2].n_value, nprocs);
    621 #ifdef notdef
    622 		size = nprocs * sizeof(struct kinfo_proc);
    623 		(void)realloc(kd->procbase, size);
    624 #endif
    625 	}
    626 	*cnt = nprocs;
    627 	return (kd->procbase);
    628 }
    629 
    630 void
    631 _kvm_freeprocs(kd)
    632 	kvm_t *kd;
    633 {
    634 	if (kd->procbase) {
    635 		free(kd->procbase);
    636 		kd->procbase = 0;
    637 	}
    638 }
    639 
    640 void *
    641 _kvm_realloc(kd, p, n)
    642 	kvm_t *kd;
    643 	void *p;
    644 	size_t n;
    645 {
    646 	void *np = (void *)realloc(p, n);
    647 
    648 	if (np == 0)
    649 		_kvm_err(kd, kd->program, "out of memory");
    650 	return (np);
    651 }
    652 
    653 #ifndef MAX
    654 #define MAX(a, b) ((a) > (b) ? (a) : (b))
    655 #endif
    656 
    657 /*
    658  * Read in an argument vector from the user address space of process p.
    659  * addr if the user-space base address of narg null-terminated contiguous
    660  * strings.  This is used to read in both the command arguments and
    661  * environment strings.  Read at most maxcnt characters of strings.
    662  */
    663 static char **
    664 kvm_argv(kd, p, addr, narg, maxcnt)
    665 	kvm_t *kd;
    666 	const struct proc *p;
    667 	u_long addr;
    668 	int narg;
    669 	int maxcnt;
    670 {
    671 	char *np, *cp, *ep, *ap;
    672 	u_long oaddr = -1;
    673 	int len, cc;
    674 	char **argv;
    675 
    676 	/*
    677 	 * Check that there aren't an unreasonable number of agruments,
    678 	 * and that the address is in user space.
    679 	 */
    680 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    681 		return (0);
    682 
    683 	if (kd->argv == 0) {
    684 		/*
    685 		 * Try to avoid reallocs.
    686 		 */
    687 		kd->argc = MAX(narg + 1, 32);
    688 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    689 						sizeof(*kd->argv));
    690 		if (kd->argv == 0)
    691 			return (0);
    692 	} else if (narg + 1 > kd->argc) {
    693 		kd->argc = MAX(2 * kd->argc, narg + 1);
    694 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    695 						sizeof(*kd->argv));
    696 		if (kd->argv == 0)
    697 			return (0);
    698 	}
    699 	if (kd->argspc == 0) {
    700 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
    701 		if (kd->argspc == 0)
    702 			return (0);
    703 		kd->arglen = kd->nbpg;
    704 	}
    705 	if (kd->argbuf == 0) {
    706 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
    707 		if (kd->argbuf == 0)
    708 			return (0);
    709 	}
    710 	cc = sizeof(char *) * narg;
    711 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
    712 		return (0);
    713 	ap = np = kd->argspc;
    714 	argv = kd->argv;
    715 	len = 0;
    716 	/*
    717 	 * Loop over pages, filling in the argument vector.
    718 	 */
    719 	while (argv < kd->argv + narg && *argv != 0) {
    720 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    721 		if (addr != oaddr) {
    722 			if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
    723 			    kd->nbpg)
    724 				return (0);
    725 			oaddr = addr;
    726 		}
    727 		addr = (u_long)*argv & (kd->nbpg - 1);
    728 		cp = kd->argbuf + addr;
    729 		cc = kd->nbpg - addr;
    730 		if (maxcnt > 0 && cc > maxcnt - len)
    731 			cc = maxcnt - len;;
    732 		ep = memchr(cp, '\0', cc);
    733 		if (ep != 0)
    734 			cc = ep - cp + 1;
    735 		if (len + cc > kd->arglen) {
    736 			int off;
    737 			char **pp;
    738 			char *op = kd->argspc;
    739 
    740 			kd->arglen *= 2;
    741 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    742 							  kd->arglen);
    743 			if (kd->argspc == 0)
    744 				return (0);
    745 			/*
    746 			 * Adjust argv pointers in case realloc moved
    747 			 * the string space.
    748 			 */
    749 			off = kd->argspc - op;
    750 			for (pp = kd->argv; pp < argv; pp++)
    751 				*pp += off;
    752 			ap += off;
    753 			np += off;
    754 		}
    755 		memcpy(np, cp, cc);
    756 		np += cc;
    757 		len += cc;
    758 		if (ep != 0) {
    759 			*argv++ = ap;
    760 			ap = np;
    761 		} else
    762 			*argv += cc;
    763 		if (maxcnt > 0 && len >= maxcnt) {
    764 			/*
    765 			 * We're stopping prematurely.  Terminate the
    766 			 * current string.
    767 			 */
    768 			if (ep == 0) {
    769 				*np = '\0';
    770 				*argv++ = ap;
    771 			}
    772 			break;
    773 		}
    774 	}
    775 	/* Make sure argv is terminated. */
    776 	*argv = 0;
    777 	return (kd->argv);
    778 }
    779 
    780 static void
    781 ps_str_a(p, addr, n)
    782 	struct ps_strings *p;
    783 	u_long *addr;
    784 	int *n;
    785 {
    786 	*addr = (u_long)p->ps_argvstr;
    787 	*n = p->ps_nargvstr;
    788 }
    789 
    790 static void
    791 ps_str_e(p, addr, n)
    792 	struct ps_strings *p;
    793 	u_long *addr;
    794 	int *n;
    795 {
    796 	*addr = (u_long)p->ps_envstr;
    797 	*n = p->ps_nenvstr;
    798 }
    799 
    800 /*
    801  * Determine if the proc indicated by p is still active.
    802  * This test is not 100% foolproof in theory, but chances of
    803  * being wrong are very low.
    804  */
    805 static int
    806 proc_verify(kd, kernp, p)
    807 	kvm_t *kd;
    808 	u_long kernp;
    809 	const struct proc *p;
    810 {
    811 	struct proc kernproc;
    812 
    813 	/*
    814 	 * Just read in the whole proc.  It's not that big relative
    815 	 * to the cost of the read system call.
    816 	 */
    817 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    818 	    sizeof(kernproc))
    819 		return (0);
    820 	return (p->p_pid == kernproc.p_pid &&
    821 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    822 }
    823 
    824 static char **
    825 kvm_doargv(kd, kp, nchr, info)
    826 	kvm_t *kd;
    827 	const struct kinfo_proc *kp;
    828 	int nchr;
    829 	void (*info)(struct ps_strings *, u_long *, int *);
    830 {
    831 	const struct proc *p = &kp->kp_proc;
    832 	char **ap;
    833 	u_long addr;
    834 	int cnt;
    835 	struct ps_strings arginfo;
    836 
    837 	/*
    838 	 * Pointers are stored at the top of the user stack.
    839 	 */
    840 	if (p->p_stat == SZOMB)
    841 		return (0);
    842 	cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
    843 	    (char *)&arginfo, sizeof(arginfo));
    844 	if (cnt != sizeof(arginfo))
    845 		return (0);
    846 
    847 	(*info)(&arginfo, &addr, &cnt);
    848 	if (cnt == 0)
    849 		return (0);
    850 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    851 	/*
    852 	 * For live kernels, make sure this process didn't go away.
    853 	 */
    854 	if (ap != 0 && ISALIVE(kd) &&
    855 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    856 		ap = 0;
    857 	return (ap);
    858 }
    859 
    860 /*
    861  * Get the command args.  This code is now machine independent.
    862  */
    863 char **
    864 kvm_getargv(kd, kp, nchr)
    865 	kvm_t *kd;
    866 	const struct kinfo_proc *kp;
    867 	int nchr;
    868 {
    869 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    870 }
    871 
    872 char **
    873 kvm_getenvv(kd, kp, nchr)
    874 	kvm_t *kd;
    875 	const struct kinfo_proc *kp;
    876 	int nchr;
    877 {
    878 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    879 }
    880 
    881 /*
    882  * Read from user space.  The user context is given by p.
    883  */
    884 ssize_t
    885 kvm_uread(kd, p, uva, buf, len)
    886 	kvm_t *kd;
    887 	const struct proc *p;
    888 	u_long uva;
    889 	char *buf;
    890 	size_t len;
    891 {
    892 	char *cp;
    893 
    894 	cp = buf;
    895 	while (len > 0) {
    896 		int cc;
    897 		char *dp;
    898 		u_long cnt;
    899 
    900 		dp = _kvm_uread(kd, p, uva, &cnt);
    901 		if (dp == 0) {
    902 			_kvm_err(kd, 0, "invalid address (%x)", uva);
    903 			return (0);
    904 		}
    905 		cc = MIN(cnt, len);
    906 		bcopy(dp, cp, cc);
    907 
    908 		cp += cc;
    909 		uva += cc;
    910 		len -= cc;
    911 	}
    912 	return (ssize_t)(cp - buf);
    913 }
    914