kvm_proc.c revision 1.23 1 /* $NetBSD: kvm_proc.c,v 1.23 1998/02/12 06:55:29 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
5 * Copyright (c) 1989, 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software developed by the Computer Systems
9 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
10 * BG 91-66 and contributed to Berkeley.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 */
40
41 #include <sys/cdefs.h>
42 #if defined(LIBC_SCCS) && !defined(lint)
43 #if 0
44 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
45 #else
46 __RCSID("$NetBSD: kvm_proc.c,v 1.23 1998/02/12 06:55:29 chs Exp $");
47 #endif
48 #endif /* LIBC_SCCS and not lint */
49
50 /*
51 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
52 * users of this code, so we've factored it out into a separate module.
53 * Thus, we keep this grunge out of the other kvm applications (i.e.,
54 * most other applications are interested only in open/close/read/nlist).
55 */
56
57 #include <sys/param.h>
58 #include <sys/user.h>
59 #include <sys/proc.h>
60 #include <sys/exec.h>
61 #include <sys/stat.h>
62 #include <sys/ioctl.h>
63 #include <sys/tty.h>
64 #include <stdlib.h>
65 #include <string.h>
66 #include <unistd.h>
67 #include <nlist.h>
68 #include <kvm.h>
69
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/swap_pager.h>
73
74 #if defined(UVM)
75 #include <uvm/uvm_extern.h>
76 #endif
77
78 #include <sys/sysctl.h>
79
80 #include <limits.h>
81 #include <db.h>
82 #include <paths.h>
83
84 #include "kvm_private.h"
85
86 #define KREAD(kd, addr, obj) \
87 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
88
89 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
90 #if !defined(UVM)
91 int _kvm_coreinit __P((kvm_t *));
92 int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
93 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
94 #endif
95 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
96 size_t));
97
98 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
99 int));
100 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
101 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
102 void (*)(struct ps_strings *, u_long *, int *)));
103 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
104 struct kinfo_proc *, int));
105 static int proc_verify __P((kvm_t *, u_long, const struct proc *));
106 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
107 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
108
109 char *
110 _kvm_uread(kd, p, va, cnt)
111 kvm_t *kd;
112 const struct proc *p;
113 u_long va;
114 u_long *cnt;
115 {
116 u_long addr, head;
117 u_long offset;
118 struct vm_map_entry vme;
119 #if defined(UVM)
120 struct vm_amap amap;
121 struct vm_anon *anonp, anon;
122 struct vm_page pg;
123 int slot;
124 #else
125 struct vm_object vmo;
126 int rv;
127 #endif
128
129 if (kd->swapspc == 0) {
130 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
131 if (kd->swapspc == 0)
132 return (0);
133 }
134
135 /*
136 * Look through the address map for the memory object
137 * that corresponds to the given virtual address.
138 * The header just has the entire valid range.
139 */
140 head = (u_long)&p->p_vmspace->vm_map.header;
141 addr = head;
142 while (1) {
143 if (KREAD(kd, addr, &vme))
144 return (0);
145
146 #if defined(UVM)
147 if (va >= vme.start && va < vme.end &&
148 vme.aref.ar_amap != NULL)
149 break;
150
151 #else
152 if (va >= vme.start && va < vme.end &&
153 vme.object.vm_object != 0)
154 break;
155 #endif
156
157 addr = (u_long)vme.next;
158 if (addr == head)
159 return (0);
160
161 }
162 #if defined(UVM)
163
164 /*
165 * we found the map entry, now to find the object...
166 */
167 if (vme.aref.ar_amap == NULL)
168 return NULL;
169
170 addr = (u_long)vme.aref.ar_amap;
171 if (KREAD(kd, addr, &amap))
172 return NULL;
173
174 offset = va - vme.start;
175 slot = offset / kd->nbpg + vme.aref.ar_slotoff;
176 /* sanity-check slot number */
177 if (slot > amap.am_nslot)
178 return NULL;
179
180 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
181 if (KREAD(kd, addr, &anonp))
182 return NULL;
183
184 addr = (u_long)anonp;
185 if (KREAD(kd, addr, &anon))
186 return NULL;
187
188 addr = (u_long)anon.u.an_page;
189 if (addr) {
190 if (KREAD(kd, addr, &pg))
191 return NULL;
192
193 if (lseek(kd->pmfd, (off_t)pg.phys_addr, SEEK_SET) == -1)
194 return NULL;
195
196 if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
197 return NULL;
198 }
199 else {
200 if (lseek(kd->swfd, anon.an_swslot * kd->nbpg, SEEK_SET) == -1)
201 return NULL;
202 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
203 return NULL;
204 }
205 #else
206 /*
207 * We found the right object -- follow shadow links.
208 */
209 offset = va - vme.start + vme.offset;
210 addr = (u_long)vme.object.vm_object;
211
212 while (1) {
213 /* Try reading the page from core first. */
214 if ((rv = _kvm_readfromcore(kd, addr, offset)))
215 break;
216
217 if (KREAD(kd, addr, &vmo))
218 return (0);
219
220 /* If there is a pager here, see if it has the page. */
221 if (vmo.pager != 0 &&
222 (rv = _kvm_readfrompager(kd, &vmo, offset)))
223 break;
224
225 /* Move down the shadow chain. */
226 addr = (u_long)vmo.shadow;
227 if (addr == 0)
228 return (0);
229 offset += vmo.shadow_offset;
230 }
231
232 if (rv == -1)
233 return (0);
234 #endif
235
236 /* Found the page. */
237 offset %= kd->nbpg;
238 *cnt = kd->nbpg - offset;
239 return (&kd->swapspc[offset]);
240 }
241
242 #if !defined(UVM)
243
244 #define vm_page_hash(kd, object, offset) \
245 (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
246
247 int
248 _kvm_coreinit(kd)
249 kvm_t *kd;
250 {
251 struct nlist nlist[3];
252
253 nlist[0].n_name = "_vm_page_buckets";
254 nlist[1].n_name = "_vm_page_hash_mask";
255 nlist[2].n_name = 0;
256 if (kvm_nlist(kd, nlist) != 0)
257 return (-1);
258
259 if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
260 KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
261 return (-1);
262
263 return (0);
264 }
265
266 int
267 _kvm_readfromcore(kd, object, offset)
268 kvm_t *kd;
269 u_long object, offset;
270 {
271 u_long addr;
272 struct pglist bucket;
273 struct vm_page mem;
274 off_t seekpoint;
275
276 if (kd->vm_page_buckets == 0 &&
277 _kvm_coreinit(kd))
278 return (-1);
279
280 addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
281 if (KREAD(kd, addr, &bucket))
282 return (-1);
283
284 addr = (u_long)bucket.tqh_first;
285 offset &= ~(kd->nbpg -1);
286 while (1) {
287 if (addr == 0)
288 return (0);
289
290 if (KREAD(kd, addr, &mem))
291 return (-1);
292
293 if ((u_long)mem.object == object &&
294 (u_long)mem.offset == offset)
295 break;
296
297 addr = (u_long)mem.hashq.tqe_next;
298 }
299
300 seekpoint = mem.phys_addr;
301
302 if (lseek(kd->pmfd, seekpoint, 0) == -1)
303 return (-1);
304 if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
305 return (-1);
306
307 return (1);
308 }
309
310 int
311 _kvm_readfrompager(kd, vmop, offset)
312 kvm_t *kd;
313 struct vm_object *vmop;
314 u_long offset;
315 {
316 u_long addr;
317 struct pager_struct pager;
318 struct swpager swap;
319 int ix;
320 struct swblock swb;
321 off_t seekpoint;
322
323 /* Read in the pager info and make sure it's a swap device. */
324 addr = (u_long)vmop->pager;
325 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
326 return (-1);
327
328 /* Read in the swap_pager private data. */
329 addr = (u_long)pager.pg_data;
330 if (KREAD(kd, addr, &swap))
331 return (-1);
332
333 /*
334 * Calculate the paging offset, and make sure it's within the
335 * bounds of the pager.
336 */
337 offset += vmop->paging_offset;
338 ix = offset / dbtob(swap.sw_bsize);
339 #if 0
340 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
341 return (-1);
342 #else
343 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
344 int i;
345 printf("BUG BUG BUG BUG:\n");
346 printf("object %p offset %lx pgoffset %lx ",
347 vmop, offset - vmop->paging_offset,
348 (u_long)vmop->paging_offset);
349 printf("pager %p swpager %p\n",
350 vmop->pager, pager.pg_data);
351 printf("osize %lx bsize %x blocks %p nblocks %x\n",
352 (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
353 swap.sw_nblocks);
354 for (i = 0; i < swap.sw_nblocks; i++) {
355 addr = (u_long)&swap.sw_blocks[i];
356 if (KREAD(kd, addr, &swb))
357 return (0);
358 printf("sw_blocks[%d]: block %x mask %x\n", i,
359 swb.swb_block, swb.swb_mask);
360 }
361 return (-1);
362 }
363 #endif
364
365 /* Read in the swap records. */
366 addr = (u_long)&swap.sw_blocks[ix];
367 if (KREAD(kd, addr, &swb))
368 return (-1);
369
370 /* Calculate offset within pager. */
371 offset %= dbtob(swap.sw_bsize);
372
373 /* Check that the page is actually present. */
374 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
375 return (0);
376
377 if (!ISALIVE(kd))
378 return (-1);
379
380 /* Calculate the physical address and read the page. */
381 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
382
383 if (lseek(kd->swfd, seekpoint, 0) == -1)
384 return (-1);
385 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
386 return (-1);
387
388 return (1);
389 }
390 #endif /* !defined(UVM) */
391
392 /*
393 * Read proc's from memory file into buffer bp, which has space to hold
394 * at most maxcnt procs.
395 */
396 static int
397 kvm_proclist(kd, what, arg, p, bp, maxcnt)
398 kvm_t *kd;
399 int what, arg;
400 struct proc *p;
401 struct kinfo_proc *bp;
402 int maxcnt;
403 {
404 int cnt = 0;
405 struct eproc eproc;
406 struct pgrp pgrp;
407 struct session sess;
408 struct tty tty;
409 struct proc proc;
410
411 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
412 if (KREAD(kd, (u_long)p, &proc)) {
413 _kvm_err(kd, kd->program, "can't read proc at %x", p);
414 return (-1);
415 }
416 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
417 (void)KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
418 &eproc.e_ucred);
419
420 switch(what) {
421
422 case KERN_PROC_PID:
423 if (proc.p_pid != (pid_t)arg)
424 continue;
425 break;
426
427 case KERN_PROC_UID:
428 if (eproc.e_ucred.cr_uid != (uid_t)arg)
429 continue;
430 break;
431
432 case KERN_PROC_RUID:
433 if (eproc.e_pcred.p_ruid != (uid_t)arg)
434 continue;
435 break;
436 }
437 /*
438 * We're going to add another proc to the set. If this
439 * will overflow the buffer, assume the reason is because
440 * nprocs (or the proc list) is corrupt and declare an error.
441 */
442 if (cnt >= maxcnt) {
443 _kvm_err(kd, kd->program, "nprocs corrupt");
444 return (-1);
445 }
446 /*
447 * gather eproc
448 */
449 eproc.e_paddr = p;
450 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
451 _kvm_err(kd, kd->program, "can't read pgrp at %x",
452 proc.p_pgrp);
453 return (-1);
454 }
455 eproc.e_sess = pgrp.pg_session;
456 eproc.e_pgid = pgrp.pg_id;
457 eproc.e_jobc = pgrp.pg_jobc;
458 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
459 _kvm_err(kd, kd->program, "can't read session at %x",
460 pgrp.pg_session);
461 return (-1);
462 }
463 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
464 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
465 _kvm_err(kd, kd->program,
466 "can't read tty at %x", sess.s_ttyp);
467 return (-1);
468 }
469 eproc.e_tdev = tty.t_dev;
470 eproc.e_tsess = tty.t_session;
471 if (tty.t_pgrp != NULL) {
472 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
473 _kvm_err(kd, kd->program,
474 "can't read tpgrp at &x",
475 tty.t_pgrp);
476 return (-1);
477 }
478 eproc.e_tpgid = pgrp.pg_id;
479 } else
480 eproc.e_tpgid = -1;
481 } else
482 eproc.e_tdev = NODEV;
483 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
484 if (sess.s_leader == p)
485 eproc.e_flag |= EPROC_SLEADER;
486 if (proc.p_wmesg)
487 (void)kvm_read(kd, (u_long)proc.p_wmesg,
488 eproc.e_wmesg, WMESGLEN);
489
490 (void)kvm_read(kd, (u_long)proc.p_vmspace,
491 (char *)&eproc.e_vm, sizeof(eproc.e_vm));
492
493 eproc.e_xsize = eproc.e_xrssize = 0;
494 eproc.e_xccount = eproc.e_xswrss = 0;
495
496 switch (what) {
497
498 case KERN_PROC_PGRP:
499 if (eproc.e_pgid != (pid_t)arg)
500 continue;
501 break;
502
503 case KERN_PROC_TTY:
504 if ((proc.p_flag & P_CONTROLT) == 0 ||
505 eproc.e_tdev != (dev_t)arg)
506 continue;
507 break;
508 }
509 bcopy(&proc, &bp->kp_proc, sizeof(proc));
510 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
511 ++bp;
512 ++cnt;
513 }
514 return (cnt);
515 }
516
517 /*
518 * Build proc info array by reading in proc list from a crash dump.
519 * Return number of procs read. maxcnt is the max we will read.
520 */
521 static int
522 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
523 kvm_t *kd;
524 int what, arg;
525 u_long a_allproc;
526 u_long a_zombproc;
527 int maxcnt;
528 {
529 struct kinfo_proc *bp = kd->procbase;
530 int acnt, zcnt;
531 struct proc *p;
532
533 if (KREAD(kd, a_allproc, &p)) {
534 _kvm_err(kd, kd->program, "cannot read allproc");
535 return (-1);
536 }
537 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
538 if (acnt < 0)
539 return (acnt);
540
541 if (KREAD(kd, a_zombproc, &p)) {
542 _kvm_err(kd, kd->program, "cannot read zombproc");
543 return (-1);
544 }
545 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
546 if (zcnt < 0)
547 zcnt = 0;
548
549 return (acnt + zcnt);
550 }
551
552 struct kinfo_proc *
553 kvm_getprocs(kd, op, arg, cnt)
554 kvm_t *kd;
555 int op, arg;
556 int *cnt;
557 {
558 size_t size;
559 int mib[4], st, nprocs;
560
561 if (kd->procbase != 0) {
562 free((void *)kd->procbase);
563 /*
564 * Clear this pointer in case this call fails. Otherwise,
565 * kvm_close() will free it again.
566 */
567 kd->procbase = 0;
568 }
569 if (ISALIVE(kd)) {
570 size = 0;
571 mib[0] = CTL_KERN;
572 mib[1] = KERN_PROC;
573 mib[2] = op;
574 mib[3] = arg;
575 st = sysctl(mib, 4, NULL, &size, NULL, 0);
576 if (st == -1) {
577 _kvm_syserr(kd, kd->program, "kvm_getprocs");
578 return (0);
579 }
580 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
581 if (kd->procbase == 0)
582 return (0);
583 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
584 if (st == -1) {
585 _kvm_syserr(kd, kd->program, "kvm_getprocs");
586 return (0);
587 }
588 if (size % sizeof(struct kinfo_proc) != 0) {
589 _kvm_err(kd, kd->program,
590 "proc size mismatch (%d total, %d chunks)",
591 size, sizeof(struct kinfo_proc));
592 return (0);
593 }
594 nprocs = size / sizeof(struct kinfo_proc);
595 } else {
596 struct nlist nl[4], *p;
597
598 nl[0].n_name = "_nprocs";
599 nl[1].n_name = "_allproc";
600 nl[2].n_name = "_zombproc";
601 nl[3].n_name = 0;
602
603 if (kvm_nlist(kd, nl) != 0) {
604 for (p = nl; p->n_type != 0; ++p)
605 ;
606 _kvm_err(kd, kd->program,
607 "%s: no such symbol", p->n_name);
608 return (0);
609 }
610 if (KREAD(kd, nl[0].n_value, &nprocs)) {
611 _kvm_err(kd, kd->program, "can't read nprocs");
612 return (0);
613 }
614 size = nprocs * sizeof(struct kinfo_proc);
615 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
616 if (kd->procbase == 0)
617 return (0);
618
619 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
620 nl[2].n_value, nprocs);
621 #ifdef notdef
622 size = nprocs * sizeof(struct kinfo_proc);
623 (void)realloc(kd->procbase, size);
624 #endif
625 }
626 *cnt = nprocs;
627 return (kd->procbase);
628 }
629
630 void
631 _kvm_freeprocs(kd)
632 kvm_t *kd;
633 {
634 if (kd->procbase) {
635 free(kd->procbase);
636 kd->procbase = 0;
637 }
638 }
639
640 void *
641 _kvm_realloc(kd, p, n)
642 kvm_t *kd;
643 void *p;
644 size_t n;
645 {
646 void *np = (void *)realloc(p, n);
647
648 if (np == 0)
649 _kvm_err(kd, kd->program, "out of memory");
650 return (np);
651 }
652
653 #ifndef MAX
654 #define MAX(a, b) ((a) > (b) ? (a) : (b))
655 #endif
656
657 /*
658 * Read in an argument vector from the user address space of process p.
659 * addr if the user-space base address of narg null-terminated contiguous
660 * strings. This is used to read in both the command arguments and
661 * environment strings. Read at most maxcnt characters of strings.
662 */
663 static char **
664 kvm_argv(kd, p, addr, narg, maxcnt)
665 kvm_t *kd;
666 const struct proc *p;
667 u_long addr;
668 int narg;
669 int maxcnt;
670 {
671 char *np, *cp, *ep, *ap;
672 u_long oaddr = -1;
673 int len, cc;
674 char **argv;
675
676 /*
677 * Check that there aren't an unreasonable number of agruments,
678 * and that the address is in user space.
679 */
680 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
681 return (0);
682
683 if (kd->argv == 0) {
684 /*
685 * Try to avoid reallocs.
686 */
687 kd->argc = MAX(narg + 1, 32);
688 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
689 sizeof(*kd->argv));
690 if (kd->argv == 0)
691 return (0);
692 } else if (narg + 1 > kd->argc) {
693 kd->argc = MAX(2 * kd->argc, narg + 1);
694 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
695 sizeof(*kd->argv));
696 if (kd->argv == 0)
697 return (0);
698 }
699 if (kd->argspc == 0) {
700 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
701 if (kd->argspc == 0)
702 return (0);
703 kd->arglen = kd->nbpg;
704 }
705 if (kd->argbuf == 0) {
706 kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
707 if (kd->argbuf == 0)
708 return (0);
709 }
710 cc = sizeof(char *) * narg;
711 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
712 return (0);
713 ap = np = kd->argspc;
714 argv = kd->argv;
715 len = 0;
716 /*
717 * Loop over pages, filling in the argument vector.
718 */
719 while (argv < kd->argv + narg && *argv != 0) {
720 addr = (u_long)*argv & ~(kd->nbpg - 1);
721 if (addr != oaddr) {
722 if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
723 kd->nbpg)
724 return (0);
725 oaddr = addr;
726 }
727 addr = (u_long)*argv & (kd->nbpg - 1);
728 cp = kd->argbuf + addr;
729 cc = kd->nbpg - addr;
730 if (maxcnt > 0 && cc > maxcnt - len)
731 cc = maxcnt - len;;
732 ep = memchr(cp, '\0', cc);
733 if (ep != 0)
734 cc = ep - cp + 1;
735 if (len + cc > kd->arglen) {
736 int off;
737 char **pp;
738 char *op = kd->argspc;
739
740 kd->arglen *= 2;
741 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
742 kd->arglen);
743 if (kd->argspc == 0)
744 return (0);
745 /*
746 * Adjust argv pointers in case realloc moved
747 * the string space.
748 */
749 off = kd->argspc - op;
750 for (pp = kd->argv; pp < argv; pp++)
751 *pp += off;
752 ap += off;
753 np += off;
754 }
755 memcpy(np, cp, cc);
756 np += cc;
757 len += cc;
758 if (ep != 0) {
759 *argv++ = ap;
760 ap = np;
761 } else
762 *argv += cc;
763 if (maxcnt > 0 && len >= maxcnt) {
764 /*
765 * We're stopping prematurely. Terminate the
766 * current string.
767 */
768 if (ep == 0) {
769 *np = '\0';
770 *argv++ = ap;
771 }
772 break;
773 }
774 }
775 /* Make sure argv is terminated. */
776 *argv = 0;
777 return (kd->argv);
778 }
779
780 static void
781 ps_str_a(p, addr, n)
782 struct ps_strings *p;
783 u_long *addr;
784 int *n;
785 {
786 *addr = (u_long)p->ps_argvstr;
787 *n = p->ps_nargvstr;
788 }
789
790 static void
791 ps_str_e(p, addr, n)
792 struct ps_strings *p;
793 u_long *addr;
794 int *n;
795 {
796 *addr = (u_long)p->ps_envstr;
797 *n = p->ps_nenvstr;
798 }
799
800 /*
801 * Determine if the proc indicated by p is still active.
802 * This test is not 100% foolproof in theory, but chances of
803 * being wrong are very low.
804 */
805 static int
806 proc_verify(kd, kernp, p)
807 kvm_t *kd;
808 u_long kernp;
809 const struct proc *p;
810 {
811 struct proc kernproc;
812
813 /*
814 * Just read in the whole proc. It's not that big relative
815 * to the cost of the read system call.
816 */
817 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
818 sizeof(kernproc))
819 return (0);
820 return (p->p_pid == kernproc.p_pid &&
821 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
822 }
823
824 static char **
825 kvm_doargv(kd, kp, nchr, info)
826 kvm_t *kd;
827 const struct kinfo_proc *kp;
828 int nchr;
829 void (*info)(struct ps_strings *, u_long *, int *);
830 {
831 const struct proc *p = &kp->kp_proc;
832 char **ap;
833 u_long addr;
834 int cnt;
835 struct ps_strings arginfo;
836
837 /*
838 * Pointers are stored at the top of the user stack.
839 */
840 if (p->p_stat == SZOMB)
841 return (0);
842 cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
843 (char *)&arginfo, sizeof(arginfo));
844 if (cnt != sizeof(arginfo))
845 return (0);
846
847 (*info)(&arginfo, &addr, &cnt);
848 if (cnt == 0)
849 return (0);
850 ap = kvm_argv(kd, p, addr, cnt, nchr);
851 /*
852 * For live kernels, make sure this process didn't go away.
853 */
854 if (ap != 0 && ISALIVE(kd) &&
855 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
856 ap = 0;
857 return (ap);
858 }
859
860 /*
861 * Get the command args. This code is now machine independent.
862 */
863 char **
864 kvm_getargv(kd, kp, nchr)
865 kvm_t *kd;
866 const struct kinfo_proc *kp;
867 int nchr;
868 {
869 return (kvm_doargv(kd, kp, nchr, ps_str_a));
870 }
871
872 char **
873 kvm_getenvv(kd, kp, nchr)
874 kvm_t *kd;
875 const struct kinfo_proc *kp;
876 int nchr;
877 {
878 return (kvm_doargv(kd, kp, nchr, ps_str_e));
879 }
880
881 /*
882 * Read from user space. The user context is given by p.
883 */
884 ssize_t
885 kvm_uread(kd, p, uva, buf, len)
886 kvm_t *kd;
887 const struct proc *p;
888 u_long uva;
889 char *buf;
890 size_t len;
891 {
892 char *cp;
893
894 cp = buf;
895 while (len > 0) {
896 int cc;
897 char *dp;
898 u_long cnt;
899
900 dp = _kvm_uread(kd, p, uva, &cnt);
901 if (dp == 0) {
902 _kvm_err(kd, 0, "invalid address (%x)", uva);
903 return (0);
904 }
905 cc = MIN(cnt, len);
906 bcopy(dp, cp, cc);
907
908 cp += cc;
909 uva += cc;
910 len -= cc;
911 }
912 return (ssize_t)(cp - buf);
913 }
914