Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.26
      1 /*	$NetBSD: kvm_proc.c,v 1.26 1998/08/15 09:16:28 mycroft Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1989, 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software developed by the Computer Systems
     44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45  * BG 91-66 and contributed to Berkeley.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *	This product includes software developed by the University of
     58  *	California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 #if defined(LIBC_SCCS) && !defined(lint)
     78 #if 0
     79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80 #else
     81 __RCSID("$NetBSD: kvm_proc.c,v 1.26 1998/08/15 09:16:28 mycroft Exp $");
     82 #endif
     83 #endif /* LIBC_SCCS and not lint */
     84 
     85 /*
     86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87  * users of this code, so we've factored it out into a separate module.
     88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89  * most other applications are interested only in open/close/read/nlist).
     90  */
     91 
     92 #include <sys/param.h>
     93 #include <sys/user.h>
     94 #include <sys/proc.h>
     95 #include <sys/exec.h>
     96 #include <sys/stat.h>
     97 #include <sys/ioctl.h>
     98 #include <sys/tty.h>
     99 #include <stdlib.h>
    100 #include <string.h>
    101 #include <unistd.h>
    102 #include <nlist.h>
    103 #include <kvm.h>
    104 
    105 #include <vm/vm.h>
    106 #include <vm/vm_param.h>
    107 #include <vm/swap_pager.h>
    108 
    109 #if defined(UVM)
    110 #include <uvm/uvm_extern.h>
    111 #endif
    112 
    113 #include <sys/sysctl.h>
    114 
    115 #include <limits.h>
    116 #include <db.h>
    117 #include <paths.h>
    118 
    119 #include "kvm_private.h"
    120 
    121 #define KREAD(kd, addr, obj) \
    122 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
    123 
    124 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
    125 #if !defined(UVM)
    126 int		_kvm_coreinit __P((kvm_t *));
    127 int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
    128 int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
    129 #endif
    130 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    131 		    size_t));
    132 
    133 static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
    134 		    int));
    135 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
    136 static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
    137 		    void (*)(struct ps_strings *, u_long *, int *)));
    138 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    139 		    struct kinfo_proc *, int));
    140 static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
    141 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    142 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    143 
    144 char *
    145 _kvm_uread(kd, p, va, cnt)
    146 	kvm_t *kd;
    147 	const struct proc *p;
    148 	u_long va;
    149 	u_long *cnt;
    150 {
    151 	u_long addr, head;
    152 	u_long offset;
    153 	struct vm_map_entry vme;
    154 #if defined(UVM)
    155 	struct vm_amap amap;
    156 	struct vm_anon *anonp, anon;
    157 	struct vm_page pg;
    158 	int slot;
    159 #else
    160 	struct vm_object vmo;
    161 	int rv;
    162 #endif
    163 
    164 	if (kd->swapspc == 0) {
    165 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
    166 		if (kd->swapspc == 0)
    167 			return (0);
    168 	}
    169 
    170 	/*
    171 	 * Look through the address map for the memory object
    172 	 * that corresponds to the given virtual address.
    173 	 * The header just has the entire valid range.
    174 	 */
    175 	head = (u_long)&p->p_vmspace->vm_map.header;
    176 	addr = head;
    177 	while (1) {
    178 		if (KREAD(kd, addr, &vme))
    179 			return (0);
    180 
    181 #if defined(UVM)
    182 		if (va >= vme.start && va < vme.end &&
    183 		    vme.aref.ar_amap != NULL)
    184 			break;
    185 
    186 #else
    187 		if (va >= vme.start && va < vme.end &&
    188 		    vme.object.vm_object != 0)
    189 			break;
    190 #endif
    191 
    192 		addr = (u_long)vme.next;
    193 		if (addr == head)
    194 			return (0);
    195 
    196 	}
    197 #if defined(UVM)
    198 
    199 	/*
    200 	 * we found the map entry, now to find the object...
    201 	 */
    202 	if (vme.aref.ar_amap == NULL)
    203 		return NULL;
    204 
    205 	addr = (u_long)vme.aref.ar_amap;
    206 	if (KREAD(kd, addr, &amap))
    207 		return NULL;
    208 
    209 	offset = va - vme.start;
    210 	slot = offset / kd->nbpg + vme.aref.ar_slotoff;
    211 	/* sanity-check slot number */
    212 	if (slot  > amap.am_nslot)
    213 		return NULL;
    214 
    215 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    216 	if (KREAD(kd, addr, &anonp))
    217 		return NULL;
    218 
    219 	addr = (u_long)anonp;
    220 	if (KREAD(kd, addr, &anon))
    221 		return NULL;
    222 
    223 	addr = (u_long)anon.u.an_page;
    224 	if (addr) {
    225 		if (KREAD(kd, addr, &pg))
    226 			return NULL;
    227 
    228 		if (pread(kd->pmfd, kd->swapspc, kd->nbpg,
    229 		    (off_t)pg.phys_addr) != kd->nbpg)
    230 			return NULL;
    231 	}
    232 	else {
    233 		if (pread(kd->swfd, kd->swapspc, kd->nbpg,
    234 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    235 			return NULL;
    236 	}
    237 #else
    238 	/*
    239 	 * We found the right object -- follow shadow links.
    240 	 */
    241 	offset = va - vme.start + vme.offset;
    242 	addr = (u_long)vme.object.vm_object;
    243 
    244 	while (1) {
    245 		/* Try reading the page from core first. */
    246 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
    247 			break;
    248 
    249 		if (KREAD(kd, addr, &vmo))
    250 			return (0);
    251 
    252 		/* If there is a pager here, see if it has the page. */
    253 		if (vmo.pager != 0 &&
    254 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
    255 			break;
    256 
    257 		/* Move down the shadow chain. */
    258 		addr = (u_long)vmo.shadow;
    259 		if (addr == 0)
    260 			return (0);
    261 		offset += vmo.shadow_offset;
    262 	}
    263 
    264 	if (rv == -1)
    265 		return (0);
    266 #endif
    267 
    268 	/* Found the page. */
    269 	offset %= kd->nbpg;
    270 	*cnt = kd->nbpg - offset;
    271 	return (&kd->swapspc[offset]);
    272 }
    273 
    274 #if !defined(UVM)
    275 
    276 #define	vm_page_hash(kd, object, offset) \
    277 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
    278 
    279 int
    280 _kvm_coreinit(kd)
    281 	kvm_t *kd;
    282 {
    283 	struct nlist nlist[3];
    284 
    285 	nlist[0].n_name = "_vm_page_buckets";
    286 	nlist[1].n_name = "_vm_page_hash_mask";
    287 	nlist[2].n_name = 0;
    288 	if (kvm_nlist(kd, nlist) != 0)
    289 		return (-1);
    290 
    291 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
    292 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
    293 		return (-1);
    294 
    295 	return (0);
    296 }
    297 
    298 int
    299 _kvm_readfromcore(kd, object, offset)
    300 	kvm_t *kd;
    301 	u_long object, offset;
    302 {
    303 	u_long addr;
    304 	struct pglist bucket;
    305 	struct vm_page mem;
    306 	off_t seekpoint;
    307 
    308 	if (kd->vm_page_buckets == 0 &&
    309 	    _kvm_coreinit(kd))
    310 		return (-1);
    311 
    312 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
    313 	if (KREAD(kd, addr, &bucket))
    314 		return (-1);
    315 
    316 	addr = (u_long)bucket.tqh_first;
    317 	offset &= ~(kd->nbpg -1);
    318 	while (1) {
    319 		if (addr == 0)
    320 			return (0);
    321 
    322 		if (KREAD(kd, addr, &mem))
    323 			return (-1);
    324 
    325 		if ((u_long)mem.object == object &&
    326 		    (u_long)mem.offset == offset)
    327 			break;
    328 
    329 		addr = (u_long)mem.hashq.tqe_next;
    330 	}
    331 
    332 	seekpoint = mem.phys_addr;
    333 
    334 	if (pread(kd->pmfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
    335 		return (-1);
    336 
    337 	return (1);
    338 }
    339 
    340 int
    341 _kvm_readfrompager(kd, vmop, offset)
    342 	kvm_t *kd;
    343 	struct vm_object *vmop;
    344 	u_long offset;
    345 {
    346 	u_long addr;
    347 	struct pager_struct pager;
    348 	struct swpager swap;
    349 	int ix;
    350 	struct swblock swb;
    351 	off_t seekpoint;
    352 
    353 	/* Read in the pager info and make sure it's a swap device. */
    354 	addr = (u_long)vmop->pager;
    355 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    356 		return (-1);
    357 
    358 	/* Read in the swap_pager private data. */
    359 	addr = (u_long)pager.pg_data;
    360 	if (KREAD(kd, addr, &swap))
    361 		return (-1);
    362 
    363 	/*
    364 	 * Calculate the paging offset, and make sure it's within the
    365 	 * bounds of the pager.
    366 	 */
    367 	offset += vmop->paging_offset;
    368 	ix = offset / dbtob(swap.sw_bsize);
    369 #if 0
    370 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    371 		return (-1);
    372 #else
    373 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    374 		int i;
    375 		printf("BUG BUG BUG BUG:\n");
    376 		printf("object %p offset %lx pgoffset %lx ",
    377 		    vmop, offset - vmop->paging_offset,
    378 		    (u_long)vmop->paging_offset);
    379 		printf("pager %p swpager %p\n",
    380 		    vmop->pager, pager.pg_data);
    381 		printf("osize %lx bsize %x blocks %p nblocks %x\n",
    382 		    (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    383 		    swap.sw_nblocks);
    384 		for (i = 0; i < swap.sw_nblocks; i++) {
    385 			addr = (u_long)&swap.sw_blocks[i];
    386 			if (KREAD(kd, addr, &swb))
    387 				return (0);
    388 			printf("sw_blocks[%d]: block %x mask %x\n", i,
    389 			    swb.swb_block, swb.swb_mask);
    390 		}
    391 		return (-1);
    392 	}
    393 #endif
    394 
    395 	/* Read in the swap records. */
    396 	addr = (u_long)&swap.sw_blocks[ix];
    397 	if (KREAD(kd, addr, &swb))
    398 		return (-1);
    399 
    400 	/* Calculate offset within pager. */
    401 	offset %= dbtob(swap.sw_bsize);
    402 
    403 	/* Check that the page is actually present. */
    404 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    405 		return (0);
    406 
    407 	if (!ISALIVE(kd))
    408 		return (-1);
    409 
    410 	/* Calculate the physical address and read the page. */
    411 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    412 
    413 	if (pread(kd->swfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
    414 		return (-1);
    415 
    416 	return (1);
    417 }
    418 #endif /* !defined(UVM) */
    419 
    420 /*
    421  * Read proc's from memory file into buffer bp, which has space to hold
    422  * at most maxcnt procs.
    423  */
    424 static int
    425 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    426 	kvm_t *kd;
    427 	int what, arg;
    428 	struct proc *p;
    429 	struct kinfo_proc *bp;
    430 	int maxcnt;
    431 {
    432 	int cnt = 0;
    433 	struct eproc eproc;
    434 	struct pgrp pgrp;
    435 	struct session sess;
    436 	struct tty tty;
    437 	struct proc proc;
    438 
    439 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    440 		if (KREAD(kd, (u_long)p, &proc)) {
    441 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    442 			return (-1);
    443 		}
    444 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    445 			(void)KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    446 			      &eproc.e_ucred);
    447 
    448 		switch(what) {
    449 
    450 		case KERN_PROC_PID:
    451 			if (proc.p_pid != (pid_t)arg)
    452 				continue;
    453 			break;
    454 
    455 		case KERN_PROC_UID:
    456 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    457 				continue;
    458 			break;
    459 
    460 		case KERN_PROC_RUID:
    461 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    462 				continue;
    463 			break;
    464 		}
    465 		/*
    466 		 * We're going to add another proc to the set.  If this
    467 		 * will overflow the buffer, assume the reason is because
    468 		 * nprocs (or the proc list) is corrupt and declare an error.
    469 		 */
    470 		if (cnt >= maxcnt) {
    471 			_kvm_err(kd, kd->program, "nprocs corrupt");
    472 			return (-1);
    473 		}
    474 		/*
    475 		 * gather eproc
    476 		 */
    477 		eproc.e_paddr = p;
    478 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    479 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    480 				 proc.p_pgrp);
    481 			return (-1);
    482 		}
    483 		eproc.e_sess = pgrp.pg_session;
    484 		eproc.e_pgid = pgrp.pg_id;
    485 		eproc.e_jobc = pgrp.pg_jobc;
    486 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    487 			_kvm_err(kd, kd->program, "can't read session at %x",
    488 				pgrp.pg_session);
    489 			return (-1);
    490 		}
    491 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    492 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    493 				_kvm_err(kd, kd->program,
    494 					 "can't read tty at %x", sess.s_ttyp);
    495 				return (-1);
    496 			}
    497 			eproc.e_tdev = tty.t_dev;
    498 			eproc.e_tsess = tty.t_session;
    499 			if (tty.t_pgrp != NULL) {
    500 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    501 					_kvm_err(kd, kd->program,
    502 						 "can't read tpgrp at &x",
    503 						tty.t_pgrp);
    504 					return (-1);
    505 				}
    506 				eproc.e_tpgid = pgrp.pg_id;
    507 			} else
    508 				eproc.e_tpgid = -1;
    509 		} else
    510 			eproc.e_tdev = NODEV;
    511 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    512 		if (sess.s_leader == p)
    513 			eproc.e_flag |= EPROC_SLEADER;
    514 		if (proc.p_wmesg)
    515 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    516 			    eproc.e_wmesg, WMESGLEN);
    517 
    518 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    519 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    520 
    521 		eproc.e_xsize = eproc.e_xrssize = 0;
    522 		eproc.e_xccount = eproc.e_xswrss = 0;
    523 
    524 		switch (what) {
    525 
    526 		case KERN_PROC_PGRP:
    527 			if (eproc.e_pgid != (pid_t)arg)
    528 				continue;
    529 			break;
    530 
    531 		case KERN_PROC_TTY:
    532 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    533 			     eproc.e_tdev != (dev_t)arg)
    534 				continue;
    535 			break;
    536 		}
    537 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    538 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    539 		++bp;
    540 		++cnt;
    541 	}
    542 	return (cnt);
    543 }
    544 
    545 /*
    546  * Build proc info array by reading in proc list from a crash dump.
    547  * Return number of procs read.  maxcnt is the max we will read.
    548  */
    549 static int
    550 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    551 	kvm_t *kd;
    552 	int what, arg;
    553 	u_long a_allproc;
    554 	u_long a_zombproc;
    555 	int maxcnt;
    556 {
    557 	struct kinfo_proc *bp = kd->procbase;
    558 	int acnt, zcnt;
    559 	struct proc *p;
    560 
    561 	if (KREAD(kd, a_allproc, &p)) {
    562 		_kvm_err(kd, kd->program, "cannot read allproc");
    563 		return (-1);
    564 	}
    565 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    566 	if (acnt < 0)
    567 		return (acnt);
    568 
    569 	if (KREAD(kd, a_zombproc, &p)) {
    570 		_kvm_err(kd, kd->program, "cannot read zombproc");
    571 		return (-1);
    572 	}
    573 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    574 	if (zcnt < 0)
    575 		zcnt = 0;
    576 
    577 	return (acnt + zcnt);
    578 }
    579 
    580 struct kinfo_proc *
    581 kvm_getprocs(kd, op, arg, cnt)
    582 	kvm_t *kd;
    583 	int op, arg;
    584 	int *cnt;
    585 {
    586 	size_t size;
    587 	int mib[4], st, nprocs;
    588 
    589 	if (kd->procbase != 0) {
    590 		free((void *)kd->procbase);
    591 		/*
    592 		 * Clear this pointer in case this call fails.  Otherwise,
    593 		 * kvm_close() will free it again.
    594 		 */
    595 		kd->procbase = 0;
    596 	}
    597 	if (ISALIVE(kd)) {
    598 		size = 0;
    599 		mib[0] = CTL_KERN;
    600 		mib[1] = KERN_PROC;
    601 		mib[2] = op;
    602 		mib[3] = arg;
    603 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    604 		if (st == -1) {
    605 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    606 			return (0);
    607 		}
    608 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    609 		if (kd->procbase == 0)
    610 			return (0);
    611 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    612 		if (st == -1) {
    613 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    614 			return (0);
    615 		}
    616 		if (size % sizeof(struct kinfo_proc) != 0) {
    617 			_kvm_err(kd, kd->program,
    618 				"proc size mismatch (%d total, %d chunks)",
    619 				size, sizeof(struct kinfo_proc));
    620 			return (0);
    621 		}
    622 		nprocs = size / sizeof(struct kinfo_proc);
    623 	} else {
    624 		struct nlist nl[4], *p;
    625 
    626 		nl[0].n_name = "_nprocs";
    627 		nl[1].n_name = "_allproc";
    628 		nl[2].n_name = "_zombproc";
    629 		nl[3].n_name = 0;
    630 
    631 		if (kvm_nlist(kd, nl) != 0) {
    632 			for (p = nl; p->n_type != 0; ++p)
    633 				;
    634 			_kvm_err(kd, kd->program,
    635 				 "%s: no such symbol", p->n_name);
    636 			return (0);
    637 		}
    638 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    639 			_kvm_err(kd, kd->program, "can't read nprocs");
    640 			return (0);
    641 		}
    642 		size = nprocs * sizeof(struct kinfo_proc);
    643 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    644 		if (kd->procbase == 0)
    645 			return (0);
    646 
    647 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    648 				      nl[2].n_value, nprocs);
    649 #ifdef notdef
    650 		size = nprocs * sizeof(struct kinfo_proc);
    651 		(void)realloc(kd->procbase, size);
    652 #endif
    653 	}
    654 	*cnt = nprocs;
    655 	return (kd->procbase);
    656 }
    657 
    658 void
    659 _kvm_freeprocs(kd)
    660 	kvm_t *kd;
    661 {
    662 	if (kd->procbase) {
    663 		free(kd->procbase);
    664 		kd->procbase = 0;
    665 	}
    666 }
    667 
    668 void *
    669 _kvm_realloc(kd, p, n)
    670 	kvm_t *kd;
    671 	void *p;
    672 	size_t n;
    673 {
    674 	void *np = (void *)realloc(p, n);
    675 
    676 	if (np == 0)
    677 		_kvm_err(kd, kd->program, "out of memory");
    678 	return (np);
    679 }
    680 
    681 #ifndef MAX
    682 #define MAX(a, b) ((a) > (b) ? (a) : (b))
    683 #endif
    684 
    685 /*
    686  * Read in an argument vector from the user address space of process p.
    687  * addr if the user-space base address of narg null-terminated contiguous
    688  * strings.  This is used to read in both the command arguments and
    689  * environment strings.  Read at most maxcnt characters of strings.
    690  */
    691 static char **
    692 kvm_argv(kd, p, addr, narg, maxcnt)
    693 	kvm_t *kd;
    694 	const struct proc *p;
    695 	u_long addr;
    696 	int narg;
    697 	int maxcnt;
    698 {
    699 	char *np, *cp, *ep, *ap;
    700 	u_long oaddr = -1;
    701 	int len, cc;
    702 	char **argv;
    703 
    704 	/*
    705 	 * Check that there aren't an unreasonable number of agruments,
    706 	 * and that the address is in user space.
    707 	 */
    708 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    709 		return (0);
    710 
    711 	if (kd->argv == 0) {
    712 		/*
    713 		 * Try to avoid reallocs.
    714 		 */
    715 		kd->argc = MAX(narg + 1, 32);
    716 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    717 						sizeof(*kd->argv));
    718 		if (kd->argv == 0)
    719 			return (0);
    720 	} else if (narg + 1 > kd->argc) {
    721 		kd->argc = MAX(2 * kd->argc, narg + 1);
    722 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    723 						sizeof(*kd->argv));
    724 		if (kd->argv == 0)
    725 			return (0);
    726 	}
    727 	if (kd->argspc == 0) {
    728 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
    729 		if (kd->argspc == 0)
    730 			return (0);
    731 		kd->arglen = kd->nbpg;
    732 	}
    733 	if (kd->argbuf == 0) {
    734 		kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg);
    735 		if (kd->argbuf == 0)
    736 			return (0);
    737 	}
    738 	cc = sizeof(char *) * narg;
    739 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
    740 		return (0);
    741 	ap = np = kd->argspc;
    742 	argv = kd->argv;
    743 	len = 0;
    744 	/*
    745 	 * Loop over pages, filling in the argument vector.
    746 	 */
    747 	while (argv < kd->argv + narg && *argv != 0) {
    748 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    749 		if (addr != oaddr) {
    750 			if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) !=
    751 			    kd->nbpg)
    752 				return (0);
    753 			oaddr = addr;
    754 		}
    755 		addr = (u_long)*argv & (kd->nbpg - 1);
    756 		cp = kd->argbuf + addr;
    757 		cc = kd->nbpg - addr;
    758 		if (maxcnt > 0 && cc > maxcnt - len)
    759 			cc = maxcnt - len;;
    760 		ep = memchr(cp, '\0', cc);
    761 		if (ep != 0)
    762 			cc = ep - cp + 1;
    763 		if (len + cc > kd->arglen) {
    764 			int off;
    765 			char **pp;
    766 			char *op = kd->argspc;
    767 
    768 			kd->arglen *= 2;
    769 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    770 							  kd->arglen);
    771 			if (kd->argspc == 0)
    772 				return (0);
    773 			/*
    774 			 * Adjust argv pointers in case realloc moved
    775 			 * the string space.
    776 			 */
    777 			off = kd->argspc - op;
    778 			for (pp = kd->argv; pp < argv; pp++)
    779 				*pp += off;
    780 			ap += off;
    781 			np += off;
    782 		}
    783 		memcpy(np, cp, cc);
    784 		np += cc;
    785 		len += cc;
    786 		if (ep != 0) {
    787 			*argv++ = ap;
    788 			ap = np;
    789 		} else
    790 			*argv += cc;
    791 		if (maxcnt > 0 && len >= maxcnt) {
    792 			/*
    793 			 * We're stopping prematurely.  Terminate the
    794 			 * current string.
    795 			 */
    796 			if (ep == 0) {
    797 				*np = '\0';
    798 				*argv++ = ap;
    799 			}
    800 			break;
    801 		}
    802 	}
    803 	/* Make sure argv is terminated. */
    804 	*argv = 0;
    805 	return (kd->argv);
    806 }
    807 
    808 static void
    809 ps_str_a(p, addr, n)
    810 	struct ps_strings *p;
    811 	u_long *addr;
    812 	int *n;
    813 {
    814 	*addr = (u_long)p->ps_argvstr;
    815 	*n = p->ps_nargvstr;
    816 }
    817 
    818 static void
    819 ps_str_e(p, addr, n)
    820 	struct ps_strings *p;
    821 	u_long *addr;
    822 	int *n;
    823 {
    824 	*addr = (u_long)p->ps_envstr;
    825 	*n = p->ps_nenvstr;
    826 }
    827 
    828 /*
    829  * Determine if the proc indicated by p is still active.
    830  * This test is not 100% foolproof in theory, but chances of
    831  * being wrong are very low.
    832  */
    833 static int
    834 proc_verify(kd, kernp, p)
    835 	kvm_t *kd;
    836 	u_long kernp;
    837 	const struct proc *p;
    838 {
    839 	struct proc kernproc;
    840 
    841 	/*
    842 	 * Just read in the whole proc.  It's not that big relative
    843 	 * to the cost of the read system call.
    844 	 */
    845 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    846 	    sizeof(kernproc))
    847 		return (0);
    848 	return (p->p_pid == kernproc.p_pid &&
    849 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    850 }
    851 
    852 static char **
    853 kvm_doargv(kd, kp, nchr, info)
    854 	kvm_t *kd;
    855 	const struct kinfo_proc *kp;
    856 	int nchr;
    857 	void (*info)(struct ps_strings *, u_long *, int *);
    858 {
    859 	const struct proc *p = &kp->kp_proc;
    860 	char **ap;
    861 	u_long addr;
    862 	int cnt;
    863 	struct ps_strings arginfo;
    864 
    865 	/*
    866 	 * Pointers are stored at the top of the user stack.
    867 	 */
    868 	if (p->p_stat == SZOMB)
    869 		return (0);
    870 	cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
    871 	    (char *)&arginfo, sizeof(arginfo));
    872 	if (cnt != sizeof(arginfo))
    873 		return (0);
    874 
    875 	(*info)(&arginfo, &addr, &cnt);
    876 	if (cnt == 0)
    877 		return (0);
    878 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    879 	/*
    880 	 * For live kernels, make sure this process didn't go away.
    881 	 */
    882 	if (ap != 0 && ISALIVE(kd) &&
    883 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    884 		ap = 0;
    885 	return (ap);
    886 }
    887 
    888 /*
    889  * Get the command args.  This code is now machine independent.
    890  */
    891 char **
    892 kvm_getargv(kd, kp, nchr)
    893 	kvm_t *kd;
    894 	const struct kinfo_proc *kp;
    895 	int nchr;
    896 {
    897 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    898 }
    899 
    900 char **
    901 kvm_getenvv(kd, kp, nchr)
    902 	kvm_t *kd;
    903 	const struct kinfo_proc *kp;
    904 	int nchr;
    905 {
    906 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    907 }
    908 
    909 /*
    910  * Read from user space.  The user context is given by p.
    911  */
    912 ssize_t
    913 kvm_uread(kd, p, uva, buf, len)
    914 	kvm_t *kd;
    915 	const struct proc *p;
    916 	u_long uva;
    917 	char *buf;
    918 	size_t len;
    919 {
    920 	char *cp;
    921 
    922 	cp = buf;
    923 	while (len > 0) {
    924 		int cc;
    925 		char *dp;
    926 		u_long cnt;
    927 
    928 		dp = _kvm_uread(kd, p, uva, &cnt);
    929 		if (dp == 0) {
    930 			_kvm_err(kd, 0, "invalid address (%x)", uva);
    931 			return (0);
    932 		}
    933 		cc = MIN(cnt, len);
    934 		memcpy(cp, dp, cc);
    935 
    936 		cp += cc;
    937 		uva += cc;
    938 		len -= cc;
    939 	}
    940 	return (ssize_t)(cp - buf);
    941 }
    942