kvm_proc.c revision 1.28 1 /* $NetBSD: kvm_proc.c,v 1.28 1998/09/27 18:16:00 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.28 1998/09/27 18:16:00 christos Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84
85 /*
86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
87 * users of this code, so we've factored it out into a separate module.
88 * Thus, we keep this grunge out of the other kvm applications (i.e.,
89 * most other applications are interested only in open/close/read/nlist).
90 */
91
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/proc.h>
95 #include <sys/exec.h>
96 #include <sys/stat.h>
97 #include <sys/ioctl.h>
98 #include <sys/tty.h>
99 #include <stdlib.h>
100 #include <string.h>
101 #include <unistd.h>
102 #include <nlist.h>
103 #include <kvm.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/swap_pager.h>
108
109 #if defined(UVM)
110 #include <uvm/uvm_extern.h>
111 #endif
112
113 #include <sys/sysctl.h>
114
115 #include <limits.h>
116 #include <db.h>
117 #include <paths.h>
118
119 #include "kvm_private.h"
120
121 #define KREAD(kd, addr, obj) \
122 (kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
123
124 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
125 #if !defined(UVM)
126 int _kvm_coreinit __P((kvm_t *));
127 int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
128 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
129 #endif
130 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
131 size_t));
132
133 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
134 int));
135 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
136 int));
137 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
138 void (*)(struct ps_strings *, u_long *, int *)));
139 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
140 struct kinfo_proc *, int));
141 static int proc_verify __P((kvm_t *, u_long, const struct proc *));
142 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
143 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
144
145 char *
146 _kvm_uread(kd, p, va, cnt)
147 kvm_t *kd;
148 const struct proc *p;
149 u_long va;
150 u_long *cnt;
151 {
152 int true = 1;
153 u_long addr, head;
154 u_long offset;
155 struct vm_map_entry vme;
156 #if defined(UVM)
157 struct vm_amap amap;
158 struct vm_anon *anonp, anon;
159 struct vm_page pg;
160 u_long slot;
161 #else
162 struct vm_object vmo;
163 int rv;
164 #endif
165
166 if (kd->swapspc == 0) {
167 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
168 if (kd->swapspc == 0)
169 return (0);
170 }
171
172 /*
173 * Look through the address map for the memory object
174 * that corresponds to the given virtual address.
175 * The header just has the entire valid range.
176 */
177 head = (u_long)&p->p_vmspace->vm_map.header;
178 addr = head;
179 while (true) {
180 if (KREAD(kd, addr, &vme))
181 return (0);
182
183 #if defined(UVM)
184 if (va >= vme.start && va < vme.end &&
185 vme.aref.ar_amap != NULL)
186 break;
187
188 #else
189 if (va >= vme.start && va < vme.end &&
190 vme.object.vm_object != 0)
191 break;
192 #endif
193
194 addr = (u_long)vme.next;
195 if (addr == head)
196 return (0);
197
198 }
199 #if defined(UVM)
200
201 /*
202 * we found the map entry, now to find the object...
203 */
204 if (vme.aref.ar_amap == NULL)
205 return NULL;
206
207 addr = (u_long)vme.aref.ar_amap;
208 if (KREAD(kd, addr, &amap))
209 return NULL;
210
211 offset = va - vme.start;
212 slot = offset / kd->nbpg + vme.aref.ar_slotoff;
213 /* sanity-check slot number */
214 if (slot > amap.am_nslot)
215 return NULL;
216
217 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
218 if (KREAD(kd, addr, &anonp))
219 return NULL;
220
221 addr = (u_long)anonp;
222 if (KREAD(kd, addr, &anon))
223 return NULL;
224
225 addr = (u_long)anon.u.an_page;
226 if (addr) {
227 if (KREAD(kd, addr, &pg))
228 return NULL;
229
230 if (pread(kd->pmfd, (void *)kd->swapspc, (size_t)kd->nbpg,
231 (off_t)pg.phys_addr) != kd->nbpg)
232 return NULL;
233 }
234 else {
235 if (pread(kd->swfd, (void *)kd->swapspc, (size_t)kd->nbpg,
236 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
237 return NULL;
238 }
239 #else
240 /*
241 * We found the right object -- follow shadow links.
242 */
243 offset = va - vme.start + vme.offset;
244 addr = (u_long)vme.object.vm_object;
245
246 while (1) {
247 /* Try reading the page from core first. */
248 if ((rv = _kvm_readfromcore(kd, addr, offset)))
249 break;
250
251 if (KREAD(kd, addr, &vmo))
252 return (0);
253
254 /* If there is a pager here, see if it has the page. */
255 if (vmo.pager != 0 &&
256 (rv = _kvm_readfrompager(kd, &vmo, offset)))
257 break;
258
259 /* Move down the shadow chain. */
260 addr = (u_long)vmo.shadow;
261 if (addr == 0)
262 return (0);
263 offset += vmo.shadow_offset;
264 }
265
266 if (rv == -1)
267 return (0);
268 #endif
269
270 /* Found the page. */
271 offset %= kd->nbpg;
272 *cnt = kd->nbpg - offset;
273 return (&kd->swapspc[(size_t)offset]);
274 }
275
276 #if !defined(UVM)
277
278 #define vm_page_hash(kd, object, offset) \
279 (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
280
281 int
282 _kvm_coreinit(kd)
283 kvm_t *kd;
284 {
285 struct nlist nlist[3];
286
287 nlist[0].n_name = "_vm_page_buckets";
288 nlist[1].n_name = "_vm_page_hash_mask";
289 nlist[2].n_name = 0;
290 if (kvm_nlist(kd, nlist) != 0)
291 return (-1);
292
293 if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
294 KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
295 return (-1);
296
297 return (0);
298 }
299
300 int
301 _kvm_readfromcore(kd, object, offset)
302 kvm_t *kd;
303 u_long object, offset;
304 {
305 u_long addr;
306 struct pglist bucket;
307 struct vm_page mem;
308 off_t seekpoint;
309
310 if (kd->vm_page_buckets == 0 &&
311 _kvm_coreinit(kd))
312 return (-1);
313
314 addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
315 if (KREAD(kd, addr, &bucket))
316 return (-1);
317
318 addr = (u_long)bucket.tqh_first;
319 offset &= ~(kd->nbpg -1);
320 while (1) {
321 if (addr == 0)
322 return (0);
323
324 if (KREAD(kd, addr, &mem))
325 return (-1);
326
327 if ((u_long)mem.object == object &&
328 (u_long)mem.offset == offset)
329 break;
330
331 addr = (u_long)mem.hashq.tqe_next;
332 }
333
334 seekpoint = mem.phys_addr;
335
336 if (pread(kd->pmfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
337 return (-1);
338
339 return (1);
340 }
341
342 int
343 _kvm_readfrompager(kd, vmop, offset)
344 kvm_t *kd;
345 struct vm_object *vmop;
346 u_long offset;
347 {
348 u_long addr;
349 struct pager_struct pager;
350 struct swpager swap;
351 int ix;
352 struct swblock swb;
353 off_t seekpoint;
354
355 /* Read in the pager info and make sure it's a swap device. */
356 addr = (u_long)vmop->pager;
357 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
358 return (-1);
359
360 /* Read in the swap_pager private data. */
361 addr = (u_long)pager.pg_data;
362 if (KREAD(kd, addr, &swap))
363 return (-1);
364
365 /*
366 * Calculate the paging offset, and make sure it's within the
367 * bounds of the pager.
368 */
369 offset += vmop->paging_offset;
370 ix = offset / dbtob(swap.sw_bsize);
371 #if 0
372 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
373 return (-1);
374 #else
375 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
376 int i;
377 printf("BUG BUG BUG BUG:\n");
378 printf("object %p offset %lx pgoffset %lx ",
379 vmop, offset - vmop->paging_offset,
380 (u_long)vmop->paging_offset);
381 printf("pager %p swpager %p\n",
382 vmop->pager, pager.pg_data);
383 printf("osize %lx bsize %x blocks %p nblocks %x\n",
384 (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
385 swap.sw_nblocks);
386 for (i = 0; i < swap.sw_nblocks; i++) {
387 addr = (u_long)&swap.sw_blocks[i];
388 if (KREAD(kd, addr, &swb))
389 return (0);
390 printf("sw_blocks[%d]: block %x mask %x\n", i,
391 swb.swb_block, swb.swb_mask);
392 }
393 return (-1);
394 }
395 #endif
396
397 /* Read in the swap records. */
398 addr = (u_long)&swap.sw_blocks[ix];
399 if (KREAD(kd, addr, &swb))
400 return (-1);
401
402 /* Calculate offset within pager. */
403 offset %= dbtob(swap.sw_bsize);
404
405 /* Check that the page is actually present. */
406 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
407 return (0);
408
409 if (!ISALIVE(kd))
410 return (-1);
411
412 /* Calculate the physical address and read the page. */
413 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
414
415 if (pread(kd->swfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
416 return (-1);
417
418 return (1);
419 }
420 #endif /* !defined(UVM) */
421
422 /*
423 * Read proc's from memory file into buffer bp, which has space to hold
424 * at most maxcnt procs.
425 */
426 static int
427 kvm_proclist(kd, what, arg, p, bp, maxcnt)
428 kvm_t *kd;
429 int what, arg;
430 struct proc *p;
431 struct kinfo_proc *bp;
432 int maxcnt;
433 {
434 int cnt = 0;
435 struct eproc eproc;
436 struct pgrp pgrp;
437 struct session sess;
438 struct tty tty;
439 struct proc proc;
440
441 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
442 if (KREAD(kd, (u_long)p, &proc)) {
443 _kvm_err(kd, kd->program, "can't read proc at %x", p);
444 return (-1);
445 }
446 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
447 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
448 &eproc.e_ucred)) {
449 _kvm_err(kd, kd->program,
450 "can't read proc credentials at %x", p);
451 return -1;
452 }
453
454 switch(what) {
455
456 case KERN_PROC_PID:
457 if (proc.p_pid != (pid_t)arg)
458 continue;
459 break;
460
461 case KERN_PROC_UID:
462 if (eproc.e_ucred.cr_uid != (uid_t)arg)
463 continue;
464 break;
465
466 case KERN_PROC_RUID:
467 if (eproc.e_pcred.p_ruid != (uid_t)arg)
468 continue;
469 break;
470 }
471 /*
472 * We're going to add another proc to the set. If this
473 * will overflow the buffer, assume the reason is because
474 * nprocs (or the proc list) is corrupt and declare an error.
475 */
476 if (cnt >= maxcnt) {
477 _kvm_err(kd, kd->program, "nprocs corrupt");
478 return (-1);
479 }
480 /*
481 * gather eproc
482 */
483 eproc.e_paddr = p;
484 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
485 _kvm_err(kd, kd->program, "can't read pgrp at %x",
486 proc.p_pgrp);
487 return (-1);
488 }
489 eproc.e_sess = pgrp.pg_session;
490 eproc.e_pgid = pgrp.pg_id;
491 eproc.e_jobc = pgrp.pg_jobc;
492 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
493 _kvm_err(kd, kd->program, "can't read session at %x",
494 pgrp.pg_session);
495 return (-1);
496 }
497 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
498 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
499 _kvm_err(kd, kd->program,
500 "can't read tty at %x", sess.s_ttyp);
501 return (-1);
502 }
503 eproc.e_tdev = tty.t_dev;
504 eproc.e_tsess = tty.t_session;
505 if (tty.t_pgrp != NULL) {
506 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
507 _kvm_err(kd, kd->program,
508 "can't read tpgrp at &x",
509 tty.t_pgrp);
510 return (-1);
511 }
512 eproc.e_tpgid = pgrp.pg_id;
513 } else
514 eproc.e_tpgid = -1;
515 } else
516 eproc.e_tdev = NODEV;
517 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
518 if (sess.s_leader == p)
519 eproc.e_flag |= EPROC_SLEADER;
520 if (proc.p_wmesg)
521 (void)kvm_read(kd, (u_long)proc.p_wmesg,
522 eproc.e_wmesg, WMESGLEN);
523
524 (void)kvm_read(kd, (u_long)proc.p_vmspace,
525 (void *)&eproc.e_vm, sizeof(eproc.e_vm));
526
527 eproc.e_xsize = eproc.e_xrssize = 0;
528 eproc.e_xccount = eproc.e_xswrss = 0;
529
530 switch (what) {
531
532 case KERN_PROC_PGRP:
533 if (eproc.e_pgid != (pid_t)arg)
534 continue;
535 break;
536
537 case KERN_PROC_TTY:
538 if ((proc.p_flag & P_CONTROLT) == 0 ||
539 eproc.e_tdev != (dev_t)arg)
540 continue;
541 break;
542 }
543 memcpy(&bp->kp_proc, &proc, sizeof(proc));
544 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
545 ++bp;
546 ++cnt;
547 }
548 return (cnt);
549 }
550
551 /*
552 * Build proc info array by reading in proc list from a crash dump.
553 * Return number of procs read. maxcnt is the max we will read.
554 */
555 static int
556 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
557 kvm_t *kd;
558 int what, arg;
559 u_long a_allproc;
560 u_long a_deadproc;
561 u_long a_zombproc;
562 int maxcnt;
563 {
564 struct kinfo_proc *bp = kd->procbase;
565 int acnt, dcnt, zcnt;
566 struct proc *p;
567
568 if (KREAD(kd, a_allproc, &p)) {
569 _kvm_err(kd, kd->program, "cannot read allproc");
570 return (-1);
571 }
572 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
573 if (acnt < 0)
574 return (acnt);
575
576 if (KREAD(kd, a_deadproc, &p)) {
577 _kvm_err(kd, kd->program, "cannot read deadproc");
578 return (-1);
579 }
580
581 dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
582 if (dcnt < 0)
583 dcnt = 0;
584
585 if (KREAD(kd, a_zombproc, &p)) {
586 _kvm_err(kd, kd->program, "cannot read zombproc");
587 return (-1);
588 }
589 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
590 maxcnt - (acnt + dcnt));
591 if (zcnt < 0)
592 zcnt = 0;
593
594 return (acnt + zcnt);
595 }
596
597 struct kinfo_proc *
598 kvm_getprocs(kd, op, arg, cnt)
599 kvm_t *kd;
600 int op, arg;
601 int *cnt;
602 {
603 size_t size;
604 int mib[4], st, nprocs;
605
606 if (kd->procbase != 0) {
607 free((void *)kd->procbase);
608 /*
609 * Clear this pointer in case this call fails. Otherwise,
610 * kvm_close() will free it again.
611 */
612 kd->procbase = 0;
613 }
614 if (ISALIVE(kd)) {
615 size = 0;
616 mib[0] = CTL_KERN;
617 mib[1] = KERN_PROC;
618 mib[2] = op;
619 mib[3] = arg;
620 st = sysctl(mib, 4, NULL, &size, NULL, 0);
621 if (st == -1) {
622 _kvm_syserr(kd, kd->program, "kvm_getprocs");
623 return (0);
624 }
625 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
626 if (kd->procbase == 0)
627 return (0);
628 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
629 if (st == -1) {
630 _kvm_syserr(kd, kd->program, "kvm_getprocs");
631 return (0);
632 }
633 if (size % sizeof(struct kinfo_proc) != 0) {
634 _kvm_err(kd, kd->program,
635 "proc size mismatch (%d total, %d chunks)",
636 size, sizeof(struct kinfo_proc));
637 return (0);
638 }
639 nprocs = size / sizeof(struct kinfo_proc);
640 } else {
641 struct nlist nl[5], *p;
642
643 nl[0].n_name = "_nprocs";
644 nl[1].n_name = "_allproc";
645 nl[2].n_name = "_deadproc";
646 nl[3].n_name = "_zombproc";
647 nl[4].n_name = 0;
648
649 if (kvm_nlist(kd, nl) != 0) {
650 for (p = nl; p->n_type != 0; ++p)
651 ;
652 _kvm_err(kd, kd->program,
653 "%s: no such symbol", p->n_name);
654 return (0);
655 }
656 if (KREAD(kd, nl[0].n_value, &nprocs)) {
657 _kvm_err(kd, kd->program, "can't read nprocs");
658 return (0);
659 }
660 size = nprocs * sizeof(struct kinfo_proc);
661 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
662 if (kd->procbase == 0)
663 return (0);
664
665 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
666 nl[2].n_value, nl[3].n_value, nprocs);
667 #ifdef notdef
668 size = nprocs * sizeof(struct kinfo_proc);
669 (void)realloc(kd->procbase, size);
670 #endif
671 }
672 *cnt = nprocs;
673 return (kd->procbase);
674 }
675
676 void
677 _kvm_freeprocs(kd)
678 kvm_t *kd;
679 {
680 if (kd->procbase) {
681 free(kd->procbase);
682 kd->procbase = 0;
683 }
684 }
685
686 void *
687 _kvm_realloc(kd, p, n)
688 kvm_t *kd;
689 void *p;
690 size_t n;
691 {
692 void *np = (void *)realloc(p, n);
693
694 if (np == 0)
695 _kvm_err(kd, kd->program, "out of memory");
696 return (np);
697 }
698
699 #ifndef MAX
700 #define MAX(a, b) ((a) > (b) ? (a) : (b))
701 #endif
702
703 /*
704 * Read in an argument vector from the user address space of process p.
705 * addr if the user-space base address of narg null-terminated contiguous
706 * strings. This is used to read in both the command arguments and
707 * environment strings. Read at most maxcnt characters of strings.
708 */
709 static char **
710 kvm_argv(kd, p, addr, narg, maxcnt)
711 kvm_t *kd;
712 const struct proc *p;
713 u_long addr;
714 int narg;
715 int maxcnt;
716 {
717 char *np, *cp, *ep, *ap;
718 u_long oaddr = (u_long)~0L;
719 u_long len;
720 size_t cc;
721 char **argv;
722
723 /*
724 * Check that there aren't an unreasonable number of agruments,
725 * and that the address is in user space.
726 */
727 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
728 return (0);
729
730 if (kd->argv == 0) {
731 /*
732 * Try to avoid reallocs.
733 */
734 kd->argc = MAX(narg + 1, 32);
735 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
736 sizeof(*kd->argv));
737 if (kd->argv == 0)
738 return (0);
739 } else if (narg + 1 > kd->argc) {
740 kd->argc = MAX(2 * kd->argc, narg + 1);
741 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
742 sizeof(*kd->argv));
743 if (kd->argv == 0)
744 return (0);
745 }
746 if (kd->argspc == 0) {
747 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
748 if (kd->argspc == 0)
749 return (0);
750 kd->arglen = kd->nbpg;
751 }
752 if (kd->argbuf == 0) {
753 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
754 if (kd->argbuf == 0)
755 return (0);
756 }
757 cc = sizeof(char *) * narg;
758 if (kvm_uread(kd, p, addr, (void *)kd->argv, cc) != cc)
759 return (0);
760 ap = np = kd->argspc;
761 argv = kd->argv;
762 len = 0;
763 /*
764 * Loop over pages, filling in the argument vector.
765 */
766 while (argv < kd->argv + narg && *argv != 0) {
767 addr = (u_long)*argv & ~(kd->nbpg - 1);
768 if (addr != oaddr) {
769 if (kvm_uread(kd, p, addr, kd->argbuf,
770 (size_t)kd->nbpg) != kd->nbpg)
771 return (0);
772 oaddr = addr;
773 }
774 addr = (u_long)*argv & (kd->nbpg - 1);
775 cp = kd->argbuf + (size_t)addr;
776 cc = kd->nbpg - (size_t)addr;
777 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
778 cc = (size_t)(maxcnt - len);
779 ep = memchr(cp, '\0', cc);
780 if (ep != 0)
781 cc = ep - cp + 1;
782 if (len + cc > kd->arglen) {
783 int off;
784 char **pp;
785 char *op = kd->argspc;
786
787 kd->arglen *= 2;
788 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
789 (size_t)kd->arglen);
790 if (kd->argspc == 0)
791 return (0);
792 /*
793 * Adjust argv pointers in case realloc moved
794 * the string space.
795 */
796 off = kd->argspc - op;
797 for (pp = kd->argv; pp < argv; pp++)
798 *pp += off;
799 ap += off;
800 np += off;
801 }
802 memcpy(np, cp, cc);
803 np += cc;
804 len += cc;
805 if (ep != 0) {
806 *argv++ = ap;
807 ap = np;
808 } else
809 *argv += cc;
810 if (maxcnt > 0 && len >= maxcnt) {
811 /*
812 * We're stopping prematurely. Terminate the
813 * current string.
814 */
815 if (ep == 0) {
816 *np = '\0';
817 *argv++ = ap;
818 }
819 break;
820 }
821 }
822 /* Make sure argv is terminated. */
823 *argv = 0;
824 return (kd->argv);
825 }
826
827 static void
828 ps_str_a(p, addr, n)
829 struct ps_strings *p;
830 u_long *addr;
831 int *n;
832 {
833 *addr = (u_long)p->ps_argvstr;
834 *n = p->ps_nargvstr;
835 }
836
837 static void
838 ps_str_e(p, addr, n)
839 struct ps_strings *p;
840 u_long *addr;
841 int *n;
842 {
843 *addr = (u_long)p->ps_envstr;
844 *n = p->ps_nenvstr;
845 }
846
847 /*
848 * Determine if the proc indicated by p is still active.
849 * This test is not 100% foolproof in theory, but chances of
850 * being wrong are very low.
851 */
852 static int
853 proc_verify(kd, kernp, p)
854 kvm_t *kd;
855 u_long kernp;
856 const struct proc *p;
857 {
858 struct proc kernproc;
859
860 /*
861 * Just read in the whole proc. It's not that big relative
862 * to the cost of the read system call.
863 */
864 if (kvm_read(kd, kernp, (void *)&kernproc, sizeof(kernproc)) !=
865 sizeof(kernproc))
866 return (0);
867 return (p->p_pid == kernproc.p_pid &&
868 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
869 }
870
871 static char **
872 kvm_doargv(kd, kp, nchr, info)
873 kvm_t *kd;
874 const struct kinfo_proc *kp;
875 int nchr;
876 void (*info)(struct ps_strings *, u_long *, int *);
877 {
878 const struct proc *p = &kp->kp_proc;
879 char **ap;
880 u_long addr;
881 int cnt;
882 struct ps_strings arginfo;
883
884 /*
885 * Pointers are stored at the top of the user stack.
886 */
887 if (p->p_stat == SZOMB)
888 return (0);
889 cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
890 (void *)&arginfo, sizeof(arginfo));
891 if (cnt != sizeof(arginfo))
892 return (0);
893
894 (*info)(&arginfo, &addr, &cnt);
895 if (cnt == 0)
896 return (0);
897 ap = kvm_argv(kd, p, addr, cnt, nchr);
898 /*
899 * For live kernels, make sure this process didn't go away.
900 */
901 if (ap != 0 && ISALIVE(kd) &&
902 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
903 ap = 0;
904 return (ap);
905 }
906
907 /*
908 * Get the command args. This code is now machine independent.
909 */
910 char **
911 kvm_getargv(kd, kp, nchr)
912 kvm_t *kd;
913 const struct kinfo_proc *kp;
914 int nchr;
915 {
916 return (kvm_doargv(kd, kp, nchr, ps_str_a));
917 }
918
919 char **
920 kvm_getenvv(kd, kp, nchr)
921 kvm_t *kd;
922 const struct kinfo_proc *kp;
923 int nchr;
924 {
925 return (kvm_doargv(kd, kp, nchr, ps_str_e));
926 }
927
928 /*
929 * Read from user space. The user context is given by p.
930 */
931 ssize_t
932 kvm_uread(kd, p, uva, buf, len)
933 kvm_t *kd;
934 const struct proc *p;
935 u_long uva;
936 char *buf;
937 size_t len;
938 {
939 char *cp;
940
941 cp = buf;
942 while (len > 0) {
943 size_t cc;
944 char *dp;
945 u_long cnt;
946
947 dp = _kvm_uread(kd, p, uva, &cnt);
948 if (dp == 0) {
949 _kvm_err(kd, 0, "invalid address (%x)", uva);
950 return (0);
951 }
952 cc = (size_t)MIN(cnt, len);
953 memcpy(cp, dp, cc);
954 cp += cc;
955 uva += cc;
956 len -= cc;
957 }
958 return (ssize_t)(cp - buf);
959 }
960