Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.28
      1 /*	$NetBSD: kvm_proc.c,v 1.28 1998/09/27 18:16:00 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1989, 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software developed by the Computer Systems
     44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45  * BG 91-66 and contributed to Berkeley.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *	This product includes software developed by the University of
     58  *	California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 #if defined(LIBC_SCCS) && !defined(lint)
     78 #if 0
     79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80 #else
     81 __RCSID("$NetBSD: kvm_proc.c,v 1.28 1998/09/27 18:16:00 christos Exp $");
     82 #endif
     83 #endif /* LIBC_SCCS and not lint */
     84 
     85 /*
     86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87  * users of this code, so we've factored it out into a separate module.
     88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89  * most other applications are interested only in open/close/read/nlist).
     90  */
     91 
     92 #include <sys/param.h>
     93 #include <sys/user.h>
     94 #include <sys/proc.h>
     95 #include <sys/exec.h>
     96 #include <sys/stat.h>
     97 #include <sys/ioctl.h>
     98 #include <sys/tty.h>
     99 #include <stdlib.h>
    100 #include <string.h>
    101 #include <unistd.h>
    102 #include <nlist.h>
    103 #include <kvm.h>
    104 
    105 #include <vm/vm.h>
    106 #include <vm/vm_param.h>
    107 #include <vm/swap_pager.h>
    108 
    109 #if defined(UVM)
    110 #include <uvm/uvm_extern.h>
    111 #endif
    112 
    113 #include <sys/sysctl.h>
    114 
    115 #include <limits.h>
    116 #include <db.h>
    117 #include <paths.h>
    118 
    119 #include "kvm_private.h"
    120 
    121 #define KREAD(kd, addr, obj) \
    122 	(kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
    123 
    124 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
    125 #if !defined(UVM)
    126 int		_kvm_coreinit __P((kvm_t *));
    127 int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
    128 int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
    129 #endif
    130 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    131 		    size_t));
    132 
    133 static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
    134 		    int));
    135 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
    136 		    int));
    137 static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
    138 		    void (*)(struct ps_strings *, u_long *, int *)));
    139 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    140 		    struct kinfo_proc *, int));
    141 static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
    142 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    143 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    144 
    145 char *
    146 _kvm_uread(kd, p, va, cnt)
    147 	kvm_t *kd;
    148 	const struct proc *p;
    149 	u_long va;
    150 	u_long *cnt;
    151 {
    152 	int true = 1;
    153 	u_long addr, head;
    154 	u_long offset;
    155 	struct vm_map_entry vme;
    156 #if defined(UVM)
    157 	struct vm_amap amap;
    158 	struct vm_anon *anonp, anon;
    159 	struct vm_page pg;
    160 	u_long slot;
    161 #else
    162 	struct vm_object vmo;
    163 	int rv;
    164 #endif
    165 
    166 	if (kd->swapspc == 0) {
    167 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    168 		if (kd->swapspc == 0)
    169 			return (0);
    170 	}
    171 
    172 	/*
    173 	 * Look through the address map for the memory object
    174 	 * that corresponds to the given virtual address.
    175 	 * The header just has the entire valid range.
    176 	 */
    177 	head = (u_long)&p->p_vmspace->vm_map.header;
    178 	addr = head;
    179 	while (true) {
    180 		if (KREAD(kd, addr, &vme))
    181 			return (0);
    182 
    183 #if defined(UVM)
    184 		if (va >= vme.start && va < vme.end &&
    185 		    vme.aref.ar_amap != NULL)
    186 			break;
    187 
    188 #else
    189 		if (va >= vme.start && va < vme.end &&
    190 		    vme.object.vm_object != 0)
    191 			break;
    192 #endif
    193 
    194 		addr = (u_long)vme.next;
    195 		if (addr == head)
    196 			return (0);
    197 
    198 	}
    199 #if defined(UVM)
    200 
    201 	/*
    202 	 * we found the map entry, now to find the object...
    203 	 */
    204 	if (vme.aref.ar_amap == NULL)
    205 		return NULL;
    206 
    207 	addr = (u_long)vme.aref.ar_amap;
    208 	if (KREAD(kd, addr, &amap))
    209 		return NULL;
    210 
    211 	offset = va - vme.start;
    212 	slot = offset / kd->nbpg + vme.aref.ar_slotoff;
    213 	/* sanity-check slot number */
    214 	if (slot  > amap.am_nslot)
    215 		return NULL;
    216 
    217 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    218 	if (KREAD(kd, addr, &anonp))
    219 		return NULL;
    220 
    221 	addr = (u_long)anonp;
    222 	if (KREAD(kd, addr, &anon))
    223 		return NULL;
    224 
    225 	addr = (u_long)anon.u.an_page;
    226 	if (addr) {
    227 		if (KREAD(kd, addr, &pg))
    228 			return NULL;
    229 
    230 		if (pread(kd->pmfd, (void *)kd->swapspc, (size_t)kd->nbpg,
    231 		    (off_t)pg.phys_addr) != kd->nbpg)
    232 			return NULL;
    233 	}
    234 	else {
    235 		if (pread(kd->swfd, (void *)kd->swapspc, (size_t)kd->nbpg,
    236 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    237 			return NULL;
    238 	}
    239 #else
    240 	/*
    241 	 * We found the right object -- follow shadow links.
    242 	 */
    243 	offset = va - vme.start + vme.offset;
    244 	addr = (u_long)vme.object.vm_object;
    245 
    246 	while (1) {
    247 		/* Try reading the page from core first. */
    248 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
    249 			break;
    250 
    251 		if (KREAD(kd, addr, &vmo))
    252 			return (0);
    253 
    254 		/* If there is a pager here, see if it has the page. */
    255 		if (vmo.pager != 0 &&
    256 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
    257 			break;
    258 
    259 		/* Move down the shadow chain. */
    260 		addr = (u_long)vmo.shadow;
    261 		if (addr == 0)
    262 			return (0);
    263 		offset += vmo.shadow_offset;
    264 	}
    265 
    266 	if (rv == -1)
    267 		return (0);
    268 #endif
    269 
    270 	/* Found the page. */
    271 	offset %= kd->nbpg;
    272 	*cnt = kd->nbpg - offset;
    273 	return (&kd->swapspc[(size_t)offset]);
    274 }
    275 
    276 #if !defined(UVM)
    277 
    278 #define	vm_page_hash(kd, object, offset) \
    279 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
    280 
    281 int
    282 _kvm_coreinit(kd)
    283 	kvm_t *kd;
    284 {
    285 	struct nlist nlist[3];
    286 
    287 	nlist[0].n_name = "_vm_page_buckets";
    288 	nlist[1].n_name = "_vm_page_hash_mask";
    289 	nlist[2].n_name = 0;
    290 	if (kvm_nlist(kd, nlist) != 0)
    291 		return (-1);
    292 
    293 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
    294 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
    295 		return (-1);
    296 
    297 	return (0);
    298 }
    299 
    300 int
    301 _kvm_readfromcore(kd, object, offset)
    302 	kvm_t *kd;
    303 	u_long object, offset;
    304 {
    305 	u_long addr;
    306 	struct pglist bucket;
    307 	struct vm_page mem;
    308 	off_t seekpoint;
    309 
    310 	if (kd->vm_page_buckets == 0 &&
    311 	    _kvm_coreinit(kd))
    312 		return (-1);
    313 
    314 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
    315 	if (KREAD(kd, addr, &bucket))
    316 		return (-1);
    317 
    318 	addr = (u_long)bucket.tqh_first;
    319 	offset &= ~(kd->nbpg -1);
    320 	while (1) {
    321 		if (addr == 0)
    322 			return (0);
    323 
    324 		if (KREAD(kd, addr, &mem))
    325 			return (-1);
    326 
    327 		if ((u_long)mem.object == object &&
    328 		    (u_long)mem.offset == offset)
    329 			break;
    330 
    331 		addr = (u_long)mem.hashq.tqe_next;
    332 	}
    333 
    334 	seekpoint = mem.phys_addr;
    335 
    336 	if (pread(kd->pmfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
    337 		return (-1);
    338 
    339 	return (1);
    340 }
    341 
    342 int
    343 _kvm_readfrompager(kd, vmop, offset)
    344 	kvm_t *kd;
    345 	struct vm_object *vmop;
    346 	u_long offset;
    347 {
    348 	u_long addr;
    349 	struct pager_struct pager;
    350 	struct swpager swap;
    351 	int ix;
    352 	struct swblock swb;
    353 	off_t seekpoint;
    354 
    355 	/* Read in the pager info and make sure it's a swap device. */
    356 	addr = (u_long)vmop->pager;
    357 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    358 		return (-1);
    359 
    360 	/* Read in the swap_pager private data. */
    361 	addr = (u_long)pager.pg_data;
    362 	if (KREAD(kd, addr, &swap))
    363 		return (-1);
    364 
    365 	/*
    366 	 * Calculate the paging offset, and make sure it's within the
    367 	 * bounds of the pager.
    368 	 */
    369 	offset += vmop->paging_offset;
    370 	ix = offset / dbtob(swap.sw_bsize);
    371 #if 0
    372 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    373 		return (-1);
    374 #else
    375 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    376 		int i;
    377 		printf("BUG BUG BUG BUG:\n");
    378 		printf("object %p offset %lx pgoffset %lx ",
    379 		    vmop, offset - vmop->paging_offset,
    380 		    (u_long)vmop->paging_offset);
    381 		printf("pager %p swpager %p\n",
    382 		    vmop->pager, pager.pg_data);
    383 		printf("osize %lx bsize %x blocks %p nblocks %x\n",
    384 		    (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    385 		    swap.sw_nblocks);
    386 		for (i = 0; i < swap.sw_nblocks; i++) {
    387 			addr = (u_long)&swap.sw_blocks[i];
    388 			if (KREAD(kd, addr, &swb))
    389 				return (0);
    390 			printf("sw_blocks[%d]: block %x mask %x\n", i,
    391 			    swb.swb_block, swb.swb_mask);
    392 		}
    393 		return (-1);
    394 	}
    395 #endif
    396 
    397 	/* Read in the swap records. */
    398 	addr = (u_long)&swap.sw_blocks[ix];
    399 	if (KREAD(kd, addr, &swb))
    400 		return (-1);
    401 
    402 	/* Calculate offset within pager. */
    403 	offset %= dbtob(swap.sw_bsize);
    404 
    405 	/* Check that the page is actually present. */
    406 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    407 		return (0);
    408 
    409 	if (!ISALIVE(kd))
    410 		return (-1);
    411 
    412 	/* Calculate the physical address and read the page. */
    413 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    414 
    415 	if (pread(kd->swfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
    416 		return (-1);
    417 
    418 	return (1);
    419 }
    420 #endif /* !defined(UVM) */
    421 
    422 /*
    423  * Read proc's from memory file into buffer bp, which has space to hold
    424  * at most maxcnt procs.
    425  */
    426 static int
    427 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    428 	kvm_t *kd;
    429 	int what, arg;
    430 	struct proc *p;
    431 	struct kinfo_proc *bp;
    432 	int maxcnt;
    433 {
    434 	int cnt = 0;
    435 	struct eproc eproc;
    436 	struct pgrp pgrp;
    437 	struct session sess;
    438 	struct tty tty;
    439 	struct proc proc;
    440 
    441 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    442 		if (KREAD(kd, (u_long)p, &proc)) {
    443 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    444 			return (-1);
    445 		}
    446 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    447 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    448 			    &eproc.e_ucred)) {
    449 				_kvm_err(kd, kd->program,
    450 				    "can't read proc credentials at %x", p);
    451 				return -1;
    452 			}
    453 
    454 		switch(what) {
    455 
    456 		case KERN_PROC_PID:
    457 			if (proc.p_pid != (pid_t)arg)
    458 				continue;
    459 			break;
    460 
    461 		case KERN_PROC_UID:
    462 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    463 				continue;
    464 			break;
    465 
    466 		case KERN_PROC_RUID:
    467 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    468 				continue;
    469 			break;
    470 		}
    471 		/*
    472 		 * We're going to add another proc to the set.  If this
    473 		 * will overflow the buffer, assume the reason is because
    474 		 * nprocs (or the proc list) is corrupt and declare an error.
    475 		 */
    476 		if (cnt >= maxcnt) {
    477 			_kvm_err(kd, kd->program, "nprocs corrupt");
    478 			return (-1);
    479 		}
    480 		/*
    481 		 * gather eproc
    482 		 */
    483 		eproc.e_paddr = p;
    484 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    485 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    486 				 proc.p_pgrp);
    487 			return (-1);
    488 		}
    489 		eproc.e_sess = pgrp.pg_session;
    490 		eproc.e_pgid = pgrp.pg_id;
    491 		eproc.e_jobc = pgrp.pg_jobc;
    492 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    493 			_kvm_err(kd, kd->program, "can't read session at %x",
    494 				pgrp.pg_session);
    495 			return (-1);
    496 		}
    497 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    498 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    499 				_kvm_err(kd, kd->program,
    500 					 "can't read tty at %x", sess.s_ttyp);
    501 				return (-1);
    502 			}
    503 			eproc.e_tdev = tty.t_dev;
    504 			eproc.e_tsess = tty.t_session;
    505 			if (tty.t_pgrp != NULL) {
    506 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    507 					_kvm_err(kd, kd->program,
    508 						 "can't read tpgrp at &x",
    509 						tty.t_pgrp);
    510 					return (-1);
    511 				}
    512 				eproc.e_tpgid = pgrp.pg_id;
    513 			} else
    514 				eproc.e_tpgid = -1;
    515 		} else
    516 			eproc.e_tdev = NODEV;
    517 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    518 		if (sess.s_leader == p)
    519 			eproc.e_flag |= EPROC_SLEADER;
    520 		if (proc.p_wmesg)
    521 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    522 			    eproc.e_wmesg, WMESGLEN);
    523 
    524 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    525 		    (void *)&eproc.e_vm, sizeof(eproc.e_vm));
    526 
    527 		eproc.e_xsize = eproc.e_xrssize = 0;
    528 		eproc.e_xccount = eproc.e_xswrss = 0;
    529 
    530 		switch (what) {
    531 
    532 		case KERN_PROC_PGRP:
    533 			if (eproc.e_pgid != (pid_t)arg)
    534 				continue;
    535 			break;
    536 
    537 		case KERN_PROC_TTY:
    538 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    539 			     eproc.e_tdev != (dev_t)arg)
    540 				continue;
    541 			break;
    542 		}
    543 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    544 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    545 		++bp;
    546 		++cnt;
    547 	}
    548 	return (cnt);
    549 }
    550 
    551 /*
    552  * Build proc info array by reading in proc list from a crash dump.
    553  * Return number of procs read.  maxcnt is the max we will read.
    554  */
    555 static int
    556 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
    557 	kvm_t *kd;
    558 	int what, arg;
    559 	u_long a_allproc;
    560 	u_long a_deadproc;
    561 	u_long a_zombproc;
    562 	int maxcnt;
    563 {
    564 	struct kinfo_proc *bp = kd->procbase;
    565 	int acnt, dcnt, zcnt;
    566 	struct proc *p;
    567 
    568 	if (KREAD(kd, a_allproc, &p)) {
    569 		_kvm_err(kd, kd->program, "cannot read allproc");
    570 		return (-1);
    571 	}
    572 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    573 	if (acnt < 0)
    574 		return (acnt);
    575 
    576 	if (KREAD(kd, a_deadproc, &p)) {
    577 		_kvm_err(kd, kd->program, "cannot read deadproc");
    578 		return (-1);
    579 	}
    580 
    581 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
    582 	if (dcnt < 0)
    583 		dcnt = 0;
    584 
    585 	if (KREAD(kd, a_zombproc, &p)) {
    586 		_kvm_err(kd, kd->program, "cannot read zombproc");
    587 		return (-1);
    588 	}
    589 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    590 	    maxcnt - (acnt + dcnt));
    591 	if (zcnt < 0)
    592 		zcnt = 0;
    593 
    594 	return (acnt + zcnt);
    595 }
    596 
    597 struct kinfo_proc *
    598 kvm_getprocs(kd, op, arg, cnt)
    599 	kvm_t *kd;
    600 	int op, arg;
    601 	int *cnt;
    602 {
    603 	size_t size;
    604 	int mib[4], st, nprocs;
    605 
    606 	if (kd->procbase != 0) {
    607 		free((void *)kd->procbase);
    608 		/*
    609 		 * Clear this pointer in case this call fails.  Otherwise,
    610 		 * kvm_close() will free it again.
    611 		 */
    612 		kd->procbase = 0;
    613 	}
    614 	if (ISALIVE(kd)) {
    615 		size = 0;
    616 		mib[0] = CTL_KERN;
    617 		mib[1] = KERN_PROC;
    618 		mib[2] = op;
    619 		mib[3] = arg;
    620 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    621 		if (st == -1) {
    622 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    623 			return (0);
    624 		}
    625 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    626 		if (kd->procbase == 0)
    627 			return (0);
    628 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    629 		if (st == -1) {
    630 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    631 			return (0);
    632 		}
    633 		if (size % sizeof(struct kinfo_proc) != 0) {
    634 			_kvm_err(kd, kd->program,
    635 				"proc size mismatch (%d total, %d chunks)",
    636 				size, sizeof(struct kinfo_proc));
    637 			return (0);
    638 		}
    639 		nprocs = size / sizeof(struct kinfo_proc);
    640 	} else {
    641 		struct nlist nl[5], *p;
    642 
    643 		nl[0].n_name = "_nprocs";
    644 		nl[1].n_name = "_allproc";
    645 		nl[2].n_name = "_deadproc";
    646 		nl[3].n_name = "_zombproc";
    647 		nl[4].n_name = 0;
    648 
    649 		if (kvm_nlist(kd, nl) != 0) {
    650 			for (p = nl; p->n_type != 0; ++p)
    651 				;
    652 			_kvm_err(kd, kd->program,
    653 				 "%s: no such symbol", p->n_name);
    654 			return (0);
    655 		}
    656 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    657 			_kvm_err(kd, kd->program, "can't read nprocs");
    658 			return (0);
    659 		}
    660 		size = nprocs * sizeof(struct kinfo_proc);
    661 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    662 		if (kd->procbase == 0)
    663 			return (0);
    664 
    665 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    666 		    nl[2].n_value, nl[3].n_value, nprocs);
    667 #ifdef notdef
    668 		size = nprocs * sizeof(struct kinfo_proc);
    669 		(void)realloc(kd->procbase, size);
    670 #endif
    671 	}
    672 	*cnt = nprocs;
    673 	return (kd->procbase);
    674 }
    675 
    676 void
    677 _kvm_freeprocs(kd)
    678 	kvm_t *kd;
    679 {
    680 	if (kd->procbase) {
    681 		free(kd->procbase);
    682 		kd->procbase = 0;
    683 	}
    684 }
    685 
    686 void *
    687 _kvm_realloc(kd, p, n)
    688 	kvm_t *kd;
    689 	void *p;
    690 	size_t n;
    691 {
    692 	void *np = (void *)realloc(p, n);
    693 
    694 	if (np == 0)
    695 		_kvm_err(kd, kd->program, "out of memory");
    696 	return (np);
    697 }
    698 
    699 #ifndef MAX
    700 #define MAX(a, b) ((a) > (b) ? (a) : (b))
    701 #endif
    702 
    703 /*
    704  * Read in an argument vector from the user address space of process p.
    705  * addr if the user-space base address of narg null-terminated contiguous
    706  * strings.  This is used to read in both the command arguments and
    707  * environment strings.  Read at most maxcnt characters of strings.
    708  */
    709 static char **
    710 kvm_argv(kd, p, addr, narg, maxcnt)
    711 	kvm_t *kd;
    712 	const struct proc *p;
    713 	u_long addr;
    714 	int narg;
    715 	int maxcnt;
    716 {
    717 	char *np, *cp, *ep, *ap;
    718 	u_long oaddr = (u_long)~0L;
    719 	u_long len;
    720 	size_t cc;
    721 	char **argv;
    722 
    723 	/*
    724 	 * Check that there aren't an unreasonable number of agruments,
    725 	 * and that the address is in user space.
    726 	 */
    727 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    728 		return (0);
    729 
    730 	if (kd->argv == 0) {
    731 		/*
    732 		 * Try to avoid reallocs.
    733 		 */
    734 		kd->argc = MAX(narg + 1, 32);
    735 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    736 						sizeof(*kd->argv));
    737 		if (kd->argv == 0)
    738 			return (0);
    739 	} else if (narg + 1 > kd->argc) {
    740 		kd->argc = MAX(2 * kd->argc, narg + 1);
    741 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    742 						sizeof(*kd->argv));
    743 		if (kd->argv == 0)
    744 			return (0);
    745 	}
    746 	if (kd->argspc == 0) {
    747 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    748 		if (kd->argspc == 0)
    749 			return (0);
    750 		kd->arglen = kd->nbpg;
    751 	}
    752 	if (kd->argbuf == 0) {
    753 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    754 		if (kd->argbuf == 0)
    755 			return (0);
    756 	}
    757 	cc = sizeof(char *) * narg;
    758 	if (kvm_uread(kd, p, addr, (void *)kd->argv, cc) != cc)
    759 		return (0);
    760 	ap = np = kd->argspc;
    761 	argv = kd->argv;
    762 	len = 0;
    763 	/*
    764 	 * Loop over pages, filling in the argument vector.
    765 	 */
    766 	while (argv < kd->argv + narg && *argv != 0) {
    767 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    768 		if (addr != oaddr) {
    769 			if (kvm_uread(kd, p, addr, kd->argbuf,
    770 			    (size_t)kd->nbpg) != kd->nbpg)
    771 				return (0);
    772 			oaddr = addr;
    773 		}
    774 		addr = (u_long)*argv & (kd->nbpg - 1);
    775 		cp = kd->argbuf + (size_t)addr;
    776 		cc = kd->nbpg - (size_t)addr;
    777 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    778 			cc = (size_t)(maxcnt - len);
    779 		ep = memchr(cp, '\0', cc);
    780 		if (ep != 0)
    781 			cc = ep - cp + 1;
    782 		if (len + cc > kd->arglen) {
    783 			int off;
    784 			char **pp;
    785 			char *op = kd->argspc;
    786 
    787 			kd->arglen *= 2;
    788 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    789 			    (size_t)kd->arglen);
    790 			if (kd->argspc == 0)
    791 				return (0);
    792 			/*
    793 			 * Adjust argv pointers in case realloc moved
    794 			 * the string space.
    795 			 */
    796 			off = kd->argspc - op;
    797 			for (pp = kd->argv; pp < argv; pp++)
    798 				*pp += off;
    799 			ap += off;
    800 			np += off;
    801 		}
    802 		memcpy(np, cp, cc);
    803 		np += cc;
    804 		len += cc;
    805 		if (ep != 0) {
    806 			*argv++ = ap;
    807 			ap = np;
    808 		} else
    809 			*argv += cc;
    810 		if (maxcnt > 0 && len >= maxcnt) {
    811 			/*
    812 			 * We're stopping prematurely.  Terminate the
    813 			 * current string.
    814 			 */
    815 			if (ep == 0) {
    816 				*np = '\0';
    817 				*argv++ = ap;
    818 			}
    819 			break;
    820 		}
    821 	}
    822 	/* Make sure argv is terminated. */
    823 	*argv = 0;
    824 	return (kd->argv);
    825 }
    826 
    827 static void
    828 ps_str_a(p, addr, n)
    829 	struct ps_strings *p;
    830 	u_long *addr;
    831 	int *n;
    832 {
    833 	*addr = (u_long)p->ps_argvstr;
    834 	*n = p->ps_nargvstr;
    835 }
    836 
    837 static void
    838 ps_str_e(p, addr, n)
    839 	struct ps_strings *p;
    840 	u_long *addr;
    841 	int *n;
    842 {
    843 	*addr = (u_long)p->ps_envstr;
    844 	*n = p->ps_nenvstr;
    845 }
    846 
    847 /*
    848  * Determine if the proc indicated by p is still active.
    849  * This test is not 100% foolproof in theory, but chances of
    850  * being wrong are very low.
    851  */
    852 static int
    853 proc_verify(kd, kernp, p)
    854 	kvm_t *kd;
    855 	u_long kernp;
    856 	const struct proc *p;
    857 {
    858 	struct proc kernproc;
    859 
    860 	/*
    861 	 * Just read in the whole proc.  It's not that big relative
    862 	 * to the cost of the read system call.
    863 	 */
    864 	if (kvm_read(kd, kernp, (void *)&kernproc, sizeof(kernproc)) !=
    865 	    sizeof(kernproc))
    866 		return (0);
    867 	return (p->p_pid == kernproc.p_pid &&
    868 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    869 }
    870 
    871 static char **
    872 kvm_doargv(kd, kp, nchr, info)
    873 	kvm_t *kd;
    874 	const struct kinfo_proc *kp;
    875 	int nchr;
    876 	void (*info)(struct ps_strings *, u_long *, int *);
    877 {
    878 	const struct proc *p = &kp->kp_proc;
    879 	char **ap;
    880 	u_long addr;
    881 	int cnt;
    882 	struct ps_strings arginfo;
    883 
    884 	/*
    885 	 * Pointers are stored at the top of the user stack.
    886 	 */
    887 	if (p->p_stat == SZOMB)
    888 		return (0);
    889 	cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
    890 	    (void *)&arginfo, sizeof(arginfo));
    891 	if (cnt != sizeof(arginfo))
    892 		return (0);
    893 
    894 	(*info)(&arginfo, &addr, &cnt);
    895 	if (cnt == 0)
    896 		return (0);
    897 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    898 	/*
    899 	 * For live kernels, make sure this process didn't go away.
    900 	 */
    901 	if (ap != 0 && ISALIVE(kd) &&
    902 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    903 		ap = 0;
    904 	return (ap);
    905 }
    906 
    907 /*
    908  * Get the command args.  This code is now machine independent.
    909  */
    910 char **
    911 kvm_getargv(kd, kp, nchr)
    912 	kvm_t *kd;
    913 	const struct kinfo_proc *kp;
    914 	int nchr;
    915 {
    916 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    917 }
    918 
    919 char **
    920 kvm_getenvv(kd, kp, nchr)
    921 	kvm_t *kd;
    922 	const struct kinfo_proc *kp;
    923 	int nchr;
    924 {
    925 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    926 }
    927 
    928 /*
    929  * Read from user space.  The user context is given by p.
    930  */
    931 ssize_t
    932 kvm_uread(kd, p, uva, buf, len)
    933 	kvm_t *kd;
    934 	const struct proc *p;
    935 	u_long uva;
    936 	char *buf;
    937 	size_t len;
    938 {
    939 	char *cp;
    940 
    941 	cp = buf;
    942 	while (len > 0) {
    943 		size_t cc;
    944 		char *dp;
    945 		u_long cnt;
    946 
    947 		dp = _kvm_uread(kd, p, uva, &cnt);
    948 		if (dp == 0) {
    949 			_kvm_err(kd, 0, "invalid address (%x)", uva);
    950 			return (0);
    951 		}
    952 		cc = (size_t)MIN(cnt, len);
    953 		memcpy(cp, dp, cc);
    954 		cp += cc;
    955 		uva += cc;
    956 		len -= cc;
    957 	}
    958 	return (ssize_t)(cp - buf);
    959 }
    960