kvm_proc.c revision 1.29 1 /* $NetBSD: kvm_proc.c,v 1.29 1999/01/25 03:38:57 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.29 1999/01/25 03:38:57 mrg Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84
85 /*
86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
87 * users of this code, so we've factored it out into a separate module.
88 * Thus, we keep this grunge out of the other kvm applications (i.e.,
89 * most other applications are interested only in open/close/read/nlist).
90 */
91
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/proc.h>
95 #include <sys/exec.h>
96 #include <sys/stat.h>
97 #include <sys/ioctl.h>
98 #include <sys/tty.h>
99 #include <stdlib.h>
100 #include <string.h>
101 #include <unistd.h>
102 #include <nlist.h>
103 #include <kvm.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/swap_pager.h>
108
109 #if defined(UVM)
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_amap.h>
112 #endif
113
114 #include <sys/sysctl.h>
115
116 #include <limits.h>
117 #include <db.h>
118 #include <paths.h>
119
120 #include "kvm_private.h"
121
122 #define KREAD(kd, addr, obj) \
123 (kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
124
125 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
126 #if !defined(UVM)
127 int _kvm_coreinit __P((kvm_t *));
128 int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
129 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
130 #endif
131 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
132 size_t));
133
134 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
135 int));
136 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
137 int));
138 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
139 void (*)(struct ps_strings *, u_long *, int *)));
140 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
141 struct kinfo_proc *, int));
142 static int proc_verify __P((kvm_t *, u_long, const struct proc *));
143 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
144 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
145
146 char *
147 _kvm_uread(kd, p, va, cnt)
148 kvm_t *kd;
149 const struct proc *p;
150 u_long va;
151 u_long *cnt;
152 {
153 int true = 1;
154 u_long addr, head;
155 u_long offset;
156 struct vm_map_entry vme;
157 #if defined(UVM)
158 struct vm_amap amap;
159 struct vm_anon *anonp, anon;
160 struct vm_page pg;
161 u_long slot;
162 #else
163 struct vm_object vmo;
164 int rv;
165 #endif
166
167 if (kd->swapspc == 0) {
168 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
169 if (kd->swapspc == 0)
170 return (0);
171 }
172
173 /*
174 * Look through the address map for the memory object
175 * that corresponds to the given virtual address.
176 * The header just has the entire valid range.
177 */
178 head = (u_long)&p->p_vmspace->vm_map.header;
179 addr = head;
180 while (true) {
181 if (KREAD(kd, addr, &vme))
182 return (0);
183
184 #if defined(UVM)
185 if (va >= vme.start && va < vme.end &&
186 vme.aref.ar_amap != NULL)
187 break;
188
189 #else
190 if (va >= vme.start && va < vme.end &&
191 vme.object.vm_object != 0)
192 break;
193 #endif
194
195 addr = (u_long)vme.next;
196 if (addr == head)
197 return (0);
198
199 }
200 #if defined(UVM)
201
202 /*
203 * we found the map entry, now to find the object...
204 */
205 if (vme.aref.ar_amap == NULL)
206 return NULL;
207
208 addr = (u_long)vme.aref.ar_amap;
209 if (KREAD(kd, addr, &amap))
210 return NULL;
211
212 offset = va - vme.start;
213 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
214 /* sanity-check slot number */
215 if (slot > amap.am_nslot)
216 return NULL;
217
218 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
219 if (KREAD(kd, addr, &anonp))
220 return NULL;
221
222 addr = (u_long)anonp;
223 if (KREAD(kd, addr, &anon))
224 return NULL;
225
226 addr = (u_long)anon.u.an_page;
227 if (addr) {
228 if (KREAD(kd, addr, &pg))
229 return NULL;
230
231 if (pread(kd->pmfd, (void *)kd->swapspc, (size_t)kd->nbpg,
232 (off_t)pg.phys_addr) != kd->nbpg)
233 return NULL;
234 }
235 else {
236 if (pread(kd->swfd, (void *)kd->swapspc, (size_t)kd->nbpg,
237 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
238 return NULL;
239 }
240 #else
241 /*
242 * We found the right object -- follow shadow links.
243 */
244 offset = va - vme.start + vme.offset;
245 addr = (u_long)vme.object.vm_object;
246
247 while (1) {
248 /* Try reading the page from core first. */
249 if ((rv = _kvm_readfromcore(kd, addr, offset)))
250 break;
251
252 if (KREAD(kd, addr, &vmo))
253 return (0);
254
255 /* If there is a pager here, see if it has the page. */
256 if (vmo.pager != 0 &&
257 (rv = _kvm_readfrompager(kd, &vmo, offset)))
258 break;
259
260 /* Move down the shadow chain. */
261 addr = (u_long)vmo.shadow;
262 if (addr == 0)
263 return (0);
264 offset += vmo.shadow_offset;
265 }
266
267 if (rv == -1)
268 return (0);
269 #endif
270
271 /* Found the page. */
272 offset %= kd->nbpg;
273 *cnt = kd->nbpg - offset;
274 return (&kd->swapspc[(size_t)offset]);
275 }
276
277 #if !defined(UVM)
278
279 #define vm_page_hash(kd, object, offset) \
280 (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
281
282 int
283 _kvm_coreinit(kd)
284 kvm_t *kd;
285 {
286 struct nlist nlist[3];
287
288 nlist[0].n_name = "_vm_page_buckets";
289 nlist[1].n_name = "_vm_page_hash_mask";
290 nlist[2].n_name = 0;
291 if (kvm_nlist(kd, nlist) != 0)
292 return (-1);
293
294 if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
295 KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
296 return (-1);
297
298 return (0);
299 }
300
301 int
302 _kvm_readfromcore(kd, object, offset)
303 kvm_t *kd;
304 u_long object, offset;
305 {
306 u_long addr;
307 struct pglist bucket;
308 struct vm_page mem;
309 off_t seekpoint;
310
311 if (kd->vm_page_buckets == 0 &&
312 _kvm_coreinit(kd))
313 return (-1);
314
315 addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
316 if (KREAD(kd, addr, &bucket))
317 return (-1);
318
319 addr = (u_long)bucket.tqh_first;
320 offset &= ~(kd->nbpg -1);
321 while (1) {
322 if (addr == 0)
323 return (0);
324
325 if (KREAD(kd, addr, &mem))
326 return (-1);
327
328 if ((u_long)mem.object == object &&
329 (u_long)mem.offset == offset)
330 break;
331
332 addr = (u_long)mem.hashq.tqe_next;
333 }
334
335 seekpoint = mem.phys_addr;
336
337 if (pread(kd->pmfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
338 return (-1);
339
340 return (1);
341 }
342
343 int
344 _kvm_readfrompager(kd, vmop, offset)
345 kvm_t *kd;
346 struct vm_object *vmop;
347 u_long offset;
348 {
349 u_long addr;
350 struct pager_struct pager;
351 struct swpager swap;
352 int ix;
353 struct swblock swb;
354 off_t seekpoint;
355
356 /* Read in the pager info and make sure it's a swap device. */
357 addr = (u_long)vmop->pager;
358 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
359 return (-1);
360
361 /* Read in the swap_pager private data. */
362 addr = (u_long)pager.pg_data;
363 if (KREAD(kd, addr, &swap))
364 return (-1);
365
366 /*
367 * Calculate the paging offset, and make sure it's within the
368 * bounds of the pager.
369 */
370 offset += vmop->paging_offset;
371 ix = offset / dbtob(swap.sw_bsize);
372 #if 0
373 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
374 return (-1);
375 #else
376 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
377 int i;
378 printf("BUG BUG BUG BUG:\n");
379 printf("object %p offset %lx pgoffset %lx ",
380 vmop, offset - vmop->paging_offset,
381 (u_long)vmop->paging_offset);
382 printf("pager %p swpager %p\n",
383 vmop->pager, pager.pg_data);
384 printf("osize %lx bsize %x blocks %p nblocks %x\n",
385 (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
386 swap.sw_nblocks);
387 for (i = 0; i < swap.sw_nblocks; i++) {
388 addr = (u_long)&swap.sw_blocks[i];
389 if (KREAD(kd, addr, &swb))
390 return (0);
391 printf("sw_blocks[%d]: block %x mask %x\n", i,
392 swb.swb_block, swb.swb_mask);
393 }
394 return (-1);
395 }
396 #endif
397
398 /* Read in the swap records. */
399 addr = (u_long)&swap.sw_blocks[ix];
400 if (KREAD(kd, addr, &swb))
401 return (-1);
402
403 /* Calculate offset within pager. */
404 offset %= dbtob(swap.sw_bsize);
405
406 /* Check that the page is actually present. */
407 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
408 return (0);
409
410 if (!ISALIVE(kd))
411 return (-1);
412
413 /* Calculate the physical address and read the page. */
414 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
415
416 if (pread(kd->swfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
417 return (-1);
418
419 return (1);
420 }
421 #endif /* !defined(UVM) */
422
423 /*
424 * Read proc's from memory file into buffer bp, which has space to hold
425 * at most maxcnt procs.
426 */
427 static int
428 kvm_proclist(kd, what, arg, p, bp, maxcnt)
429 kvm_t *kd;
430 int what, arg;
431 struct proc *p;
432 struct kinfo_proc *bp;
433 int maxcnt;
434 {
435 int cnt = 0;
436 struct eproc eproc;
437 struct pgrp pgrp;
438 struct session sess;
439 struct tty tty;
440 struct proc proc;
441
442 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
443 if (KREAD(kd, (u_long)p, &proc)) {
444 _kvm_err(kd, kd->program, "can't read proc at %x", p);
445 return (-1);
446 }
447 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
448 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
449 &eproc.e_ucred)) {
450 _kvm_err(kd, kd->program,
451 "can't read proc credentials at %x", p);
452 return -1;
453 }
454
455 switch(what) {
456
457 case KERN_PROC_PID:
458 if (proc.p_pid != (pid_t)arg)
459 continue;
460 break;
461
462 case KERN_PROC_UID:
463 if (eproc.e_ucred.cr_uid != (uid_t)arg)
464 continue;
465 break;
466
467 case KERN_PROC_RUID:
468 if (eproc.e_pcred.p_ruid != (uid_t)arg)
469 continue;
470 break;
471 }
472 /*
473 * We're going to add another proc to the set. If this
474 * will overflow the buffer, assume the reason is because
475 * nprocs (or the proc list) is corrupt and declare an error.
476 */
477 if (cnt >= maxcnt) {
478 _kvm_err(kd, kd->program, "nprocs corrupt");
479 return (-1);
480 }
481 /*
482 * gather eproc
483 */
484 eproc.e_paddr = p;
485 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
486 _kvm_err(kd, kd->program, "can't read pgrp at %x",
487 proc.p_pgrp);
488 return (-1);
489 }
490 eproc.e_sess = pgrp.pg_session;
491 eproc.e_pgid = pgrp.pg_id;
492 eproc.e_jobc = pgrp.pg_jobc;
493 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
494 _kvm_err(kd, kd->program, "can't read session at %x",
495 pgrp.pg_session);
496 return (-1);
497 }
498 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
499 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
500 _kvm_err(kd, kd->program,
501 "can't read tty at %x", sess.s_ttyp);
502 return (-1);
503 }
504 eproc.e_tdev = tty.t_dev;
505 eproc.e_tsess = tty.t_session;
506 if (tty.t_pgrp != NULL) {
507 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
508 _kvm_err(kd, kd->program,
509 "can't read tpgrp at &x",
510 tty.t_pgrp);
511 return (-1);
512 }
513 eproc.e_tpgid = pgrp.pg_id;
514 } else
515 eproc.e_tpgid = -1;
516 } else
517 eproc.e_tdev = NODEV;
518 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
519 if (sess.s_leader == p)
520 eproc.e_flag |= EPROC_SLEADER;
521 if (proc.p_wmesg)
522 (void)kvm_read(kd, (u_long)proc.p_wmesg,
523 eproc.e_wmesg, WMESGLEN);
524
525 (void)kvm_read(kd, (u_long)proc.p_vmspace,
526 (void *)&eproc.e_vm, sizeof(eproc.e_vm));
527
528 eproc.e_xsize = eproc.e_xrssize = 0;
529 eproc.e_xccount = eproc.e_xswrss = 0;
530
531 switch (what) {
532
533 case KERN_PROC_PGRP:
534 if (eproc.e_pgid != (pid_t)arg)
535 continue;
536 break;
537
538 case KERN_PROC_TTY:
539 if ((proc.p_flag & P_CONTROLT) == 0 ||
540 eproc.e_tdev != (dev_t)arg)
541 continue;
542 break;
543 }
544 memcpy(&bp->kp_proc, &proc, sizeof(proc));
545 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
546 ++bp;
547 ++cnt;
548 }
549 return (cnt);
550 }
551
552 /*
553 * Build proc info array by reading in proc list from a crash dump.
554 * Return number of procs read. maxcnt is the max we will read.
555 */
556 static int
557 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
558 kvm_t *kd;
559 int what, arg;
560 u_long a_allproc;
561 u_long a_deadproc;
562 u_long a_zombproc;
563 int maxcnt;
564 {
565 struct kinfo_proc *bp = kd->procbase;
566 int acnt, dcnt, zcnt;
567 struct proc *p;
568
569 if (KREAD(kd, a_allproc, &p)) {
570 _kvm_err(kd, kd->program, "cannot read allproc");
571 return (-1);
572 }
573 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
574 if (acnt < 0)
575 return (acnt);
576
577 if (KREAD(kd, a_deadproc, &p)) {
578 _kvm_err(kd, kd->program, "cannot read deadproc");
579 return (-1);
580 }
581
582 dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
583 if (dcnt < 0)
584 dcnt = 0;
585
586 if (KREAD(kd, a_zombproc, &p)) {
587 _kvm_err(kd, kd->program, "cannot read zombproc");
588 return (-1);
589 }
590 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
591 maxcnt - (acnt + dcnt));
592 if (zcnt < 0)
593 zcnt = 0;
594
595 return (acnt + zcnt);
596 }
597
598 struct kinfo_proc *
599 kvm_getprocs(kd, op, arg, cnt)
600 kvm_t *kd;
601 int op, arg;
602 int *cnt;
603 {
604 size_t size;
605 int mib[4], st, nprocs;
606
607 if (kd->procbase != 0) {
608 free((void *)kd->procbase);
609 /*
610 * Clear this pointer in case this call fails. Otherwise,
611 * kvm_close() will free it again.
612 */
613 kd->procbase = 0;
614 }
615 if (ISALIVE(kd)) {
616 size = 0;
617 mib[0] = CTL_KERN;
618 mib[1] = KERN_PROC;
619 mib[2] = op;
620 mib[3] = arg;
621 st = sysctl(mib, 4, NULL, &size, NULL, 0);
622 if (st == -1) {
623 _kvm_syserr(kd, kd->program, "kvm_getprocs");
624 return (0);
625 }
626 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
627 if (kd->procbase == 0)
628 return (0);
629 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
630 if (st == -1) {
631 _kvm_syserr(kd, kd->program, "kvm_getprocs");
632 return (0);
633 }
634 if (size % sizeof(struct kinfo_proc) != 0) {
635 _kvm_err(kd, kd->program,
636 "proc size mismatch (%d total, %d chunks)",
637 size, sizeof(struct kinfo_proc));
638 return (0);
639 }
640 nprocs = size / sizeof(struct kinfo_proc);
641 } else {
642 struct nlist nl[5], *p;
643
644 nl[0].n_name = "_nprocs";
645 nl[1].n_name = "_allproc";
646 nl[2].n_name = "_deadproc";
647 nl[3].n_name = "_zombproc";
648 nl[4].n_name = 0;
649
650 if (kvm_nlist(kd, nl) != 0) {
651 for (p = nl; p->n_type != 0; ++p)
652 ;
653 _kvm_err(kd, kd->program,
654 "%s: no such symbol", p->n_name);
655 return (0);
656 }
657 if (KREAD(kd, nl[0].n_value, &nprocs)) {
658 _kvm_err(kd, kd->program, "can't read nprocs");
659 return (0);
660 }
661 size = nprocs * sizeof(struct kinfo_proc);
662 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
663 if (kd->procbase == 0)
664 return (0);
665
666 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
667 nl[2].n_value, nl[3].n_value, nprocs);
668 #ifdef notdef
669 size = nprocs * sizeof(struct kinfo_proc);
670 (void)realloc(kd->procbase, size);
671 #endif
672 }
673 *cnt = nprocs;
674 return (kd->procbase);
675 }
676
677 void
678 _kvm_freeprocs(kd)
679 kvm_t *kd;
680 {
681 if (kd->procbase) {
682 free(kd->procbase);
683 kd->procbase = 0;
684 }
685 }
686
687 void *
688 _kvm_realloc(kd, p, n)
689 kvm_t *kd;
690 void *p;
691 size_t n;
692 {
693 void *np = (void *)realloc(p, n);
694
695 if (np == 0)
696 _kvm_err(kd, kd->program, "out of memory");
697 return (np);
698 }
699
700 #ifndef MAX
701 #define MAX(a, b) ((a) > (b) ? (a) : (b))
702 #endif
703
704 /*
705 * Read in an argument vector from the user address space of process p.
706 * addr if the user-space base address of narg null-terminated contiguous
707 * strings. This is used to read in both the command arguments and
708 * environment strings. Read at most maxcnt characters of strings.
709 */
710 static char **
711 kvm_argv(kd, p, addr, narg, maxcnt)
712 kvm_t *kd;
713 const struct proc *p;
714 u_long addr;
715 int narg;
716 int maxcnt;
717 {
718 char *np, *cp, *ep, *ap;
719 u_long oaddr = (u_long)~0L;
720 u_long len;
721 size_t cc;
722 char **argv;
723
724 /*
725 * Check that there aren't an unreasonable number of agruments,
726 * and that the address is in user space.
727 */
728 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
729 return (0);
730
731 if (kd->argv == 0) {
732 /*
733 * Try to avoid reallocs.
734 */
735 kd->argc = MAX(narg + 1, 32);
736 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
737 sizeof(*kd->argv));
738 if (kd->argv == 0)
739 return (0);
740 } else if (narg + 1 > kd->argc) {
741 kd->argc = MAX(2 * kd->argc, narg + 1);
742 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
743 sizeof(*kd->argv));
744 if (kd->argv == 0)
745 return (0);
746 }
747 if (kd->argspc == 0) {
748 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
749 if (kd->argspc == 0)
750 return (0);
751 kd->arglen = kd->nbpg;
752 }
753 if (kd->argbuf == 0) {
754 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
755 if (kd->argbuf == 0)
756 return (0);
757 }
758 cc = sizeof(char *) * narg;
759 if (kvm_uread(kd, p, addr, (void *)kd->argv, cc) != cc)
760 return (0);
761 ap = np = kd->argspc;
762 argv = kd->argv;
763 len = 0;
764 /*
765 * Loop over pages, filling in the argument vector.
766 */
767 while (argv < kd->argv + narg && *argv != 0) {
768 addr = (u_long)*argv & ~(kd->nbpg - 1);
769 if (addr != oaddr) {
770 if (kvm_uread(kd, p, addr, kd->argbuf,
771 (size_t)kd->nbpg) != kd->nbpg)
772 return (0);
773 oaddr = addr;
774 }
775 addr = (u_long)*argv & (kd->nbpg - 1);
776 cp = kd->argbuf + (size_t)addr;
777 cc = kd->nbpg - (size_t)addr;
778 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
779 cc = (size_t)(maxcnt - len);
780 ep = memchr(cp, '\0', cc);
781 if (ep != 0)
782 cc = ep - cp + 1;
783 if (len + cc > kd->arglen) {
784 int off;
785 char **pp;
786 char *op = kd->argspc;
787
788 kd->arglen *= 2;
789 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
790 (size_t)kd->arglen);
791 if (kd->argspc == 0)
792 return (0);
793 /*
794 * Adjust argv pointers in case realloc moved
795 * the string space.
796 */
797 off = kd->argspc - op;
798 for (pp = kd->argv; pp < argv; pp++)
799 *pp += off;
800 ap += off;
801 np += off;
802 }
803 memcpy(np, cp, cc);
804 np += cc;
805 len += cc;
806 if (ep != 0) {
807 *argv++ = ap;
808 ap = np;
809 } else
810 *argv += cc;
811 if (maxcnt > 0 && len >= maxcnt) {
812 /*
813 * We're stopping prematurely. Terminate the
814 * current string.
815 */
816 if (ep == 0) {
817 *np = '\0';
818 *argv++ = ap;
819 }
820 break;
821 }
822 }
823 /* Make sure argv is terminated. */
824 *argv = 0;
825 return (kd->argv);
826 }
827
828 static void
829 ps_str_a(p, addr, n)
830 struct ps_strings *p;
831 u_long *addr;
832 int *n;
833 {
834 *addr = (u_long)p->ps_argvstr;
835 *n = p->ps_nargvstr;
836 }
837
838 static void
839 ps_str_e(p, addr, n)
840 struct ps_strings *p;
841 u_long *addr;
842 int *n;
843 {
844 *addr = (u_long)p->ps_envstr;
845 *n = p->ps_nenvstr;
846 }
847
848 /*
849 * Determine if the proc indicated by p is still active.
850 * This test is not 100% foolproof in theory, but chances of
851 * being wrong are very low.
852 */
853 static int
854 proc_verify(kd, kernp, p)
855 kvm_t *kd;
856 u_long kernp;
857 const struct proc *p;
858 {
859 struct proc kernproc;
860
861 /*
862 * Just read in the whole proc. It's not that big relative
863 * to the cost of the read system call.
864 */
865 if (kvm_read(kd, kernp, (void *)&kernproc, sizeof(kernproc)) !=
866 sizeof(kernproc))
867 return (0);
868 return (p->p_pid == kernproc.p_pid &&
869 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
870 }
871
872 static char **
873 kvm_doargv(kd, kp, nchr, info)
874 kvm_t *kd;
875 const struct kinfo_proc *kp;
876 int nchr;
877 void (*info)(struct ps_strings *, u_long *, int *);
878 {
879 const struct proc *p = &kp->kp_proc;
880 char **ap;
881 u_long addr;
882 int cnt;
883 struct ps_strings arginfo;
884
885 /*
886 * Pointers are stored at the top of the user stack.
887 */
888 if (p->p_stat == SZOMB)
889 return (0);
890 cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
891 (void *)&arginfo, sizeof(arginfo));
892 if (cnt != sizeof(arginfo))
893 return (0);
894
895 (*info)(&arginfo, &addr, &cnt);
896 if (cnt == 0)
897 return (0);
898 ap = kvm_argv(kd, p, addr, cnt, nchr);
899 /*
900 * For live kernels, make sure this process didn't go away.
901 */
902 if (ap != 0 && ISALIVE(kd) &&
903 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
904 ap = 0;
905 return (ap);
906 }
907
908 /*
909 * Get the command args. This code is now machine independent.
910 */
911 char **
912 kvm_getargv(kd, kp, nchr)
913 kvm_t *kd;
914 const struct kinfo_proc *kp;
915 int nchr;
916 {
917 return (kvm_doargv(kd, kp, nchr, ps_str_a));
918 }
919
920 char **
921 kvm_getenvv(kd, kp, nchr)
922 kvm_t *kd;
923 const struct kinfo_proc *kp;
924 int nchr;
925 {
926 return (kvm_doargv(kd, kp, nchr, ps_str_e));
927 }
928
929 /*
930 * Read from user space. The user context is given by p.
931 */
932 ssize_t
933 kvm_uread(kd, p, uva, buf, len)
934 kvm_t *kd;
935 const struct proc *p;
936 u_long uva;
937 char *buf;
938 size_t len;
939 {
940 char *cp;
941
942 cp = buf;
943 while (len > 0) {
944 size_t cc;
945 char *dp;
946 u_long cnt;
947
948 dp = _kvm_uread(kd, p, uva, &cnt);
949 if (dp == 0) {
950 _kvm_err(kd, 0, "invalid address (%x)", uva);
951 return (0);
952 }
953 cc = (size_t)MIN(cnt, len);
954 memcpy(cp, dp, cc);
955 cp += cc;
956 uva += cc;
957 len -= cc;
958 }
959 return (ssize_t)(cp - buf);
960 }
961