Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.29
      1 /*	$NetBSD: kvm_proc.c,v 1.29 1999/01/25 03:38:57 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1989, 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software developed by the Computer Systems
     44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45  * BG 91-66 and contributed to Berkeley.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *	This product includes software developed by the University of
     58  *	California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 #if defined(LIBC_SCCS) && !defined(lint)
     78 #if 0
     79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80 #else
     81 __RCSID("$NetBSD: kvm_proc.c,v 1.29 1999/01/25 03:38:57 mrg Exp $");
     82 #endif
     83 #endif /* LIBC_SCCS and not lint */
     84 
     85 /*
     86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87  * users of this code, so we've factored it out into a separate module.
     88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89  * most other applications are interested only in open/close/read/nlist).
     90  */
     91 
     92 #include <sys/param.h>
     93 #include <sys/user.h>
     94 #include <sys/proc.h>
     95 #include <sys/exec.h>
     96 #include <sys/stat.h>
     97 #include <sys/ioctl.h>
     98 #include <sys/tty.h>
     99 #include <stdlib.h>
    100 #include <string.h>
    101 #include <unistd.h>
    102 #include <nlist.h>
    103 #include <kvm.h>
    104 
    105 #include <vm/vm.h>
    106 #include <vm/vm_param.h>
    107 #include <vm/swap_pager.h>
    108 
    109 #if defined(UVM)
    110 #include <uvm/uvm_extern.h>
    111 #include <uvm/uvm_amap.h>
    112 #endif
    113 
    114 #include <sys/sysctl.h>
    115 
    116 #include <limits.h>
    117 #include <db.h>
    118 #include <paths.h>
    119 
    120 #include "kvm_private.h"
    121 
    122 #define KREAD(kd, addr, obj) \
    123 	(kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
    124 
    125 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
    126 #if !defined(UVM)
    127 int		_kvm_coreinit __P((kvm_t *));
    128 int		_kvm_readfromcore __P((kvm_t *, u_long, u_long));
    129 int		_kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
    130 #endif
    131 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    132 		    size_t));
    133 
    134 static char	**kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
    135 		    int));
    136 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
    137 		    int));
    138 static char	**kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
    139 		    void (*)(struct ps_strings *, u_long *, int *)));
    140 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    141 		    struct kinfo_proc *, int));
    142 static int	proc_verify __P((kvm_t *, u_long, const struct proc *));
    143 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    144 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    145 
    146 char *
    147 _kvm_uread(kd, p, va, cnt)
    148 	kvm_t *kd;
    149 	const struct proc *p;
    150 	u_long va;
    151 	u_long *cnt;
    152 {
    153 	int true = 1;
    154 	u_long addr, head;
    155 	u_long offset;
    156 	struct vm_map_entry vme;
    157 #if defined(UVM)
    158 	struct vm_amap amap;
    159 	struct vm_anon *anonp, anon;
    160 	struct vm_page pg;
    161 	u_long slot;
    162 #else
    163 	struct vm_object vmo;
    164 	int rv;
    165 #endif
    166 
    167 	if (kd->swapspc == 0) {
    168 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    169 		if (kd->swapspc == 0)
    170 			return (0);
    171 	}
    172 
    173 	/*
    174 	 * Look through the address map for the memory object
    175 	 * that corresponds to the given virtual address.
    176 	 * The header just has the entire valid range.
    177 	 */
    178 	head = (u_long)&p->p_vmspace->vm_map.header;
    179 	addr = head;
    180 	while (true) {
    181 		if (KREAD(kd, addr, &vme))
    182 			return (0);
    183 
    184 #if defined(UVM)
    185 		if (va >= vme.start && va < vme.end &&
    186 		    vme.aref.ar_amap != NULL)
    187 			break;
    188 
    189 #else
    190 		if (va >= vme.start && va < vme.end &&
    191 		    vme.object.vm_object != 0)
    192 			break;
    193 #endif
    194 
    195 		addr = (u_long)vme.next;
    196 		if (addr == head)
    197 			return (0);
    198 
    199 	}
    200 #if defined(UVM)
    201 
    202 	/*
    203 	 * we found the map entry, now to find the object...
    204 	 */
    205 	if (vme.aref.ar_amap == NULL)
    206 		return NULL;
    207 
    208 	addr = (u_long)vme.aref.ar_amap;
    209 	if (KREAD(kd, addr, &amap))
    210 		return NULL;
    211 
    212 	offset = va - vme.start;
    213 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    214 	/* sanity-check slot number */
    215 	if (slot  > amap.am_nslot)
    216 		return NULL;
    217 
    218 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    219 	if (KREAD(kd, addr, &anonp))
    220 		return NULL;
    221 
    222 	addr = (u_long)anonp;
    223 	if (KREAD(kd, addr, &anon))
    224 		return NULL;
    225 
    226 	addr = (u_long)anon.u.an_page;
    227 	if (addr) {
    228 		if (KREAD(kd, addr, &pg))
    229 			return NULL;
    230 
    231 		if (pread(kd->pmfd, (void *)kd->swapspc, (size_t)kd->nbpg,
    232 		    (off_t)pg.phys_addr) != kd->nbpg)
    233 			return NULL;
    234 	}
    235 	else {
    236 		if (pread(kd->swfd, (void *)kd->swapspc, (size_t)kd->nbpg,
    237 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    238 			return NULL;
    239 	}
    240 #else
    241 	/*
    242 	 * We found the right object -- follow shadow links.
    243 	 */
    244 	offset = va - vme.start + vme.offset;
    245 	addr = (u_long)vme.object.vm_object;
    246 
    247 	while (1) {
    248 		/* Try reading the page from core first. */
    249 		if ((rv = _kvm_readfromcore(kd, addr, offset)))
    250 			break;
    251 
    252 		if (KREAD(kd, addr, &vmo))
    253 			return (0);
    254 
    255 		/* If there is a pager here, see if it has the page. */
    256 		if (vmo.pager != 0 &&
    257 		    (rv = _kvm_readfrompager(kd, &vmo, offset)))
    258 			break;
    259 
    260 		/* Move down the shadow chain. */
    261 		addr = (u_long)vmo.shadow;
    262 		if (addr == 0)
    263 			return (0);
    264 		offset += vmo.shadow_offset;
    265 	}
    266 
    267 	if (rv == -1)
    268 		return (0);
    269 #endif
    270 
    271 	/* Found the page. */
    272 	offset %= kd->nbpg;
    273 	*cnt = kd->nbpg - offset;
    274 	return (&kd->swapspc[(size_t)offset]);
    275 }
    276 
    277 #if !defined(UVM)
    278 
    279 #define	vm_page_hash(kd, object, offset) \
    280 	(((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
    281 
    282 int
    283 _kvm_coreinit(kd)
    284 	kvm_t *kd;
    285 {
    286 	struct nlist nlist[3];
    287 
    288 	nlist[0].n_name = "_vm_page_buckets";
    289 	nlist[1].n_name = "_vm_page_hash_mask";
    290 	nlist[2].n_name = 0;
    291 	if (kvm_nlist(kd, nlist) != 0)
    292 		return (-1);
    293 
    294 	if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
    295 	    KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
    296 		return (-1);
    297 
    298 	return (0);
    299 }
    300 
    301 int
    302 _kvm_readfromcore(kd, object, offset)
    303 	kvm_t *kd;
    304 	u_long object, offset;
    305 {
    306 	u_long addr;
    307 	struct pglist bucket;
    308 	struct vm_page mem;
    309 	off_t seekpoint;
    310 
    311 	if (kd->vm_page_buckets == 0 &&
    312 	    _kvm_coreinit(kd))
    313 		return (-1);
    314 
    315 	addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
    316 	if (KREAD(kd, addr, &bucket))
    317 		return (-1);
    318 
    319 	addr = (u_long)bucket.tqh_first;
    320 	offset &= ~(kd->nbpg -1);
    321 	while (1) {
    322 		if (addr == 0)
    323 			return (0);
    324 
    325 		if (KREAD(kd, addr, &mem))
    326 			return (-1);
    327 
    328 		if ((u_long)mem.object == object &&
    329 		    (u_long)mem.offset == offset)
    330 			break;
    331 
    332 		addr = (u_long)mem.hashq.tqe_next;
    333 	}
    334 
    335 	seekpoint = mem.phys_addr;
    336 
    337 	if (pread(kd->pmfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
    338 		return (-1);
    339 
    340 	return (1);
    341 }
    342 
    343 int
    344 _kvm_readfrompager(kd, vmop, offset)
    345 	kvm_t *kd;
    346 	struct vm_object *vmop;
    347 	u_long offset;
    348 {
    349 	u_long addr;
    350 	struct pager_struct pager;
    351 	struct swpager swap;
    352 	int ix;
    353 	struct swblock swb;
    354 	off_t seekpoint;
    355 
    356 	/* Read in the pager info and make sure it's a swap device. */
    357 	addr = (u_long)vmop->pager;
    358 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    359 		return (-1);
    360 
    361 	/* Read in the swap_pager private data. */
    362 	addr = (u_long)pager.pg_data;
    363 	if (KREAD(kd, addr, &swap))
    364 		return (-1);
    365 
    366 	/*
    367 	 * Calculate the paging offset, and make sure it's within the
    368 	 * bounds of the pager.
    369 	 */
    370 	offset += vmop->paging_offset;
    371 	ix = offset / dbtob(swap.sw_bsize);
    372 #if 0
    373 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    374 		return (-1);
    375 #else
    376 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    377 		int i;
    378 		printf("BUG BUG BUG BUG:\n");
    379 		printf("object %p offset %lx pgoffset %lx ",
    380 		    vmop, offset - vmop->paging_offset,
    381 		    (u_long)vmop->paging_offset);
    382 		printf("pager %p swpager %p\n",
    383 		    vmop->pager, pager.pg_data);
    384 		printf("osize %lx bsize %x blocks %p nblocks %x\n",
    385 		    (u_long)swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    386 		    swap.sw_nblocks);
    387 		for (i = 0; i < swap.sw_nblocks; i++) {
    388 			addr = (u_long)&swap.sw_blocks[i];
    389 			if (KREAD(kd, addr, &swb))
    390 				return (0);
    391 			printf("sw_blocks[%d]: block %x mask %x\n", i,
    392 			    swb.swb_block, swb.swb_mask);
    393 		}
    394 		return (-1);
    395 	}
    396 #endif
    397 
    398 	/* Read in the swap records. */
    399 	addr = (u_long)&swap.sw_blocks[ix];
    400 	if (KREAD(kd, addr, &swb))
    401 		return (-1);
    402 
    403 	/* Calculate offset within pager. */
    404 	offset %= dbtob(swap.sw_bsize);
    405 
    406 	/* Check that the page is actually present. */
    407 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    408 		return (0);
    409 
    410 	if (!ISALIVE(kd))
    411 		return (-1);
    412 
    413 	/* Calculate the physical address and read the page. */
    414 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    415 
    416 	if (pread(kd->swfd, kd->swapspc, kd->nbpg, seekpoint) != kd->nbpg)
    417 		return (-1);
    418 
    419 	return (1);
    420 }
    421 #endif /* !defined(UVM) */
    422 
    423 /*
    424  * Read proc's from memory file into buffer bp, which has space to hold
    425  * at most maxcnt procs.
    426  */
    427 static int
    428 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    429 	kvm_t *kd;
    430 	int what, arg;
    431 	struct proc *p;
    432 	struct kinfo_proc *bp;
    433 	int maxcnt;
    434 {
    435 	int cnt = 0;
    436 	struct eproc eproc;
    437 	struct pgrp pgrp;
    438 	struct session sess;
    439 	struct tty tty;
    440 	struct proc proc;
    441 
    442 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    443 		if (KREAD(kd, (u_long)p, &proc)) {
    444 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    445 			return (-1);
    446 		}
    447 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    448 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    449 			    &eproc.e_ucred)) {
    450 				_kvm_err(kd, kd->program,
    451 				    "can't read proc credentials at %x", p);
    452 				return -1;
    453 			}
    454 
    455 		switch(what) {
    456 
    457 		case KERN_PROC_PID:
    458 			if (proc.p_pid != (pid_t)arg)
    459 				continue;
    460 			break;
    461 
    462 		case KERN_PROC_UID:
    463 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    464 				continue;
    465 			break;
    466 
    467 		case KERN_PROC_RUID:
    468 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    469 				continue;
    470 			break;
    471 		}
    472 		/*
    473 		 * We're going to add another proc to the set.  If this
    474 		 * will overflow the buffer, assume the reason is because
    475 		 * nprocs (or the proc list) is corrupt and declare an error.
    476 		 */
    477 		if (cnt >= maxcnt) {
    478 			_kvm_err(kd, kd->program, "nprocs corrupt");
    479 			return (-1);
    480 		}
    481 		/*
    482 		 * gather eproc
    483 		 */
    484 		eproc.e_paddr = p;
    485 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    486 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    487 				 proc.p_pgrp);
    488 			return (-1);
    489 		}
    490 		eproc.e_sess = pgrp.pg_session;
    491 		eproc.e_pgid = pgrp.pg_id;
    492 		eproc.e_jobc = pgrp.pg_jobc;
    493 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    494 			_kvm_err(kd, kd->program, "can't read session at %x",
    495 				pgrp.pg_session);
    496 			return (-1);
    497 		}
    498 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    499 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    500 				_kvm_err(kd, kd->program,
    501 					 "can't read tty at %x", sess.s_ttyp);
    502 				return (-1);
    503 			}
    504 			eproc.e_tdev = tty.t_dev;
    505 			eproc.e_tsess = tty.t_session;
    506 			if (tty.t_pgrp != NULL) {
    507 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    508 					_kvm_err(kd, kd->program,
    509 						 "can't read tpgrp at &x",
    510 						tty.t_pgrp);
    511 					return (-1);
    512 				}
    513 				eproc.e_tpgid = pgrp.pg_id;
    514 			} else
    515 				eproc.e_tpgid = -1;
    516 		} else
    517 			eproc.e_tdev = NODEV;
    518 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    519 		if (sess.s_leader == p)
    520 			eproc.e_flag |= EPROC_SLEADER;
    521 		if (proc.p_wmesg)
    522 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    523 			    eproc.e_wmesg, WMESGLEN);
    524 
    525 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    526 		    (void *)&eproc.e_vm, sizeof(eproc.e_vm));
    527 
    528 		eproc.e_xsize = eproc.e_xrssize = 0;
    529 		eproc.e_xccount = eproc.e_xswrss = 0;
    530 
    531 		switch (what) {
    532 
    533 		case KERN_PROC_PGRP:
    534 			if (eproc.e_pgid != (pid_t)arg)
    535 				continue;
    536 			break;
    537 
    538 		case KERN_PROC_TTY:
    539 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    540 			     eproc.e_tdev != (dev_t)arg)
    541 				continue;
    542 			break;
    543 		}
    544 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    545 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    546 		++bp;
    547 		++cnt;
    548 	}
    549 	return (cnt);
    550 }
    551 
    552 /*
    553  * Build proc info array by reading in proc list from a crash dump.
    554  * Return number of procs read.  maxcnt is the max we will read.
    555  */
    556 static int
    557 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
    558 	kvm_t *kd;
    559 	int what, arg;
    560 	u_long a_allproc;
    561 	u_long a_deadproc;
    562 	u_long a_zombproc;
    563 	int maxcnt;
    564 {
    565 	struct kinfo_proc *bp = kd->procbase;
    566 	int acnt, dcnt, zcnt;
    567 	struct proc *p;
    568 
    569 	if (KREAD(kd, a_allproc, &p)) {
    570 		_kvm_err(kd, kd->program, "cannot read allproc");
    571 		return (-1);
    572 	}
    573 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    574 	if (acnt < 0)
    575 		return (acnt);
    576 
    577 	if (KREAD(kd, a_deadproc, &p)) {
    578 		_kvm_err(kd, kd->program, "cannot read deadproc");
    579 		return (-1);
    580 	}
    581 
    582 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
    583 	if (dcnt < 0)
    584 		dcnt = 0;
    585 
    586 	if (KREAD(kd, a_zombproc, &p)) {
    587 		_kvm_err(kd, kd->program, "cannot read zombproc");
    588 		return (-1);
    589 	}
    590 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    591 	    maxcnt - (acnt + dcnt));
    592 	if (zcnt < 0)
    593 		zcnt = 0;
    594 
    595 	return (acnt + zcnt);
    596 }
    597 
    598 struct kinfo_proc *
    599 kvm_getprocs(kd, op, arg, cnt)
    600 	kvm_t *kd;
    601 	int op, arg;
    602 	int *cnt;
    603 {
    604 	size_t size;
    605 	int mib[4], st, nprocs;
    606 
    607 	if (kd->procbase != 0) {
    608 		free((void *)kd->procbase);
    609 		/*
    610 		 * Clear this pointer in case this call fails.  Otherwise,
    611 		 * kvm_close() will free it again.
    612 		 */
    613 		kd->procbase = 0;
    614 	}
    615 	if (ISALIVE(kd)) {
    616 		size = 0;
    617 		mib[0] = CTL_KERN;
    618 		mib[1] = KERN_PROC;
    619 		mib[2] = op;
    620 		mib[3] = arg;
    621 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    622 		if (st == -1) {
    623 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    624 			return (0);
    625 		}
    626 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    627 		if (kd->procbase == 0)
    628 			return (0);
    629 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    630 		if (st == -1) {
    631 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    632 			return (0);
    633 		}
    634 		if (size % sizeof(struct kinfo_proc) != 0) {
    635 			_kvm_err(kd, kd->program,
    636 				"proc size mismatch (%d total, %d chunks)",
    637 				size, sizeof(struct kinfo_proc));
    638 			return (0);
    639 		}
    640 		nprocs = size / sizeof(struct kinfo_proc);
    641 	} else {
    642 		struct nlist nl[5], *p;
    643 
    644 		nl[0].n_name = "_nprocs";
    645 		nl[1].n_name = "_allproc";
    646 		nl[2].n_name = "_deadproc";
    647 		nl[3].n_name = "_zombproc";
    648 		nl[4].n_name = 0;
    649 
    650 		if (kvm_nlist(kd, nl) != 0) {
    651 			for (p = nl; p->n_type != 0; ++p)
    652 				;
    653 			_kvm_err(kd, kd->program,
    654 				 "%s: no such symbol", p->n_name);
    655 			return (0);
    656 		}
    657 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    658 			_kvm_err(kd, kd->program, "can't read nprocs");
    659 			return (0);
    660 		}
    661 		size = nprocs * sizeof(struct kinfo_proc);
    662 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    663 		if (kd->procbase == 0)
    664 			return (0);
    665 
    666 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    667 		    nl[2].n_value, nl[3].n_value, nprocs);
    668 #ifdef notdef
    669 		size = nprocs * sizeof(struct kinfo_proc);
    670 		(void)realloc(kd->procbase, size);
    671 #endif
    672 	}
    673 	*cnt = nprocs;
    674 	return (kd->procbase);
    675 }
    676 
    677 void
    678 _kvm_freeprocs(kd)
    679 	kvm_t *kd;
    680 {
    681 	if (kd->procbase) {
    682 		free(kd->procbase);
    683 		kd->procbase = 0;
    684 	}
    685 }
    686 
    687 void *
    688 _kvm_realloc(kd, p, n)
    689 	kvm_t *kd;
    690 	void *p;
    691 	size_t n;
    692 {
    693 	void *np = (void *)realloc(p, n);
    694 
    695 	if (np == 0)
    696 		_kvm_err(kd, kd->program, "out of memory");
    697 	return (np);
    698 }
    699 
    700 #ifndef MAX
    701 #define MAX(a, b) ((a) > (b) ? (a) : (b))
    702 #endif
    703 
    704 /*
    705  * Read in an argument vector from the user address space of process p.
    706  * addr if the user-space base address of narg null-terminated contiguous
    707  * strings.  This is used to read in both the command arguments and
    708  * environment strings.  Read at most maxcnt characters of strings.
    709  */
    710 static char **
    711 kvm_argv(kd, p, addr, narg, maxcnt)
    712 	kvm_t *kd;
    713 	const struct proc *p;
    714 	u_long addr;
    715 	int narg;
    716 	int maxcnt;
    717 {
    718 	char *np, *cp, *ep, *ap;
    719 	u_long oaddr = (u_long)~0L;
    720 	u_long len;
    721 	size_t cc;
    722 	char **argv;
    723 
    724 	/*
    725 	 * Check that there aren't an unreasonable number of agruments,
    726 	 * and that the address is in user space.
    727 	 */
    728 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    729 		return (0);
    730 
    731 	if (kd->argv == 0) {
    732 		/*
    733 		 * Try to avoid reallocs.
    734 		 */
    735 		kd->argc = MAX(narg + 1, 32);
    736 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    737 						sizeof(*kd->argv));
    738 		if (kd->argv == 0)
    739 			return (0);
    740 	} else if (narg + 1 > kd->argc) {
    741 		kd->argc = MAX(2 * kd->argc, narg + 1);
    742 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    743 						sizeof(*kd->argv));
    744 		if (kd->argv == 0)
    745 			return (0);
    746 	}
    747 	if (kd->argspc == 0) {
    748 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    749 		if (kd->argspc == 0)
    750 			return (0);
    751 		kd->arglen = kd->nbpg;
    752 	}
    753 	if (kd->argbuf == 0) {
    754 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    755 		if (kd->argbuf == 0)
    756 			return (0);
    757 	}
    758 	cc = sizeof(char *) * narg;
    759 	if (kvm_uread(kd, p, addr, (void *)kd->argv, cc) != cc)
    760 		return (0);
    761 	ap = np = kd->argspc;
    762 	argv = kd->argv;
    763 	len = 0;
    764 	/*
    765 	 * Loop over pages, filling in the argument vector.
    766 	 */
    767 	while (argv < kd->argv + narg && *argv != 0) {
    768 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    769 		if (addr != oaddr) {
    770 			if (kvm_uread(kd, p, addr, kd->argbuf,
    771 			    (size_t)kd->nbpg) != kd->nbpg)
    772 				return (0);
    773 			oaddr = addr;
    774 		}
    775 		addr = (u_long)*argv & (kd->nbpg - 1);
    776 		cp = kd->argbuf + (size_t)addr;
    777 		cc = kd->nbpg - (size_t)addr;
    778 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    779 			cc = (size_t)(maxcnt - len);
    780 		ep = memchr(cp, '\0', cc);
    781 		if (ep != 0)
    782 			cc = ep - cp + 1;
    783 		if (len + cc > kd->arglen) {
    784 			int off;
    785 			char **pp;
    786 			char *op = kd->argspc;
    787 
    788 			kd->arglen *= 2;
    789 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    790 			    (size_t)kd->arglen);
    791 			if (kd->argspc == 0)
    792 				return (0);
    793 			/*
    794 			 * Adjust argv pointers in case realloc moved
    795 			 * the string space.
    796 			 */
    797 			off = kd->argspc - op;
    798 			for (pp = kd->argv; pp < argv; pp++)
    799 				*pp += off;
    800 			ap += off;
    801 			np += off;
    802 		}
    803 		memcpy(np, cp, cc);
    804 		np += cc;
    805 		len += cc;
    806 		if (ep != 0) {
    807 			*argv++ = ap;
    808 			ap = np;
    809 		} else
    810 			*argv += cc;
    811 		if (maxcnt > 0 && len >= maxcnt) {
    812 			/*
    813 			 * We're stopping prematurely.  Terminate the
    814 			 * current string.
    815 			 */
    816 			if (ep == 0) {
    817 				*np = '\0';
    818 				*argv++ = ap;
    819 			}
    820 			break;
    821 		}
    822 	}
    823 	/* Make sure argv is terminated. */
    824 	*argv = 0;
    825 	return (kd->argv);
    826 }
    827 
    828 static void
    829 ps_str_a(p, addr, n)
    830 	struct ps_strings *p;
    831 	u_long *addr;
    832 	int *n;
    833 {
    834 	*addr = (u_long)p->ps_argvstr;
    835 	*n = p->ps_nargvstr;
    836 }
    837 
    838 static void
    839 ps_str_e(p, addr, n)
    840 	struct ps_strings *p;
    841 	u_long *addr;
    842 	int *n;
    843 {
    844 	*addr = (u_long)p->ps_envstr;
    845 	*n = p->ps_nenvstr;
    846 }
    847 
    848 /*
    849  * Determine if the proc indicated by p is still active.
    850  * This test is not 100% foolproof in theory, but chances of
    851  * being wrong are very low.
    852  */
    853 static int
    854 proc_verify(kd, kernp, p)
    855 	kvm_t *kd;
    856 	u_long kernp;
    857 	const struct proc *p;
    858 {
    859 	struct proc kernproc;
    860 
    861 	/*
    862 	 * Just read in the whole proc.  It's not that big relative
    863 	 * to the cost of the read system call.
    864 	 */
    865 	if (kvm_read(kd, kernp, (void *)&kernproc, sizeof(kernproc)) !=
    866 	    sizeof(kernproc))
    867 		return (0);
    868 	return (p->p_pid == kernproc.p_pid &&
    869 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    870 }
    871 
    872 static char **
    873 kvm_doargv(kd, kp, nchr, info)
    874 	kvm_t *kd;
    875 	const struct kinfo_proc *kp;
    876 	int nchr;
    877 	void (*info)(struct ps_strings *, u_long *, int *);
    878 {
    879 	const struct proc *p = &kp->kp_proc;
    880 	char **ap;
    881 	u_long addr;
    882 	int cnt;
    883 	struct ps_strings arginfo;
    884 
    885 	/*
    886 	 * Pointers are stored at the top of the user stack.
    887 	 */
    888 	if (p->p_stat == SZOMB)
    889 		return (0);
    890 	cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
    891 	    (void *)&arginfo, sizeof(arginfo));
    892 	if (cnt != sizeof(arginfo))
    893 		return (0);
    894 
    895 	(*info)(&arginfo, &addr, &cnt);
    896 	if (cnt == 0)
    897 		return (0);
    898 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    899 	/*
    900 	 * For live kernels, make sure this process didn't go away.
    901 	 */
    902 	if (ap != 0 && ISALIVE(kd) &&
    903 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    904 		ap = 0;
    905 	return (ap);
    906 }
    907 
    908 /*
    909  * Get the command args.  This code is now machine independent.
    910  */
    911 char **
    912 kvm_getargv(kd, kp, nchr)
    913 	kvm_t *kd;
    914 	const struct kinfo_proc *kp;
    915 	int nchr;
    916 {
    917 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    918 }
    919 
    920 char **
    921 kvm_getenvv(kd, kp, nchr)
    922 	kvm_t *kd;
    923 	const struct kinfo_proc *kp;
    924 	int nchr;
    925 {
    926 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    927 }
    928 
    929 /*
    930  * Read from user space.  The user context is given by p.
    931  */
    932 ssize_t
    933 kvm_uread(kd, p, uva, buf, len)
    934 	kvm_t *kd;
    935 	const struct proc *p;
    936 	u_long uva;
    937 	char *buf;
    938 	size_t len;
    939 {
    940 	char *cp;
    941 
    942 	cp = buf;
    943 	while (len > 0) {
    944 		size_t cc;
    945 		char *dp;
    946 		u_long cnt;
    947 
    948 		dp = _kvm_uread(kd, p, uva, &cnt);
    949 		if (dp == 0) {
    950 			_kvm_err(kd, 0, "invalid address (%x)", uva);
    951 			return (0);
    952 		}
    953 		cc = (size_t)MIN(cnt, len);
    954 		memcpy(cp, dp, cc);
    955 		cp += cc;
    956 		uva += cc;
    957 		len -= cc;
    958 	}
    959 	return (ssize_t)(cp - buf);
    960 }
    961