Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.3
      1 /*-
      2  * Copyright (c) 1994 Charles Hannum.
      3  * Copyright (c) 1989, 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * This code is derived from software developed by the Computer Systems
      7  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
      8  * BG 91-66 and contributed to Berkeley.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  */
     38 
     39 #if defined(LIBC_SCCS) && !defined(lint)
     40 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     41 #endif /* LIBC_SCCS and not lint */
     42 
     43 /*
     44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     45  * users of this code, so we've factored it out into a separate module.
     46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     47  * most other applications are interested only in open/close/read/nlist).
     48  */
     49 
     50 #include <sys/param.h>
     51 #include <sys/user.h>
     52 #include <sys/proc.h>
     53 #include <sys/exec.h>
     54 #include <sys/stat.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/tty.h>
     57 #include <unistd.h>
     58 #include <nlist.h>
     59 #include <kvm.h>
     60 
     61 #include <vm/vm.h>
     62 #include <vm/vm_param.h>
     63 #include <vm/swap_pager.h>
     64 
     65 #include <sys/sysctl.h>
     66 
     67 #include <limits.h>
     68 #include <db.h>
     69 #include <paths.h>
     70 
     71 #include "kvm_private.h"
     72 
     73 #define KREAD(kd, addr, obj) \
     74 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
     75 
     76 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long, char *));
     77 
     78 static char *
     79 kvm_readswap(kd, p, va, cnt)
     80 	kvm_t *kd;
     81 	const struct proc *p;
     82 	u_long va;
     83 	u_long *cnt;
     84 {
     85 	register u_long addr, head;
     86 	register u_long offset;
     87 	struct vm_map_entry vme;
     88 	struct vm_object vmo;
     89 	static char page[NBPG];
     90 
     91 	head = (u_long)&p->p_vmspace->vm_map.header;
     92 	/*
     93 	 * Look through the address map for the memory object
     94 	 * that corresponds to the given virtual address.
     95 	 * The header just has the entire valid range.
     96 	 */
     97 	addr = head;
     98 	while (1) {
     99 		if (KREAD(kd, addr, &vme))
    100 			return (0);
    101 
    102 		if (va >= vme.start && va < vme.end &&
    103 		    vme.object.vm_object != 0)
    104 			break;
    105 
    106 		addr = (u_long)vme.next;
    107 		if (addr == head)
    108 			return (0);
    109 	}
    110 
    111 	/*
    112 	 * We found the right object -- follow shadow links.
    113 	 */
    114 	offset = va - vme.start + vme.offset;
    115 	addr = (u_long)vme.object.vm_object;
    116 	while (1) {
    117 		if (KREAD(kd, addr, &vmo))
    118 			return (0);
    119 
    120 		/* If there is a pager here, see if it has the page. */
    121 		if (vmo.pager != 0 &&
    122 		    _kvm_readfrompager(kd, &vmo, offset, page))
    123 			break;
    124 
    125 		/* Move down the shadow chain. */
    126 		addr = (u_long)vmo.shadow;
    127 		if (addr == 0)
    128 			return (0);
    129 		offset += vmo.shadow_offset;
    130 	}
    131 
    132 	/* Found the page. */
    133 	offset %= NBPG;
    134 	*cnt = NBPG - offset;
    135 	return (&page[offset]);
    136 }
    137 
    138 int
    139 _kvm_readfrompager(kd, vmop, offset, buf)
    140 	kvm_t *kd;
    141 	struct vm_object *vmop;
    142 	u_long offset;
    143 	char *buf;
    144 {
    145 	u_long addr;
    146 	struct pager_struct pager;
    147 	struct swpager swap;
    148 	int ix;
    149 	struct swblock swb;
    150 	register off_t seekpoint;
    151 
    152 	/* Read in the pager info and make sure it's a swap device. */
    153 	addr = (u_long)vmop->pager;
    154 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    155 		return (0);
    156 
    157 	/* Read in the swap_pager private data. */
    158 	addr = (u_long)pager.pg_data;
    159 	if (KREAD(kd, addr, &swap))
    160 		return (0);
    161 
    162 	/*
    163 	 * Calculate the paging offset, and make sure it's within the
    164 	 * bounds of the pager.
    165 	 */
    166 	offset += vmop->paging_offset;
    167 	ix = offset / dbtob(swap.sw_bsize);
    168 #if 0
    169 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    170 		return (0);
    171 #else
    172 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    173 		int i;
    174 		printf("BUG BUG BUG BUG:\n");
    175 		printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
    176 		    vmop, offset - vmop->paging_offset, vmop->paging_offset,
    177 		    vmop->pager, pager.pg_data);
    178 		printf("osize %x bsize %x blocks %x nblocks %x\n",
    179 		    swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    180 		    swap.sw_nblocks);
    181 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
    182 			addr = (u_long)&swap.sw_blocks[ix];
    183 			if (KREAD(kd, addr, &swb))
    184 				return (0);
    185 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
    186 			    swb.swb_block, swb.swb_mask);
    187 		}
    188 		return (0);
    189 	}
    190 #endif
    191 
    192 	/* Read in the swap records. */
    193 	addr = (u_long)&swap.sw_blocks[ix];
    194 	if (KREAD(kd, addr, &swb))
    195 		return (0);
    196 
    197 	/* Calculate offset within pager. */
    198 	offset %= dbtob(swap.sw_bsize);
    199 
    200 	/* Check that the page is actually present. */
    201 	if ((swb.swb_mask & (1 << (offset / NBPG))) == 0)
    202 		return (0);
    203 
    204 	/* Calculate the physical address and read the page. */
    205 	seekpoint = dbtob(swb.swb_block) + (offset & ~PGOFSET);
    206 	if (lseek(kd->swfd, seekpoint, 0) == -1)
    207 		return (0);
    208 	if (read(kd->swfd, buf, NBPG) != NBPG)
    209 		return (0);
    210 
    211 	return (1);
    212 }
    213 
    214 /*
    215  * Read proc's from memory file into buffer bp, which has space to hold
    216  * at most maxcnt procs.
    217  */
    218 static int
    219 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    220 	kvm_t *kd;
    221 	int what, arg;
    222 	struct proc *p;
    223 	struct kinfo_proc *bp;
    224 	int maxcnt;
    225 {
    226 	register int cnt = 0;
    227 	struct eproc eproc;
    228 	struct pgrp pgrp;
    229 	struct session sess;
    230 	struct tty tty;
    231 	struct proc proc;
    232 
    233 	for (; cnt < maxcnt && p != NULL; p = proc.p_next) {
    234 		if (KREAD(kd, (u_long)p, &proc)) {
    235 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    236 			return (-1);
    237 		}
    238 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    239 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    240 			      &eproc.e_ucred);
    241 
    242 		switch(what) {
    243 
    244 		case KERN_PROC_PID:
    245 			if (proc.p_pid != (pid_t)arg)
    246 				continue;
    247 			break;
    248 
    249 		case KERN_PROC_UID:
    250 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    251 				continue;
    252 			break;
    253 
    254 		case KERN_PROC_RUID:
    255 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    256 				continue;
    257 			break;
    258 		}
    259 		/*
    260 		 * We're going to add another proc to the set.  If this
    261 		 * will overflow the buffer, assume the reason is because
    262 		 * nprocs (or the proc list) is corrupt and declare an error.
    263 		 */
    264 		if (cnt >= maxcnt) {
    265 			_kvm_err(kd, kd->program, "nprocs corrupt");
    266 			return (-1);
    267 		}
    268 		/*
    269 		 * gather eproc
    270 		 */
    271 		eproc.e_paddr = p;
    272 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    273 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    274 				 proc.p_pgrp);
    275 			return (-1);
    276 		}
    277 		eproc.e_sess = pgrp.pg_session;
    278 		eproc.e_pgid = pgrp.pg_id;
    279 		eproc.e_jobc = pgrp.pg_jobc;
    280 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    281 			_kvm_err(kd, kd->program, "can't read session at %x",
    282 				pgrp.pg_session);
    283 			return (-1);
    284 		}
    285 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    286 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    287 				_kvm_err(kd, kd->program,
    288 					 "can't read tty at %x", sess.s_ttyp);
    289 				return (-1);
    290 			}
    291 			eproc.e_tdev = tty.t_dev;
    292 			eproc.e_tsess = tty.t_session;
    293 			if (tty.t_pgrp != NULL) {
    294 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    295 					_kvm_err(kd, kd->program,
    296 						 "can't read tpgrp at &x",
    297 						tty.t_pgrp);
    298 					return (-1);
    299 				}
    300 				eproc.e_tpgid = pgrp.pg_id;
    301 			} else
    302 				eproc.e_tpgid = -1;
    303 		} else
    304 			eproc.e_tdev = NODEV;
    305 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    306 		if (sess.s_leader == p)
    307 			eproc.e_flag |= EPROC_SLEADER;
    308 		if (proc.p_wmesg)
    309 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    310 			    eproc.e_wmesg, WMESGLEN);
    311 
    312 #ifdef sparc
    313 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
    314 		    (char *)&eproc.e_vm.vm_rssize,
    315 		    sizeof(eproc.e_vm.vm_rssize));
    316 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
    317 		    (char *)&eproc.e_vm.vm_tsize,
    318 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
    319 #else
    320 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    321 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    322 #endif
    323 		eproc.e_xsize = eproc.e_xrssize = 0;
    324 		eproc.e_xccount = eproc.e_xswrss = 0;
    325 
    326 		switch (what) {
    327 
    328 		case KERN_PROC_PGRP:
    329 			if (eproc.e_pgid != (pid_t)arg)
    330 				continue;
    331 			break;
    332 
    333 		case KERN_PROC_TTY:
    334 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    335 			     eproc.e_tdev != (dev_t)arg)
    336 				continue;
    337 			break;
    338 		}
    339 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
    340 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
    341 		++bp;
    342 		++cnt;
    343 	}
    344 	return (cnt);
    345 }
    346 
    347 /*
    348  * Build proc info array by reading in proc list from a crash dump.
    349  * Return number of procs read.  maxcnt is the max we will read.
    350  */
    351 static int
    352 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    353 	kvm_t *kd;
    354 	int what, arg;
    355 	u_long a_allproc;
    356 	u_long a_zombproc;
    357 	int maxcnt;
    358 {
    359 	register struct kinfo_proc *bp = kd->procbase;
    360 	register int acnt, zcnt;
    361 	struct proc *p;
    362 
    363 	if (KREAD(kd, a_allproc, &p)) {
    364 		_kvm_err(kd, kd->program, "cannot read allproc");
    365 		return (-1);
    366 	}
    367 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    368 	if (acnt < 0)
    369 		return (acnt);
    370 
    371 	if (KREAD(kd, a_zombproc, &p)) {
    372 		_kvm_err(kd, kd->program, "cannot read zombproc");
    373 		return (-1);
    374 	}
    375 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    376 	if (zcnt < 0)
    377 		zcnt = 0;
    378 
    379 	return (acnt + zcnt);
    380 }
    381 
    382 struct kinfo_proc *
    383 kvm_getprocs(kd, op, arg, cnt)
    384 	kvm_t *kd;
    385 	int op, arg;
    386 	int *cnt;
    387 {
    388 	int mib[4], size, st, nprocs;
    389 
    390 	if (kd->procbase != 0) {
    391 		free((void *)kd->procbase);
    392 		/*
    393 		 * Clear this pointer in case this call fails.  Otherwise,
    394 		 * kvm_close() will free it again.
    395 		 */
    396 		kd->procbase = 0;
    397 	}
    398 	if (ISALIVE(kd)) {
    399 		size = 0;
    400 		mib[0] = CTL_KERN;
    401 		mib[1] = KERN_PROC;
    402 		mib[2] = op;
    403 		mib[3] = arg;
    404 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    405 		if (st == -1) {
    406 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    407 			return (0);
    408 		}
    409 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    410 		if (kd->procbase == 0)
    411 			return (0);
    412 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    413 		if (st == -1) {
    414 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    415 			return (0);
    416 		}
    417 		if (size % sizeof(struct kinfo_proc) != 0) {
    418 			_kvm_err(kd, kd->program,
    419 				"proc size mismatch (%d total, %d chunks)",
    420 				size, sizeof(struct kinfo_proc));
    421 			return (0);
    422 		}
    423 		nprocs = size / sizeof(struct kinfo_proc);
    424 	} else {
    425 		struct nlist nl[4], *p;
    426 
    427 		nl[0].n_name = "_nprocs";
    428 		nl[1].n_name = "_allproc";
    429 		nl[2].n_name = "_zombproc";
    430 		nl[3].n_name = 0;
    431 
    432 		if (kvm_nlist(kd, nl) != 0) {
    433 			for (p = nl; p->n_type != 0; ++p)
    434 				;
    435 			_kvm_err(kd, kd->program,
    436 				 "%s: no such symbol", p->n_name);
    437 			return (0);
    438 		}
    439 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    440 			_kvm_err(kd, kd->program, "can't read nprocs");
    441 			return (0);
    442 		}
    443 		size = nprocs * sizeof(struct kinfo_proc);
    444 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    445 		if (kd->procbase == 0)
    446 			return (0);
    447 
    448 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    449 				      nl[2].n_value, nprocs);
    450 #ifdef notdef
    451 		size = nprocs * sizeof(struct kinfo_proc);
    452 		(void)realloc(kd->procbase, size);
    453 #endif
    454 	}
    455 	*cnt = nprocs;
    456 	return (kd->procbase);
    457 }
    458 
    459 void
    460 _kvm_freeprocs(kd)
    461 	kvm_t *kd;
    462 {
    463 	if (kd->procbase) {
    464 		free(kd->procbase);
    465 		kd->procbase = 0;
    466 	}
    467 }
    468 
    469 void *
    470 _kvm_realloc(kd, p, n)
    471 	kvm_t *kd;
    472 	void *p;
    473 	size_t n;
    474 {
    475 	void *np = (void *)realloc(p, n);
    476 
    477 	if (np == 0)
    478 		_kvm_err(kd, kd->program, "out of memory");
    479 	return (np);
    480 }
    481 
    482 #ifndef MAX
    483 #define MAX(a, b) ((a) > (b) ? (a) : (b))
    484 #endif
    485 
    486 /*
    487  * Read in an argument vector from the user address space of process p.
    488  * addr if the user-space base address of narg null-terminated contiguous
    489  * strings.  This is used to read in both the command arguments and
    490  * environment strings.  Read at most maxcnt characters of strings.
    491  */
    492 static char **
    493 kvm_argv(kd, p, addr, narg, maxcnt)
    494 	kvm_t *kd;
    495 	struct proc *p;
    496 	register u_long addr;
    497 	register int narg;
    498 	register int maxcnt;
    499 {
    500 	register char *cp;
    501 	register int len, cc;
    502 	register char **argv;
    503 
    504 	/*
    505 	 * Check that there aren't an unreasonable number of agruments,
    506 	 * and that the address is in user space.
    507 	 */
    508 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
    509 		return (0);
    510 
    511 	if (kd->argv == 0) {
    512 		/*
    513 		 * Try to avoid reallocs.
    514 		 */
    515 		kd->argc = MAX(narg + 1, 32);
    516 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    517 						sizeof(*kd->argv));
    518 		if (kd->argv == 0)
    519 			return (0);
    520 	} else if (narg + 1 > kd->argc) {
    521 		kd->argc = MAX(2 * kd->argc, narg + 1);
    522 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    523 						sizeof(*kd->argv));
    524 		if (kd->argv == 0)
    525 			return (0);
    526 	}
    527 	if (kd->argspc == 0) {
    528 		kd->argspc = (char *)_kvm_malloc(kd, NBPG);
    529 		if (kd->argspc == 0)
    530 			return (0);
    531 		kd->arglen = NBPG;
    532 	}
    533 	cp = kd->argspc;
    534 	argv = kd->argv;
    535 	*argv = cp;
    536 	len = 0;
    537 	/*
    538 	 * Loop over pages, filling in the argument vector.
    539 	 */
    540 	while (addr < VM_MAXUSER_ADDRESS) {
    541 		cc = NBPG - (addr & PGOFSET);
    542 		if (maxcnt > 0 && cc > maxcnt - len)
    543 			cc = maxcnt - len;;
    544 		if (len + cc > kd->arglen) {
    545 			register int off;
    546 			register char **pp;
    547 			register char *op = kd->argspc;
    548 
    549 			kd->arglen *= 2;
    550 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    551 							  kd->arglen);
    552 			if (kd->argspc == 0)
    553 				return (0);
    554 			cp = &kd->argspc[len];
    555 			/*
    556 			 * Adjust argv pointers in case realloc moved
    557 			 * the string space.
    558 			 */
    559 			off = kd->argspc - op;
    560 			for (pp = kd->argv; pp < argv; ++pp)
    561 				*pp += off;
    562 		}
    563 		if (kvm_uread(kd, p, addr, cp, cc) != cc)
    564 			/* XXX */
    565 			return (0);
    566 		len += cc;
    567 		addr += cc;
    568 
    569 		if (maxcnt == 0 && len > 16 * NBPG)
    570 			/* sanity */
    571 			return (0);
    572 
    573 		while (--cc >= 0) {
    574 			if (*cp++ == 0) {
    575 				if (--narg <= 0) {
    576 					*++argv = 0;
    577 					return (kd->argv);
    578 				} else
    579 					*++argv = cp;
    580 			}
    581 		}
    582 		if (maxcnt > 0 && len >= maxcnt) {
    583 			/*
    584 			 * We're stopping prematurely.  Terminate the
    585 			 * argv and current string.
    586 			 */
    587 			*++argv = 0;
    588 			*cp = 0;
    589 			return (kd->argv);
    590 		}
    591 	}
    592 }
    593 
    594 static void
    595 ps_str_a(p, addr, n)
    596 	struct ps_strings *p;
    597 	u_long *addr;
    598 	int *n;
    599 {
    600 	*addr = (u_long)p->ps_argvstr;
    601 	*n = p->ps_nargvstr;
    602 }
    603 
    604 static void
    605 ps_str_e(p, addr, n)
    606 	struct ps_strings *p;
    607 	u_long *addr;
    608 	int *n;
    609 {
    610 	*addr = (u_long)p->ps_envstr;
    611 	*n = p->ps_nenvstr;
    612 }
    613 
    614 /*
    615  * Determine if the proc indicated by p is still active.
    616  * This test is not 100% foolproof in theory, but chances of
    617  * being wrong are very low.
    618  */
    619 static int
    620 proc_verify(kd, kernp, p)
    621 	kvm_t *kd;
    622 	u_long kernp;
    623 	const struct proc *p;
    624 {
    625 	struct proc kernproc;
    626 
    627 	/*
    628 	 * Just read in the whole proc.  It's not that big relative
    629 	 * to the cost of the read system call.
    630 	 */
    631 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    632 	    sizeof(kernproc))
    633 		return (0);
    634 	return (p->p_pid == kernproc.p_pid &&
    635 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    636 }
    637 
    638 static char **
    639 kvm_doargv(kd, kp, nchr, info)
    640 	kvm_t *kd;
    641 	const struct kinfo_proc *kp;
    642 	int nchr;
    643 	int (*info)(struct ps_strings*, u_long *, int *);
    644 {
    645 	register const struct proc *p = &kp->kp_proc;
    646 	register char **ap;
    647 	u_long addr;
    648 	int cnt;
    649 	struct ps_strings arginfo;
    650 
    651 	/*
    652 	 * Pointers are stored at the top of the user stack.
    653 	 */
    654 	if (p->p_stat == SZOMB ||
    655 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
    656 		      sizeof(arginfo)) != sizeof(arginfo))
    657 		return (0);
    658 
    659 	(*info)(&arginfo, &addr, &cnt);
    660 	if (cnt == 0)
    661 		return (0);
    662 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    663 	/*
    664 	 * For live kernels, make sure this process didn't go away.
    665 	 */
    666 	if (ap != 0 && ISALIVE(kd) &&
    667 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    668 		ap = 0;
    669 	return (ap);
    670 }
    671 
    672 /*
    673  * Get the command args.  This code is now machine independent.
    674  */
    675 char **
    676 kvm_getargv(kd, kp, nchr)
    677 	kvm_t *kd;
    678 	const struct kinfo_proc *kp;
    679 	int nchr;
    680 {
    681 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    682 }
    683 
    684 char **
    685 kvm_getenvv(kd, kp, nchr)
    686 	kvm_t *kd;
    687 	const struct kinfo_proc *kp;
    688 	int nchr;
    689 {
    690 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    691 }
    692 
    693 /*
    694  * Read from user space.  The user context is given by p.
    695  */
    696 ssize_t
    697 kvm_uread(kd, p, uva, buf, len)
    698 	kvm_t *kd;
    699 	register struct proc *p;
    700 	register u_long uva;
    701 	register char *buf;
    702 	register size_t len;
    703 {
    704 	register char *cp;
    705 
    706 	cp = buf;
    707 	while (len > 0) {
    708 		u_long pa;
    709 		register int cc;
    710 
    711 		cc = _kvm_uvatop(kd, p, uva, &pa);
    712 		if (cc > 0) {
    713 			if (cc > len)
    714 				cc = len;
    715 			errno = 0;
    716 			if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
    717 				_kvm_err(kd, 0, "invalid address (%x)", uva);
    718 				break;
    719 			}
    720 			cc = read(kd->pmfd, cp, cc);
    721 			if (cc < 0) {
    722 				_kvm_syserr(kd, 0, _PATH_MEM);
    723 				break;
    724 			} else if (cc < len) {
    725 				_kvm_err(kd, kd->program, "short read");
    726 				break;
    727 			}
    728 		} else if (ISALIVE(kd)) {
    729 			/* try swap */
    730 			register char *dp;
    731 			int cnt;
    732 
    733 			dp = kvm_readswap(kd, p, uva, &cnt);
    734 			if (dp == 0) {
    735 				_kvm_err(kd, 0, "invalid address (%x)", uva);
    736 				return (0);
    737 			}
    738 			cc = MIN(cnt, len);
    739 			bcopy(dp, cp, cc);
    740 		} else
    741 			break;
    742 		cp += cc;
    743 		uva += cc;
    744 		len -= cc;
    745 	}
    746 	return (ssize_t)(cp - buf);
    747 }
    748