kvm_proc.c revision 1.32 1 /* $NetBSD: kvm_proc.c,v 1.32 2000/01/15 19:16:32 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.32 2000/01/15 19:16:32 chs Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84
85 /*
86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
87 * users of this code, so we've factored it out into a separate module.
88 * Thus, we keep this grunge out of the other kvm applications (i.e.,
89 * most other applications are interested only in open/close/read/nlist).
90 */
91
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/proc.h>
95 #include <sys/exec.h>
96 #include <sys/stat.h>
97 #include <sys/ioctl.h>
98 #include <sys/tty.h>
99 #include <stdlib.h>
100 #include <string.h>
101 #include <unistd.h>
102 #include <nlist.h>
103 #include <kvm.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107
108 #include <uvm/uvm_extern.h>
109 #include <uvm/uvm_amap.h>
110
111 #include <sys/sysctl.h>
112
113 #include <limits.h>
114 #include <db.h>
115 #include <paths.h>
116
117 #include "kvm_private.h"
118
119 #define KREAD(kd, addr, obj) \
120 (kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
121
122 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
123 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
124 size_t));
125
126 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
127 int));
128 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
129 int));
130 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
131 void (*)(struct ps_strings *, u_long *, int *)));
132 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
133 struct kinfo_proc *, int));
134 static int proc_verify __P((kvm_t *, u_long, const struct proc *));
135 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
136 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
137
138 char *
139 _kvm_uread(kd, p, va, cnt)
140 kvm_t *kd;
141 const struct proc *p;
142 u_long va;
143 u_long *cnt;
144 {
145 int true = 1;
146 u_long addr, head;
147 u_long offset;
148 struct vm_map_entry vme;
149 struct vm_amap amap;
150 struct vm_anon *anonp, anon;
151 struct vm_page pg;
152 u_long slot;
153
154 if (kd->swapspc == 0) {
155 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
156 if (kd->swapspc == 0)
157 return (0);
158 }
159
160 /*
161 * Look through the address map for the memory object
162 * that corresponds to the given virtual address.
163 * The header just has the entire valid range.
164 */
165 head = (u_long)&p->p_vmspace->vm_map.header;
166 addr = head;
167 while (true) {
168 if (KREAD(kd, addr, &vme))
169 return (0);
170
171 if (va >= vme.start && va < vme.end &&
172 vme.aref.ar_amap != NULL)
173 break;
174
175 addr = (u_long)vme.next;
176 if (addr == head)
177 return (0);
178
179 }
180
181 /*
182 * we found the map entry, now to find the object...
183 */
184 if (vme.aref.ar_amap == NULL)
185 return NULL;
186
187 addr = (u_long)vme.aref.ar_amap;
188 if (KREAD(kd, addr, &amap))
189 return NULL;
190
191 offset = va - vme.start;
192 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
193 /* sanity-check slot number */
194 if (slot > amap.am_nslot)
195 return NULL;
196
197 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
198 if (KREAD(kd, addr, &anonp))
199 return NULL;
200
201 addr = (u_long)anonp;
202 if (KREAD(kd, addr, &anon))
203 return NULL;
204
205 addr = (u_long)anon.u.an_page;
206 if (addr) {
207 if (KREAD(kd, addr, &pg))
208 return NULL;
209
210 if (pread(kd->pmfd, (void *)kd->swapspc, (size_t)kd->nbpg,
211 (off_t)pg.phys_addr) != kd->nbpg)
212 return NULL;
213 }
214 else {
215 if (pread(kd->swfd, (void *)kd->swapspc, (size_t)kd->nbpg,
216 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
217 return NULL;
218 }
219
220 /* Found the page. */
221 offset %= kd->nbpg;
222 *cnt = kd->nbpg - offset;
223 return (&kd->swapspc[(size_t)offset]);
224 }
225
226 /*
227 * Read proc's from memory file into buffer bp, which has space to hold
228 * at most maxcnt procs.
229 */
230 static int
231 kvm_proclist(kd, what, arg, p, bp, maxcnt)
232 kvm_t *kd;
233 int what, arg;
234 struct proc *p;
235 struct kinfo_proc *bp;
236 int maxcnt;
237 {
238 int cnt = 0;
239 struct eproc eproc;
240 struct pgrp pgrp;
241 struct session sess;
242 struct tty tty;
243 struct proc proc;
244
245 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
246 if (KREAD(kd, (u_long)p, &proc)) {
247 _kvm_err(kd, kd->program, "can't read proc at %x", p);
248 return (-1);
249 }
250 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
251 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
252 &eproc.e_ucred)) {
253 _kvm_err(kd, kd->program,
254 "can't read proc credentials at %x", p);
255 return -1;
256 }
257
258 switch(what) {
259
260 case KERN_PROC_PID:
261 if (proc.p_pid != (pid_t)arg)
262 continue;
263 break;
264
265 case KERN_PROC_UID:
266 if (eproc.e_ucred.cr_uid != (uid_t)arg)
267 continue;
268 break;
269
270 case KERN_PROC_RUID:
271 if (eproc.e_pcred.p_ruid != (uid_t)arg)
272 continue;
273 break;
274 }
275 /*
276 * We're going to add another proc to the set. If this
277 * will overflow the buffer, assume the reason is because
278 * nprocs (or the proc list) is corrupt and declare an error.
279 */
280 if (cnt >= maxcnt) {
281 _kvm_err(kd, kd->program, "nprocs corrupt");
282 return (-1);
283 }
284 /*
285 * gather eproc
286 */
287 eproc.e_paddr = p;
288 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
289 _kvm_err(kd, kd->program, "can't read pgrp at %x",
290 proc.p_pgrp);
291 return (-1);
292 }
293 eproc.e_sess = pgrp.pg_session;
294 eproc.e_pgid = pgrp.pg_id;
295 eproc.e_jobc = pgrp.pg_jobc;
296 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
297 _kvm_err(kd, kd->program, "can't read session at %x",
298 pgrp.pg_session);
299 return (-1);
300 }
301 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
302 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
303 _kvm_err(kd, kd->program,
304 "can't read tty at %x", sess.s_ttyp);
305 return (-1);
306 }
307 eproc.e_tdev = tty.t_dev;
308 eproc.e_tsess = tty.t_session;
309 if (tty.t_pgrp != NULL) {
310 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
311 _kvm_err(kd, kd->program,
312 "can't read tpgrp at &x",
313 tty.t_pgrp);
314 return (-1);
315 }
316 eproc.e_tpgid = pgrp.pg_id;
317 } else
318 eproc.e_tpgid = -1;
319 } else
320 eproc.e_tdev = NODEV;
321 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
322 if (sess.s_leader == p)
323 eproc.e_flag |= EPROC_SLEADER;
324 if (proc.p_wmesg)
325 (void)kvm_read(kd, (u_long)proc.p_wmesg,
326 eproc.e_wmesg, WMESGLEN);
327
328 (void)kvm_read(kd, (u_long)proc.p_vmspace,
329 (void *)&eproc.e_vm, sizeof(eproc.e_vm));
330
331 eproc.e_xsize = eproc.e_xrssize = 0;
332 eproc.e_xccount = eproc.e_xswrss = 0;
333
334 switch (what) {
335
336 case KERN_PROC_PGRP:
337 if (eproc.e_pgid != (pid_t)arg)
338 continue;
339 break;
340
341 case KERN_PROC_TTY:
342 if ((proc.p_flag & P_CONTROLT) == 0 ||
343 eproc.e_tdev != (dev_t)arg)
344 continue;
345 break;
346 }
347 memcpy(&bp->kp_proc, &proc, sizeof(proc));
348 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
349 ++bp;
350 ++cnt;
351 }
352 return (cnt);
353 }
354
355 /*
356 * Build proc info array by reading in proc list from a crash dump.
357 * Return number of procs read. maxcnt is the max we will read.
358 */
359 static int
360 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
361 kvm_t *kd;
362 int what, arg;
363 u_long a_allproc;
364 u_long a_deadproc;
365 u_long a_zombproc;
366 int maxcnt;
367 {
368 struct kinfo_proc *bp = kd->procbase;
369 int acnt, dcnt, zcnt;
370 struct proc *p;
371
372 if (KREAD(kd, a_allproc, &p)) {
373 _kvm_err(kd, kd->program, "cannot read allproc");
374 return (-1);
375 }
376 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
377 if (acnt < 0)
378 return (acnt);
379
380 if (KREAD(kd, a_deadproc, &p)) {
381 _kvm_err(kd, kd->program, "cannot read deadproc");
382 return (-1);
383 }
384
385 dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
386 if (dcnt < 0)
387 dcnt = 0;
388
389 if (KREAD(kd, a_zombproc, &p)) {
390 _kvm_err(kd, kd->program, "cannot read zombproc");
391 return (-1);
392 }
393 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
394 maxcnt - (acnt + dcnt));
395 if (zcnt < 0)
396 zcnt = 0;
397
398 return (acnt + zcnt);
399 }
400
401 struct kinfo_proc *
402 kvm_getprocs(kd, op, arg, cnt)
403 kvm_t *kd;
404 int op, arg;
405 int *cnt;
406 {
407 size_t size;
408 int mib[4], st, nprocs;
409
410 if (kd->procbase != 0) {
411 free((void *)kd->procbase);
412 /*
413 * Clear this pointer in case this call fails. Otherwise,
414 * kvm_close() will free it again.
415 */
416 kd->procbase = 0;
417 }
418 if (ISALIVE(kd)) {
419 size = 0;
420 mib[0] = CTL_KERN;
421 mib[1] = KERN_PROC;
422 mib[2] = op;
423 mib[3] = arg;
424 st = sysctl(mib, 4, NULL, &size, NULL, 0);
425 if (st == -1) {
426 _kvm_syserr(kd, kd->program, "kvm_getprocs");
427 return (0);
428 }
429 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
430 if (kd->procbase == 0)
431 return (0);
432 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
433 if (st == -1) {
434 _kvm_syserr(kd, kd->program, "kvm_getprocs");
435 return (0);
436 }
437 if (size % sizeof(struct kinfo_proc) != 0) {
438 _kvm_err(kd, kd->program,
439 "proc size mismatch (%d total, %d chunks)",
440 size, sizeof(struct kinfo_proc));
441 return (0);
442 }
443 nprocs = size / sizeof(struct kinfo_proc);
444 } else {
445 struct nlist nl[5], *p;
446
447 nl[0].n_name = "_nprocs";
448 nl[1].n_name = "_allproc";
449 nl[2].n_name = "_deadproc";
450 nl[3].n_name = "_zombproc";
451 nl[4].n_name = 0;
452
453 if (kvm_nlist(kd, nl) != 0) {
454 for (p = nl; p->n_type != 0; ++p)
455 ;
456 _kvm_err(kd, kd->program,
457 "%s: no such symbol", p->n_name);
458 return (0);
459 }
460 if (KREAD(kd, nl[0].n_value, &nprocs)) {
461 _kvm_err(kd, kd->program, "can't read nprocs");
462 return (0);
463 }
464 size = nprocs * sizeof(struct kinfo_proc);
465 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
466 if (kd->procbase == 0)
467 return (0);
468
469 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
470 nl[2].n_value, nl[3].n_value, nprocs);
471 if (nprocs < 0)
472 return (0);
473 #ifdef notdef
474 size = nprocs * sizeof(struct kinfo_proc);
475 (void)realloc(kd->procbase, size);
476 #endif
477 }
478 *cnt = nprocs;
479 return (kd->procbase);
480 }
481
482 void
483 _kvm_freeprocs(kd)
484 kvm_t *kd;
485 {
486 if (kd->procbase) {
487 free(kd->procbase);
488 kd->procbase = 0;
489 }
490 }
491
492 void *
493 _kvm_realloc(kd, p, n)
494 kvm_t *kd;
495 void *p;
496 size_t n;
497 {
498 void *np = (void *)realloc(p, n);
499
500 if (np == 0)
501 _kvm_err(kd, kd->program, "out of memory");
502 return (np);
503 }
504
505 #ifndef MAX
506 #define MAX(a, b) ((a) > (b) ? (a) : (b))
507 #endif
508
509 /*
510 * Read in an argument vector from the user address space of process p.
511 * addr if the user-space base address of narg null-terminated contiguous
512 * strings. This is used to read in both the command arguments and
513 * environment strings. Read at most maxcnt characters of strings.
514 */
515 static char **
516 kvm_argv(kd, p, addr, narg, maxcnt)
517 kvm_t *kd;
518 const struct proc *p;
519 u_long addr;
520 int narg;
521 int maxcnt;
522 {
523 char *np, *cp, *ep, *ap;
524 u_long oaddr = (u_long)~0L;
525 u_long len;
526 size_t cc;
527 char **argv;
528
529 /*
530 * Check that there aren't an unreasonable number of agruments,
531 * and that the address is in user space.
532 */
533 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
534 return (0);
535
536 if (kd->argv == 0) {
537 /*
538 * Try to avoid reallocs.
539 */
540 kd->argc = MAX(narg + 1, 32);
541 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
542 sizeof(*kd->argv));
543 if (kd->argv == 0)
544 return (0);
545 } else if (narg + 1 > kd->argc) {
546 kd->argc = MAX(2 * kd->argc, narg + 1);
547 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
548 sizeof(*kd->argv));
549 if (kd->argv == 0)
550 return (0);
551 }
552 if (kd->argspc == 0) {
553 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
554 if (kd->argspc == 0)
555 return (0);
556 kd->arglen = kd->nbpg;
557 }
558 if (kd->argbuf == 0) {
559 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
560 if (kd->argbuf == 0)
561 return (0);
562 }
563 cc = sizeof(char *) * narg;
564 if (kvm_uread(kd, p, addr, (void *)kd->argv, cc) != cc)
565 return (0);
566 ap = np = kd->argspc;
567 argv = kd->argv;
568 len = 0;
569 /*
570 * Loop over pages, filling in the argument vector.
571 */
572 while (argv < kd->argv + narg && *argv != 0) {
573 addr = (u_long)*argv & ~(kd->nbpg - 1);
574 if (addr != oaddr) {
575 if (kvm_uread(kd, p, addr, kd->argbuf,
576 (size_t)kd->nbpg) != kd->nbpg)
577 return (0);
578 oaddr = addr;
579 }
580 addr = (u_long)*argv & (kd->nbpg - 1);
581 cp = kd->argbuf + (size_t)addr;
582 cc = kd->nbpg - (size_t)addr;
583 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
584 cc = (size_t)(maxcnt - len);
585 ep = memchr(cp, '\0', cc);
586 if (ep != 0)
587 cc = ep - cp + 1;
588 if (len + cc > kd->arglen) {
589 int off;
590 char **pp;
591 char *op = kd->argspc;
592
593 kd->arglen *= 2;
594 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
595 (size_t)kd->arglen);
596 if (kd->argspc == 0)
597 return (0);
598 /*
599 * Adjust argv pointers in case realloc moved
600 * the string space.
601 */
602 off = kd->argspc - op;
603 for (pp = kd->argv; pp < argv; pp++)
604 *pp += off;
605 ap += off;
606 np += off;
607 }
608 memcpy(np, cp, cc);
609 np += cc;
610 len += cc;
611 if (ep != 0) {
612 *argv++ = ap;
613 ap = np;
614 } else
615 *argv += cc;
616 if (maxcnt > 0 && len >= maxcnt) {
617 /*
618 * We're stopping prematurely. Terminate the
619 * current string.
620 */
621 if (ep == 0) {
622 *np = '\0';
623 *argv++ = ap;
624 }
625 break;
626 }
627 }
628 /* Make sure argv is terminated. */
629 *argv = 0;
630 return (kd->argv);
631 }
632
633 static void
634 ps_str_a(p, addr, n)
635 struct ps_strings *p;
636 u_long *addr;
637 int *n;
638 {
639 *addr = (u_long)p->ps_argvstr;
640 *n = p->ps_nargvstr;
641 }
642
643 static void
644 ps_str_e(p, addr, n)
645 struct ps_strings *p;
646 u_long *addr;
647 int *n;
648 {
649 *addr = (u_long)p->ps_envstr;
650 *n = p->ps_nenvstr;
651 }
652
653 /*
654 * Determine if the proc indicated by p is still active.
655 * This test is not 100% foolproof in theory, but chances of
656 * being wrong are very low.
657 */
658 static int
659 proc_verify(kd, kernp, p)
660 kvm_t *kd;
661 u_long kernp;
662 const struct proc *p;
663 {
664 struct proc kernproc;
665
666 /*
667 * Just read in the whole proc. It's not that big relative
668 * to the cost of the read system call.
669 */
670 if (kvm_read(kd, kernp, (void *)&kernproc, sizeof(kernproc)) !=
671 sizeof(kernproc))
672 return (0);
673 return (p->p_pid == kernproc.p_pid &&
674 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
675 }
676
677 static char **
678 kvm_doargv(kd, kp, nchr, info)
679 kvm_t *kd;
680 const struct kinfo_proc *kp;
681 int nchr;
682 void (*info)(struct ps_strings *, u_long *, int *);
683 {
684 const struct proc *p = &kp->kp_proc;
685 char **ap;
686 u_long addr;
687 int cnt;
688 struct ps_strings arginfo;
689
690 /*
691 * Pointers are stored at the top of the user stack.
692 */
693 if (p->p_stat == SZOMB)
694 return (0);
695 cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
696 (void *)&arginfo, sizeof(arginfo));
697 if (cnt != sizeof(arginfo))
698 return (0);
699
700 (*info)(&arginfo, &addr, &cnt);
701 if (cnt == 0)
702 return (0);
703 ap = kvm_argv(kd, p, addr, cnt, nchr);
704 /*
705 * For live kernels, make sure this process didn't go away.
706 */
707 if (ap != 0 && ISALIVE(kd) &&
708 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
709 ap = 0;
710 return (ap);
711 }
712
713 /*
714 * Get the command args. This code is now machine independent.
715 */
716 char **
717 kvm_getargv(kd, kp, nchr)
718 kvm_t *kd;
719 const struct kinfo_proc *kp;
720 int nchr;
721 {
722 return (kvm_doargv(kd, kp, nchr, ps_str_a));
723 }
724
725 char **
726 kvm_getenvv(kd, kp, nchr)
727 kvm_t *kd;
728 const struct kinfo_proc *kp;
729 int nchr;
730 {
731 return (kvm_doargv(kd, kp, nchr, ps_str_e));
732 }
733
734 /*
735 * Read from user space. The user context is given by p.
736 */
737 ssize_t
738 kvm_uread(kd, p, uva, buf, len)
739 kvm_t *kd;
740 const struct proc *p;
741 u_long uva;
742 char *buf;
743 size_t len;
744 {
745 char *cp;
746
747 cp = buf;
748 while (len > 0) {
749 size_t cc;
750 char *dp;
751 u_long cnt;
752
753 dp = _kvm_uread(kd, p, uva, &cnt);
754 if (dp == 0) {
755 _kvm_err(kd, 0, "invalid address (%x)", uva);
756 return (0);
757 }
758 cc = (size_t)MIN(cnt, len);
759 memcpy(cp, dp, cc);
760 cp += cc;
761 uva += cc;
762 len -= cc;
763 }
764 return (ssize_t)(cp - buf);
765 }
766