kvm_proc.c revision 1.33 1 /* $NetBSD: kvm_proc.c,v 1.33 2000/04/15 15:52:52 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.33 2000/04/15 15:52:52 simonb Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84
85 /*
86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
87 * users of this code, so we've factored it out into a separate module.
88 * Thus, we keep this grunge out of the other kvm applications (i.e.,
89 * most other applications are interested only in open/close/read/nlist).
90 */
91
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/proc.h>
95 #include <sys/exec.h>
96 #include <sys/stat.h>
97 #include <sys/ioctl.h>
98 #include <sys/tty.h>
99 #include <stdlib.h>
100 #include <string.h>
101 #include <unistd.h>
102 #include <nlist.h>
103 #include <kvm.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107
108 #include <uvm/uvm_extern.h>
109 #include <uvm/uvm_amap.h>
110
111 #include <sys/sysctl.h>
112
113 #include <limits.h>
114 #include <db.h>
115 #include <paths.h>
116
117 #include "kvm_private.h"
118
119 #define KREAD(kd, addr, obj) \
120 (kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
121
122 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, u_long *));
123 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
124 size_t));
125
126 static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int,
127 int));
128 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
129 int));
130 static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int,
131 void (*)(struct ps_strings *, u_long *, int *)));
132 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
133 struct kinfo_proc *, int));
134 static int proc_verify __P((kvm_t *, u_long, const struct proc *));
135 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
136 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
137
138 char *
139 _kvm_uread(kd, p, va, cnt)
140 kvm_t *kd;
141 const struct proc *p;
142 u_long va;
143 u_long *cnt;
144 {
145 int true = 1;
146 u_long addr, head;
147 u_long offset;
148 struct vm_map_entry vme;
149 struct vm_amap amap;
150 struct vm_anon *anonp, anon;
151 struct vm_page pg;
152 u_long slot;
153
154 if (kd->swapspc == 0) {
155 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
156 if (kd->swapspc == 0)
157 return (0);
158 }
159
160 /*
161 * Look through the address map for the memory object
162 * that corresponds to the given virtual address.
163 * The header just has the entire valid range.
164 */
165 head = (u_long)&p->p_vmspace->vm_map.header;
166 addr = head;
167 while (true) {
168 if (KREAD(kd, addr, &vme))
169 return (0);
170
171 if (va >= vme.start && va < vme.end &&
172 vme.aref.ar_amap != NULL)
173 break;
174
175 addr = (u_long)vme.next;
176 if (addr == head)
177 return (0);
178
179 }
180
181 /*
182 * we found the map entry, now to find the object...
183 */
184 if (vme.aref.ar_amap == NULL)
185 return NULL;
186
187 addr = (u_long)vme.aref.ar_amap;
188 if (KREAD(kd, addr, &amap))
189 return NULL;
190
191 offset = va - vme.start;
192 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
193 /* sanity-check slot number */
194 if (slot > amap.am_nslot)
195 return NULL;
196
197 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
198 if (KREAD(kd, addr, &anonp))
199 return NULL;
200
201 addr = (u_long)anonp;
202 if (KREAD(kd, addr, &anon))
203 return NULL;
204
205 addr = (u_long)anon.u.an_page;
206 if (addr) {
207 if (KREAD(kd, addr, &pg))
208 return NULL;
209
210 if (pread(kd->pmfd, (void *)kd->swapspc, (size_t)kd->nbpg,
211 (off_t)pg.phys_addr) != kd->nbpg)
212 return NULL;
213 }
214 else {
215 if (pread(kd->swfd, (void *)kd->swapspc, (size_t)kd->nbpg,
216 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
217 return NULL;
218 }
219
220 /* Found the page. */
221 offset %= kd->nbpg;
222 *cnt = kd->nbpg - offset;
223 return (&kd->swapspc[(size_t)offset]);
224 }
225
226 /*
227 * Read proc's from memory file into buffer bp, which has space to hold
228 * at most maxcnt procs.
229 */
230 static int
231 kvm_proclist(kd, what, arg, p, bp, maxcnt)
232 kvm_t *kd;
233 int what, arg;
234 struct proc *p;
235 struct kinfo_proc *bp;
236 int maxcnt;
237 {
238 int cnt = 0;
239 struct eproc eproc;
240 struct pgrp pgrp;
241 struct session sess;
242 struct tty tty;
243 struct proc proc;
244
245 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
246 if (KREAD(kd, (u_long)p, &proc)) {
247 _kvm_err(kd, kd->program, "can't read proc at %x", p);
248 return (-1);
249 }
250 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
251 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
252 &eproc.e_ucred)) {
253 _kvm_err(kd, kd->program,
254 "can't read proc credentials at %x", p);
255 return -1;
256 }
257
258 switch(what) {
259
260 case KERN_PROC_PID:
261 if (proc.p_pid != (pid_t)arg)
262 continue;
263 break;
264
265 case KERN_PROC_UID:
266 if (eproc.e_ucred.cr_uid != (uid_t)arg)
267 continue;
268 break;
269
270 case KERN_PROC_RUID:
271 if (eproc.e_pcred.p_ruid != (uid_t)arg)
272 continue;
273 break;
274 }
275 /*
276 * We're going to add another proc to the set. If this
277 * will overflow the buffer, assume the reason is because
278 * nprocs (or the proc list) is corrupt and declare an error.
279 */
280 if (cnt >= maxcnt) {
281 _kvm_err(kd, kd->program, "nprocs corrupt");
282 return (-1);
283 }
284 /*
285 * gather eproc
286 */
287 eproc.e_paddr = p;
288 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
289 _kvm_err(kd, kd->program, "can't read pgrp at %x",
290 proc.p_pgrp);
291 return (-1);
292 }
293 eproc.e_sess = pgrp.pg_session;
294 eproc.e_pgid = pgrp.pg_id;
295 eproc.e_jobc = pgrp.pg_jobc;
296 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
297 _kvm_err(kd, kd->program, "can't read session at %x",
298 pgrp.pg_session);
299 return (-1);
300 }
301 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
302 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
303 _kvm_err(kd, kd->program,
304 "can't read tty at %x", sess.s_ttyp);
305 return (-1);
306 }
307 eproc.e_tdev = tty.t_dev;
308 eproc.e_tsess = tty.t_session;
309 if (tty.t_pgrp != NULL) {
310 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
311 _kvm_err(kd, kd->program,
312 "can't read tpgrp at &x",
313 tty.t_pgrp);
314 return (-1);
315 }
316 eproc.e_tpgid = pgrp.pg_id;
317 } else
318 eproc.e_tpgid = -1;
319 } else
320 eproc.e_tdev = NODEV;
321 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
322 eproc.e_sid = sess.s_sid;
323 if (sess.s_leader == p)
324 eproc.e_flag |= EPROC_SLEADER;
325 if (proc.p_wmesg)
326 (void)kvm_read(kd, (u_long)proc.p_wmesg,
327 eproc.e_wmesg, WMESGLEN);
328
329 (void)kvm_read(kd, (u_long)proc.p_vmspace,
330 (void *)&eproc.e_vm, sizeof(eproc.e_vm));
331
332 eproc.e_xsize = eproc.e_xrssize = 0;
333 eproc.e_xccount = eproc.e_xswrss = 0;
334
335 switch (what) {
336
337 case KERN_PROC_PGRP:
338 if (eproc.e_pgid != (pid_t)arg)
339 continue;
340 break;
341
342 case KERN_PROC_TTY:
343 if ((proc.p_flag & P_CONTROLT) == 0 ||
344 eproc.e_tdev != (dev_t)arg)
345 continue;
346 break;
347 }
348 memcpy(&bp->kp_proc, &proc, sizeof(proc));
349 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
350 ++bp;
351 ++cnt;
352 }
353 return (cnt);
354 }
355
356 /*
357 * Build proc info array by reading in proc list from a crash dump.
358 * Return number of procs read. maxcnt is the max we will read.
359 */
360 static int
361 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
362 kvm_t *kd;
363 int what, arg;
364 u_long a_allproc;
365 u_long a_deadproc;
366 u_long a_zombproc;
367 int maxcnt;
368 {
369 struct kinfo_proc *bp = kd->procbase;
370 int acnt, dcnt, zcnt;
371 struct proc *p;
372
373 if (KREAD(kd, a_allproc, &p)) {
374 _kvm_err(kd, kd->program, "cannot read allproc");
375 return (-1);
376 }
377 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
378 if (acnt < 0)
379 return (acnt);
380
381 if (KREAD(kd, a_deadproc, &p)) {
382 _kvm_err(kd, kd->program, "cannot read deadproc");
383 return (-1);
384 }
385
386 dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
387 if (dcnt < 0)
388 dcnt = 0;
389
390 if (KREAD(kd, a_zombproc, &p)) {
391 _kvm_err(kd, kd->program, "cannot read zombproc");
392 return (-1);
393 }
394 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
395 maxcnt - (acnt + dcnt));
396 if (zcnt < 0)
397 zcnt = 0;
398
399 return (acnt + zcnt);
400 }
401
402 struct kinfo_proc *
403 kvm_getprocs(kd, op, arg, cnt)
404 kvm_t *kd;
405 int op, arg;
406 int *cnt;
407 {
408 size_t size;
409 int mib[4], st, nprocs;
410
411 if (kd->procbase != 0) {
412 free((void *)kd->procbase);
413 /*
414 * Clear this pointer in case this call fails. Otherwise,
415 * kvm_close() will free it again.
416 */
417 kd->procbase = 0;
418 }
419 if (ISALIVE(kd)) {
420 size = 0;
421 mib[0] = CTL_KERN;
422 mib[1] = KERN_PROC;
423 mib[2] = op;
424 mib[3] = arg;
425 st = sysctl(mib, 4, NULL, &size, NULL, 0);
426 if (st == -1) {
427 _kvm_syserr(kd, kd->program, "kvm_getprocs");
428 return (0);
429 }
430 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
431 if (kd->procbase == 0)
432 return (0);
433 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
434 if (st == -1) {
435 _kvm_syserr(kd, kd->program, "kvm_getprocs");
436 return (0);
437 }
438 if (size % sizeof(struct kinfo_proc) != 0) {
439 _kvm_err(kd, kd->program,
440 "proc size mismatch (%d total, %d chunks)",
441 size, sizeof(struct kinfo_proc));
442 return (0);
443 }
444 nprocs = size / sizeof(struct kinfo_proc);
445 } else {
446 struct nlist nl[5], *p;
447
448 nl[0].n_name = "_nprocs";
449 nl[1].n_name = "_allproc";
450 nl[2].n_name = "_deadproc";
451 nl[3].n_name = "_zombproc";
452 nl[4].n_name = 0;
453
454 if (kvm_nlist(kd, nl) != 0) {
455 for (p = nl; p->n_type != 0; ++p)
456 ;
457 _kvm_err(kd, kd->program,
458 "%s: no such symbol", p->n_name);
459 return (0);
460 }
461 if (KREAD(kd, nl[0].n_value, &nprocs)) {
462 _kvm_err(kd, kd->program, "can't read nprocs");
463 return (0);
464 }
465 size = nprocs * sizeof(struct kinfo_proc);
466 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
467 if (kd->procbase == 0)
468 return (0);
469
470 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
471 nl[2].n_value, nl[3].n_value, nprocs);
472 if (nprocs < 0)
473 return (0);
474 #ifdef notdef
475 size = nprocs * sizeof(struct kinfo_proc);
476 (void)realloc(kd->procbase, size);
477 #endif
478 }
479 *cnt = nprocs;
480 return (kd->procbase);
481 }
482
483 void
484 _kvm_freeprocs(kd)
485 kvm_t *kd;
486 {
487 if (kd->procbase) {
488 free(kd->procbase);
489 kd->procbase = 0;
490 }
491 }
492
493 void *
494 _kvm_realloc(kd, p, n)
495 kvm_t *kd;
496 void *p;
497 size_t n;
498 {
499 void *np = (void *)realloc(p, n);
500
501 if (np == 0)
502 _kvm_err(kd, kd->program, "out of memory");
503 return (np);
504 }
505
506 #ifndef MAX
507 #define MAX(a, b) ((a) > (b) ? (a) : (b))
508 #endif
509
510 /*
511 * Read in an argument vector from the user address space of process p.
512 * addr if the user-space base address of narg null-terminated contiguous
513 * strings. This is used to read in both the command arguments and
514 * environment strings. Read at most maxcnt characters of strings.
515 */
516 static char **
517 kvm_argv(kd, p, addr, narg, maxcnt)
518 kvm_t *kd;
519 const struct proc *p;
520 u_long addr;
521 int narg;
522 int maxcnt;
523 {
524 char *np, *cp, *ep, *ap;
525 u_long oaddr = (u_long)~0L;
526 u_long len;
527 size_t cc;
528 char **argv;
529
530 /*
531 * Check that there aren't an unreasonable number of agruments,
532 * and that the address is in user space.
533 */
534 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
535 return (0);
536
537 if (kd->argv == 0) {
538 /*
539 * Try to avoid reallocs.
540 */
541 kd->argc = MAX(narg + 1, 32);
542 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
543 sizeof(*kd->argv));
544 if (kd->argv == 0)
545 return (0);
546 } else if (narg + 1 > kd->argc) {
547 kd->argc = MAX(2 * kd->argc, narg + 1);
548 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
549 sizeof(*kd->argv));
550 if (kd->argv == 0)
551 return (0);
552 }
553 if (kd->argspc == 0) {
554 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
555 if (kd->argspc == 0)
556 return (0);
557 kd->arglen = kd->nbpg;
558 }
559 if (kd->argbuf == 0) {
560 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
561 if (kd->argbuf == 0)
562 return (0);
563 }
564 cc = sizeof(char *) * narg;
565 if (kvm_uread(kd, p, addr, (void *)kd->argv, cc) != cc)
566 return (0);
567 ap = np = kd->argspc;
568 argv = kd->argv;
569 len = 0;
570 /*
571 * Loop over pages, filling in the argument vector.
572 */
573 while (argv < kd->argv + narg && *argv != 0) {
574 addr = (u_long)*argv & ~(kd->nbpg - 1);
575 if (addr != oaddr) {
576 if (kvm_uread(kd, p, addr, kd->argbuf,
577 (size_t)kd->nbpg) != kd->nbpg)
578 return (0);
579 oaddr = addr;
580 }
581 addr = (u_long)*argv & (kd->nbpg - 1);
582 cp = kd->argbuf + (size_t)addr;
583 cc = kd->nbpg - (size_t)addr;
584 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
585 cc = (size_t)(maxcnt - len);
586 ep = memchr(cp, '\0', cc);
587 if (ep != 0)
588 cc = ep - cp + 1;
589 if (len + cc > kd->arglen) {
590 int off;
591 char **pp;
592 char *op = kd->argspc;
593
594 kd->arglen *= 2;
595 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
596 (size_t)kd->arglen);
597 if (kd->argspc == 0)
598 return (0);
599 /*
600 * Adjust argv pointers in case realloc moved
601 * the string space.
602 */
603 off = kd->argspc - op;
604 for (pp = kd->argv; pp < argv; pp++)
605 *pp += off;
606 ap += off;
607 np += off;
608 }
609 memcpy(np, cp, cc);
610 np += cc;
611 len += cc;
612 if (ep != 0) {
613 *argv++ = ap;
614 ap = np;
615 } else
616 *argv += cc;
617 if (maxcnt > 0 && len >= maxcnt) {
618 /*
619 * We're stopping prematurely. Terminate the
620 * current string.
621 */
622 if (ep == 0) {
623 *np = '\0';
624 *argv++ = ap;
625 }
626 break;
627 }
628 }
629 /* Make sure argv is terminated. */
630 *argv = 0;
631 return (kd->argv);
632 }
633
634 static void
635 ps_str_a(p, addr, n)
636 struct ps_strings *p;
637 u_long *addr;
638 int *n;
639 {
640 *addr = (u_long)p->ps_argvstr;
641 *n = p->ps_nargvstr;
642 }
643
644 static void
645 ps_str_e(p, addr, n)
646 struct ps_strings *p;
647 u_long *addr;
648 int *n;
649 {
650 *addr = (u_long)p->ps_envstr;
651 *n = p->ps_nenvstr;
652 }
653
654 /*
655 * Determine if the proc indicated by p is still active.
656 * This test is not 100% foolproof in theory, but chances of
657 * being wrong are very low.
658 */
659 static int
660 proc_verify(kd, kernp, p)
661 kvm_t *kd;
662 u_long kernp;
663 const struct proc *p;
664 {
665 struct proc kernproc;
666
667 /*
668 * Just read in the whole proc. It's not that big relative
669 * to the cost of the read system call.
670 */
671 if (kvm_read(kd, kernp, (void *)&kernproc, sizeof(kernproc)) !=
672 sizeof(kernproc))
673 return (0);
674 return (p->p_pid == kernproc.p_pid &&
675 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
676 }
677
678 static char **
679 kvm_doargv(kd, kp, nchr, info)
680 kvm_t *kd;
681 const struct kinfo_proc *kp;
682 int nchr;
683 void (*info)(struct ps_strings *, u_long *, int *);
684 {
685 const struct proc *p = &kp->kp_proc;
686 char **ap;
687 u_long addr;
688 int cnt;
689 struct ps_strings arginfo;
690
691 /*
692 * Pointers are stored at the top of the user stack.
693 */
694 if (p->p_stat == SZOMB)
695 return (0);
696 cnt = kvm_uread(kd, p, kd->usrstack - sizeof(arginfo),
697 (void *)&arginfo, sizeof(arginfo));
698 if (cnt != sizeof(arginfo))
699 return (0);
700
701 (*info)(&arginfo, &addr, &cnt);
702 if (cnt == 0)
703 return (0);
704 ap = kvm_argv(kd, p, addr, cnt, nchr);
705 /*
706 * For live kernels, make sure this process didn't go away.
707 */
708 if (ap != 0 && ISALIVE(kd) &&
709 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
710 ap = 0;
711 return (ap);
712 }
713
714 /*
715 * Get the command args. This code is now machine independent.
716 */
717 char **
718 kvm_getargv(kd, kp, nchr)
719 kvm_t *kd;
720 const struct kinfo_proc *kp;
721 int nchr;
722 {
723 return (kvm_doargv(kd, kp, nchr, ps_str_a));
724 }
725
726 char **
727 kvm_getenvv(kd, kp, nchr)
728 kvm_t *kd;
729 const struct kinfo_proc *kp;
730 int nchr;
731 {
732 return (kvm_doargv(kd, kp, nchr, ps_str_e));
733 }
734
735 /*
736 * Read from user space. The user context is given by p.
737 */
738 ssize_t
739 kvm_uread(kd, p, uva, buf, len)
740 kvm_t *kd;
741 const struct proc *p;
742 u_long uva;
743 char *buf;
744 size_t len;
745 {
746 char *cp;
747
748 cp = buf;
749 while (len > 0) {
750 size_t cc;
751 char *dp;
752 u_long cnt;
753
754 dp = _kvm_uread(kd, p, uva, &cnt);
755 if (dp == 0) {
756 _kvm_err(kd, 0, "invalid address (%x)", uva);
757 return (0);
758 }
759 cc = (size_t)MIN(cnt, len);
760 memcpy(cp, dp, cc);
761 cp += cc;
762 uva += cc;
763 len -= cc;
764 }
765 return (ssize_t)(cp - buf);
766 }
767