Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.35
      1 /*	$NetBSD: kvm_proc.c,v 1.35 2000/05/27 01:03:00 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1989, 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software developed by the Computer Systems
     44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45  * BG 91-66 and contributed to Berkeley.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *	This product includes software developed by the University of
     58  *	California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 #if defined(LIBC_SCCS) && !defined(lint)
     78 #if 0
     79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80 #else
     81 __RCSID("$NetBSD: kvm_proc.c,v 1.35 2000/05/27 01:03:00 thorpej Exp $");
     82 #endif
     83 #endif /* LIBC_SCCS and not lint */
     84 
     85 /*
     86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87  * users of this code, so we've factored it out into a separate module.
     88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89  * most other applications are interested only in open/close/read/nlist).
     90  */
     91 
     92 #include <sys/param.h>
     93 #include <sys/user.h>
     94 #include <sys/proc.h>
     95 #include <sys/exec.h>
     96 #include <sys/stat.h>
     97 #include <sys/ioctl.h>
     98 #include <sys/tty.h>
     99 #include <stdlib.h>
    100 #include <string.h>
    101 #include <unistd.h>
    102 #include <nlist.h>
    103 #include <kvm.h>
    104 
    105 #include <vm/vm.h>
    106 #include <vm/vm_param.h>
    107 
    108 #include <uvm/uvm_extern.h>
    109 #include <uvm/uvm_amap.h>
    110 
    111 #include <sys/sysctl.h>
    112 
    113 #include <limits.h>
    114 #include <db.h>
    115 #include <paths.h>
    116 
    117 #include "kvm_private.h"
    118 
    119 /*
    120  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    121  */
    122 struct miniproc {
    123 	struct	vmspace *p_vmspace;
    124 	char	p_stat;
    125 	struct	proc *p_paddr;
    126 	pid_t	p_pid;
    127 };
    128 
    129 /*
    130  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    131  */
    132 #define PTOMINI(kp, p) \
    133 		do { \
    134 		(p)->p_stat = (kp)->p_stat; \
    135 		(p)->p_pid = (kp)->p_pid; \
    136 		(p)->p_paddr = NULL; \
    137 		(p)->p_vmspace = (kp)->p_vmspace; \
    138 	} while (/*CONSTCOND*/0);
    139 
    140 #define KPTOMINI(kp, p) \
    141 		do { \
    142 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    143 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    144 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    145 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    146 	} while (/*CONSTCOND*/0);
    147 
    148 #define KP2TOMINI(kp, p) \
    149 		do { \
    150 		(p)->p_stat = (kp)->p_stat; \
    151 		(p)->p_pid = (kp)->p_pid; \
    152 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    153 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    154 	} while (/*CONSTCOND*/0);
    155 
    156 
    157 #define	PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(foo))
    158 
    159 #define KREAD(kd, addr, obj) \
    160 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    161 
    162 /* XXX: What uses these two functions? */
    163 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
    164 		    u_long *));
    165 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    166 		    size_t));
    167 
    168 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    169 		    u_long *));
    170 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    171 		    char *, size_t));
    172 
    173 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
    174 		    int));
    175 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
    176 		    int));
    177 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
    178 		    void (*)(struct ps_strings *, u_long *, int *)));
    179 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
    180 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    181 		    struct kinfo_proc *, int));
    182 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
    183 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    184 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    185 
    186 
    187 static char *
    188 _kvm_ureadm(kd, p, va, cnt)
    189 	kvm_t *kd;
    190 	const struct miniproc *p;
    191 	u_long va;
    192 	u_long *cnt;
    193 {
    194 	int true = 1;
    195 	u_long addr, head;
    196 	u_long offset;
    197 	struct vm_map_entry vme;
    198 	struct vm_amap amap;
    199 	struct vm_anon *anonp, anon;
    200 	struct vm_page pg;
    201 	u_long slot;
    202 
    203 	if (kd->swapspc == 0) {
    204 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    205 		if (kd->swapspc == 0)
    206 			return NULL;
    207 	}
    208 
    209 	/*
    210 	 * Look through the address map for the memory object
    211 	 * that corresponds to the given virtual address.
    212 	 * The header just has the entire valid range.
    213 	 */
    214 	head = (u_long)&p->p_vmspace->vm_map.header;
    215 	addr = head;
    216 	while (true) {
    217 		if (KREAD(kd, addr, &vme))
    218 			return NULL;
    219 
    220 		if (va >= vme.start && va < vme.end &&
    221 		    vme.aref.ar_amap != NULL)
    222 			break;
    223 
    224 		addr = (u_long)vme.next;
    225 		if (addr == head)
    226 			return NULL;
    227 
    228 	}
    229 
    230 	/*
    231 	 * we found the map entry, now to find the object...
    232 	 */
    233 	if (vme.aref.ar_amap == NULL)
    234 		return NULL;
    235 
    236 	addr = (u_long)vme.aref.ar_amap;
    237 	if (KREAD(kd, addr, &amap))
    238 		return NULL;
    239 
    240 	offset = va - vme.start;
    241 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    242 	/* sanity-check slot number */
    243 	if (slot  > amap.am_nslot)
    244 		return NULL;
    245 
    246 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    247 	if (KREAD(kd, addr, &anonp))
    248 		return NULL;
    249 
    250 	addr = (u_long)anonp;
    251 	if (KREAD(kd, addr, &anon))
    252 		return NULL;
    253 
    254 	addr = (u_long)anon.u.an_page;
    255 	if (addr) {
    256 		if (KREAD(kd, addr, &pg))
    257 			return NULL;
    258 
    259 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    260 		    (off_t)pg.phys_addr) != kd->nbpg)
    261 			return NULL;
    262 	}
    263 	else {
    264 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    265 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    266 			return NULL;
    267 	}
    268 
    269 	/* Found the page. */
    270 	offset %= kd->nbpg;
    271 	*cnt = kd->nbpg - offset;
    272 	return (&kd->swapspc[(size_t)offset]);
    273 }
    274 
    275 char *
    276 _kvm_uread(kd, p, va, cnt)
    277 	kvm_t *kd;
    278 	const struct proc *p;
    279 	u_long va;
    280 	u_long *cnt;
    281 {
    282 	struct miniproc mp;
    283 
    284 	PTOMINI(p, &mp);
    285 	return (_kvm_ureadm(kd, &mp, va, cnt));
    286 }
    287 
    288 /*
    289  * Read proc's from memory file into buffer bp, which has space to hold
    290  * at most maxcnt procs.
    291  */
    292 static int
    293 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    294 	kvm_t *kd;
    295 	int what, arg;
    296 	struct proc *p;
    297 	struct kinfo_proc *bp;
    298 	int maxcnt;
    299 {
    300 	int cnt = 0;
    301 	struct eproc eproc;
    302 	struct pgrp pgrp;
    303 	struct session sess;
    304 	struct tty tty;
    305 	struct proc proc;
    306 
    307 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    308 		if (KREAD(kd, (u_long)p, &proc)) {
    309 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    310 			return (-1);
    311 		}
    312 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    313 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    314 			    &eproc.e_ucred)) {
    315 				_kvm_err(kd, kd->program,
    316 				    "can't read proc credentials at %x", p);
    317 				return -1;
    318 			}
    319 
    320 		switch(what) {
    321 
    322 		case KERN_PROC_PID:
    323 			if (proc.p_pid != (pid_t)arg)
    324 				continue;
    325 			break;
    326 
    327 		case KERN_PROC_UID:
    328 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    329 				continue;
    330 			break;
    331 
    332 		case KERN_PROC_RUID:
    333 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    334 				continue;
    335 			break;
    336 		}
    337 		/*
    338 		 * We're going to add another proc to the set.  If this
    339 		 * will overflow the buffer, assume the reason is because
    340 		 * nprocs (or the proc list) is corrupt and declare an error.
    341 		 */
    342 		if (cnt >= maxcnt) {
    343 			_kvm_err(kd, kd->program, "nprocs corrupt");
    344 			return (-1);
    345 		}
    346 		/*
    347 		 * gather eproc
    348 		 */
    349 		eproc.e_paddr = p;
    350 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    351 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    352 				 proc.p_pgrp);
    353 			return (-1);
    354 		}
    355 		eproc.e_sess = pgrp.pg_session;
    356 		eproc.e_pgid = pgrp.pg_id;
    357 		eproc.e_jobc = pgrp.pg_jobc;
    358 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    359 			_kvm_err(kd, kd->program, "can't read session at %x",
    360 				pgrp.pg_session);
    361 			return (-1);
    362 		}
    363 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    364 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    365 				_kvm_err(kd, kd->program,
    366 					 "can't read tty at %x", sess.s_ttyp);
    367 				return (-1);
    368 			}
    369 			eproc.e_tdev = tty.t_dev;
    370 			eproc.e_tsess = tty.t_session;
    371 			if (tty.t_pgrp != NULL) {
    372 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    373 					_kvm_err(kd, kd->program,
    374 						 "can't read tpgrp at &x",
    375 						tty.t_pgrp);
    376 					return (-1);
    377 				}
    378 				eproc.e_tpgid = pgrp.pg_id;
    379 			} else
    380 				eproc.e_tpgid = -1;
    381 		} else
    382 			eproc.e_tdev = NODEV;
    383 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    384 		eproc.e_sid = sess.s_sid;
    385 		if (sess.s_leader == p)
    386 			eproc.e_flag |= EPROC_SLEADER;
    387 		if (proc.p_wmesg)
    388 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    389 			    eproc.e_wmesg, WMESGLEN);
    390 
    391 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    392 		    sizeof(eproc.e_vm));
    393 
    394 		eproc.e_xsize = eproc.e_xrssize = 0;
    395 		eproc.e_xccount = eproc.e_xswrss = 0;
    396 
    397 		switch (what) {
    398 
    399 		case KERN_PROC_PGRP:
    400 			if (eproc.e_pgid != (pid_t)arg)
    401 				continue;
    402 			break;
    403 
    404 		case KERN_PROC_TTY:
    405 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    406 			     eproc.e_tdev != (dev_t)arg)
    407 				continue;
    408 			break;
    409 		}
    410 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    411 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    412 		++bp;
    413 		++cnt;
    414 	}
    415 	return (cnt);
    416 }
    417 
    418 /*
    419  * Build proc info array by reading in proc list from a crash dump.
    420  * Return number of procs read.  maxcnt is the max we will read.
    421  */
    422 static int
    423 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
    424 	kvm_t *kd;
    425 	int what, arg;
    426 	u_long a_allproc;
    427 	u_long a_deadproc;
    428 	u_long a_zombproc;
    429 	int maxcnt;
    430 {
    431 	struct kinfo_proc *bp = kd->procbase;
    432 	int acnt, dcnt, zcnt;
    433 	struct proc *p;
    434 
    435 	if (KREAD(kd, a_allproc, &p)) {
    436 		_kvm_err(kd, kd->program, "cannot read allproc");
    437 		return (-1);
    438 	}
    439 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    440 	if (acnt < 0)
    441 		return (acnt);
    442 
    443 	if (KREAD(kd, a_deadproc, &p)) {
    444 		_kvm_err(kd, kd->program, "cannot read deadproc");
    445 		return (-1);
    446 	}
    447 
    448 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
    449 	if (dcnt < 0)
    450 		dcnt = 0;
    451 
    452 	if (KREAD(kd, a_zombproc, &p)) {
    453 		_kvm_err(kd, kd->program, "cannot read zombproc");
    454 		return (-1);
    455 	}
    456 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    457 	    maxcnt - (acnt + dcnt));
    458 	if (zcnt < 0)
    459 		zcnt = 0;
    460 
    461 	return (acnt + zcnt);
    462 }
    463 
    464 struct kinfo_proc2 *
    465 kvm_getproc2(kd, op, arg, esize, cnt)
    466 	kvm_t *kd;
    467 	int op, arg;
    468 	size_t esize;
    469 	int *cnt;
    470 {
    471 	size_t size;
    472 	int mib[6], st, nprocs;
    473 	struct user user;
    474 
    475 	if (esize < 0)
    476 		return NULL;
    477 
    478 	if (kd->procbase2 != NULL) {
    479 		free(kd->procbase2);
    480 		/*
    481 		 * Clear this pointer in case this call fails.  Otherwise,
    482 		 * kvm_close() will free it again.
    483 		 */
    484 		kd->procbase2 = 0;
    485 	}
    486 
    487 	if (ISSYSCTL(kd)) {
    488 		size = 0;
    489 		mib[0] = CTL_KERN;
    490 		mib[1] = KERN_PROC2;
    491 		mib[2] = op;
    492 		mib[3] = arg;
    493 		mib[4] = esize;
    494 		mib[5] = 0;
    495 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
    496 		if (st == -1) {
    497 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    498 			return NULL;
    499 		}
    500 
    501 		mib[5] = size / esize;
    502 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
    503 		if (kd->procbase2 == 0)
    504 			return NULL;
    505 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
    506 		if (st == -1) {
    507 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    508 			return NULL;
    509 		}
    510 		nprocs = size / esize;
    511 	} else {
    512 		char *kp2c;
    513 		struct kinfo_proc *kp;
    514 		struct kinfo_proc2 kp2, *kp2p;
    515 		int i;
    516 
    517 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    518 		if (kp == NULL)
    519 			return NULL;
    520 
    521 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
    522 		kp2c = (char *)kd->procbase2;
    523 		kp2p = &kp2;
    524 		for (i = 0; i < nprocs; i++, kp++) {
    525 			memset(kp2p, 0, sizeof(kp2));
    526 			kp2p->p_forw = PTRTOINT64(kp->kp_proc.p_forw);
    527 			kp2p->p_back = PTRTOINT64(kp->kp_proc.p_back);
    528 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
    529 
    530 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
    531 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
    532 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
    533 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
    534 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
    535 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
    536 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
    537 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
    538 			kp2p->p_tsess = 0;
    539 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
    540 
    541 			kp2p->p_eflag = 0;
    542 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    543 			kp2p->p_flag = kp->kp_proc.p_flag;
    544 
    545 			kp2p->p_pid = kp->kp_proc.p_pid;
    546 
    547 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    548 			kp2p->p_sid = kp->kp_eproc.e_sid;
    549 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    550 
    551 			kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
    552 
    553 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    554 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    555 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    556 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    557 
    558 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    559 			    MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    560 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    561 
    562 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    563 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    564 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    565 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
    566 
    567 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
    568 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
    569 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
    570 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
    571 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    572 			kp2p->p_swtime = kp->kp_proc.p_swtime;
    573 			kp2p->p_slptime = kp->kp_proc.p_slptime;
    574 #if 0 /* XXX thorpej */
    575 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    576 #else
    577 			kp2p->p_schedflags = 0;
    578 #endif
    579 
    580 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    581 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    582 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    583 
    584 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
    585 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    586 
    587 			kp2p->p_holdcnt = kp->kp_proc.p_holdcnt;
    588 
    589 			memcpy(&kp2p->p_siglist, &kp->kp_proc.p_siglist, sizeof(ki_sigset_t));
    590 			memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigmask, sizeof(ki_sigset_t));
    591 			memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigignore, sizeof(ki_sigset_t));
    592 			memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigcatch, sizeof(ki_sigset_t));
    593 
    594 			kp2p->p_stat = kp->kp_proc.p_stat;
    595 			kp2p->p_priority = kp->kp_proc.p_priority;
    596 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
    597 			kp2p->p_nice = kp->kp_proc.p_nice;
    598 
    599 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    600 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    601 
    602 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    603 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
    604 
    605 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
    606 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
    607 
    608 			strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
    609 
    610 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    611 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    612 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    613 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    614 
    615 			kp2p->p_eflag = kp->kp_eproc.e_flag;
    616 
    617 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
    618 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
    619 				kp2p->p_uvalid = 0;
    620 			} else {
    621 				kp2p->p_uvalid = 1;
    622 
    623 				kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec;
    624 				kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec;
    625 
    626 				kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec;
    627 				kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec;
    628 				kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec;
    629 				kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec;
    630 
    631 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
    632 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
    633 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
    634 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
    635 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
    636 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
    637 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
    638 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
    639 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
    640 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
    641 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
    642 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
    643 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
    644 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
    645 
    646 				kp2p->p_uctime_sec = user.u_stats.p_cru.ru_utime.tv_sec +
    647 				    user.u_stats.p_cru.ru_stime.tv_sec;
    648 				kp2p->p_uctime_usec = user.u_stats.p_cru.ru_utime.tv_usec +
    649 				    user.u_stats.p_cru.ru_stime.tv_usec;
    650 			}
    651 
    652 			memcpy(kp2c, &kp2, esize);
    653 			kp2c += esize;
    654 		}
    655 
    656 		free(kd->procbase);
    657 	}
    658 	*cnt = nprocs;
    659 	return (kd->procbase2);
    660 }
    661 
    662 struct kinfo_proc *
    663 kvm_getprocs(kd, op, arg, cnt)
    664 	kvm_t *kd;
    665 	int op, arg;
    666 	int *cnt;
    667 {
    668 	size_t size;
    669 	int mib[4], st, nprocs;
    670 
    671 	if (kd->procbase != 0) {
    672 		free(kd->procbase);
    673 		/*
    674 		 * Clear this pointer in case this call fails.  Otherwise,
    675 		 * kvm_close() will free it again.
    676 		 */
    677 		kd->procbase = 0;
    678 	}
    679 	if (ISKMEM(kd)) {
    680 		size = 0;
    681 		mib[0] = CTL_KERN;
    682 		mib[1] = KERN_PROC;
    683 		mib[2] = op;
    684 		mib[3] = arg;
    685 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    686 		if (st == -1) {
    687 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    688 			return NULL;
    689 		}
    690 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    691 		if (kd->procbase == 0)
    692 			return NULL;
    693 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    694 		if (st == -1) {
    695 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    696 			return NULL;
    697 		}
    698 		if (size % sizeof(struct kinfo_proc) != 0) {
    699 			_kvm_err(kd, kd->program,
    700 				"proc size mismatch (%d total, %d chunks)",
    701 				size, sizeof(struct kinfo_proc));
    702 			return NULL;
    703 		}
    704 		nprocs = size / sizeof(struct kinfo_proc);
    705 	} else if (ISSYSCTL(kd)) {
    706 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
    707 		    "can't use kvm_getprocs");
    708 		return NULL;
    709 	} else {
    710 		struct nlist nl[5], *p;
    711 
    712 		nl[0].n_name = "_nprocs";
    713 		nl[1].n_name = "_allproc";
    714 		nl[2].n_name = "_deadproc";
    715 		nl[3].n_name = "_zombproc";
    716 		nl[4].n_name = 0;
    717 
    718 		if (kvm_nlist(kd, nl) != 0) {
    719 			for (p = nl; p->n_type != 0; ++p)
    720 				;
    721 			_kvm_err(kd, kd->program,
    722 				 "%s: no such symbol", p->n_name);
    723 			return NULL;
    724 		}
    725 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    726 			_kvm_err(kd, kd->program, "can't read nprocs");
    727 			return NULL;
    728 		}
    729 		size = nprocs * sizeof(struct kinfo_proc);
    730 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    731 		if (kd->procbase == 0)
    732 			return NULL;
    733 
    734 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    735 		    nl[2].n_value, nl[3].n_value, nprocs);
    736 		if (nprocs < 0)
    737 			return NULL;
    738 #ifdef notdef
    739 		size = nprocs * sizeof(struct kinfo_proc);
    740 		(void)realloc(kd->procbase, size);
    741 #endif
    742 	}
    743 	*cnt = nprocs;
    744 	return (kd->procbase);
    745 }
    746 
    747 void
    748 _kvm_freeprocs(kd)
    749 	kvm_t *kd;
    750 {
    751 	if (kd->procbase) {
    752 		free(kd->procbase);
    753 		kd->procbase = 0;
    754 	}
    755 }
    756 
    757 void *
    758 _kvm_realloc(kd, p, n)
    759 	kvm_t *kd;
    760 	void *p;
    761 	size_t n;
    762 {
    763 	void *np = realloc(p, n);
    764 
    765 	if (np == 0)
    766 		_kvm_err(kd, kd->program, "out of memory");
    767 	return (np);
    768 }
    769 
    770 /*
    771  * Read in an argument vector from the user address space of process p.
    772  * addr if the user-space base address of narg null-terminated contiguous
    773  * strings.  This is used to read in both the command arguments and
    774  * environment strings.  Read at most maxcnt characters of strings.
    775  */
    776 static char **
    777 kvm_argv(kd, p, addr, narg, maxcnt)
    778 	kvm_t *kd;
    779 	const struct miniproc *p;
    780 	u_long addr;
    781 	int narg;
    782 	int maxcnt;
    783 {
    784 	char *np, *cp, *ep, *ap;
    785 	u_long oaddr = (u_long)~0L;
    786 	u_long len;
    787 	size_t cc;
    788 	char **argv;
    789 
    790 	/*
    791 	 * Check that there aren't an unreasonable number of agruments,
    792 	 * and that the address is in user space.
    793 	 */
    794 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    795 		return NULL;
    796 
    797 	if (kd->argv == 0) {
    798 		/*
    799 		 * Try to avoid reallocs.
    800 		 */
    801 		kd->argc = MAX(narg + 1, 32);
    802 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    803 						sizeof(*kd->argv));
    804 		if (kd->argv == 0)
    805 			return NULL;
    806 	} else if (narg + 1 > kd->argc) {
    807 		kd->argc = MAX(2 * kd->argc, narg + 1);
    808 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    809 						sizeof(*kd->argv));
    810 		if (kd->argv == 0)
    811 			return NULL;
    812 	}
    813 	if (kd->argspc == 0) {
    814 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    815 		if (kd->argspc == 0)
    816 			return NULL;
    817 		kd->arglen = kd->nbpg;
    818 	}
    819 	if (kd->argbuf == 0) {
    820 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    821 		if (kd->argbuf == 0)
    822 			return NULL;
    823 	}
    824 	cc = sizeof(char *) * narg;
    825 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    826 		return NULL;
    827 	ap = np = kd->argspc;
    828 	argv = kd->argv;
    829 	len = 0;
    830 	/*
    831 	 * Loop over pages, filling in the argument vector.
    832 	 */
    833 	while (argv < kd->argv + narg && *argv != 0) {
    834 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    835 		if (addr != oaddr) {
    836 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    837 			    (size_t)kd->nbpg) != kd->nbpg)
    838 				return NULL;
    839 			oaddr = addr;
    840 		}
    841 		addr = (u_long)*argv & (kd->nbpg - 1);
    842 		cp = kd->argbuf + (size_t)addr;
    843 		cc = kd->nbpg - (size_t)addr;
    844 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    845 			cc = (size_t)(maxcnt - len);
    846 		ep = memchr(cp, '\0', cc);
    847 		if (ep != 0)
    848 			cc = ep - cp + 1;
    849 		if (len + cc > kd->arglen) {
    850 			int off;
    851 			char **pp;
    852 			char *op = kd->argspc;
    853 
    854 			kd->arglen *= 2;
    855 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    856 			    (size_t)kd->arglen);
    857 			if (kd->argspc == 0)
    858 				return NULL;
    859 			/*
    860 			 * Adjust argv pointers in case realloc moved
    861 			 * the string space.
    862 			 */
    863 			off = kd->argspc - op;
    864 			for (pp = kd->argv; pp < argv; pp++)
    865 				*pp += off;
    866 			ap += off;
    867 			np += off;
    868 		}
    869 		memcpy(np, cp, cc);
    870 		np += cc;
    871 		len += cc;
    872 		if (ep != 0) {
    873 			*argv++ = ap;
    874 			ap = np;
    875 		} else
    876 			*argv += cc;
    877 		if (maxcnt > 0 && len >= maxcnt) {
    878 			/*
    879 			 * We're stopping prematurely.  Terminate the
    880 			 * current string.
    881 			 */
    882 			if (ep == 0) {
    883 				*np = '\0';
    884 				*argv++ = ap;
    885 			}
    886 			break;
    887 		}
    888 	}
    889 	/* Make sure argv is terminated. */
    890 	*argv = 0;
    891 	return (kd->argv);
    892 }
    893 
    894 static void
    895 ps_str_a(p, addr, n)
    896 	struct ps_strings *p;
    897 	u_long *addr;
    898 	int *n;
    899 {
    900 	*addr = (u_long)p->ps_argvstr;
    901 	*n = p->ps_nargvstr;
    902 }
    903 
    904 static void
    905 ps_str_e(p, addr, n)
    906 	struct ps_strings *p;
    907 	u_long *addr;
    908 	int *n;
    909 {
    910 	*addr = (u_long)p->ps_envstr;
    911 	*n = p->ps_nenvstr;
    912 }
    913 
    914 /*
    915  * Determine if the proc indicated by p is still active.
    916  * This test is not 100% foolproof in theory, but chances of
    917  * being wrong are very low.
    918  */
    919 static int
    920 proc_verify(kd, kernp, p)
    921 	kvm_t *kd;
    922 	u_long kernp;
    923 	const struct miniproc *p;
    924 {
    925 	struct proc kernproc;
    926 
    927 	/*
    928 	 * Just read in the whole proc.  It's not that big relative
    929 	 * to the cost of the read system call.
    930 	 */
    931 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
    932 	    sizeof(kernproc))
    933 		return 0;
    934 	return (p->p_pid == kernproc.p_pid &&
    935 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    936 }
    937 
    938 static char **
    939 kvm_doargv(kd, p, nchr, info)
    940 	kvm_t *kd;
    941 	const struct miniproc *p;
    942 	int nchr;
    943 	void (*info)(struct ps_strings *, u_long *, int *);
    944 {
    945 	char **ap;
    946 	u_long addr;
    947 	int cnt;
    948 	struct ps_strings arginfo;
    949 
    950 	/*
    951 	 * Pointers are stored at the top of the user stack.
    952 	 */
    953 	if (p->p_stat == SZOMB)
    954 		return NULL;
    955 	cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
    956 	    (void *)&arginfo, sizeof(arginfo));
    957 	if (cnt != sizeof(arginfo))
    958 		return NULL;
    959 
    960 	(*info)(&arginfo, &addr, &cnt);
    961 	if (cnt == 0)
    962 		return NULL;
    963 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    964 	/*
    965 	 * For live kernels, make sure this process didn't go away.
    966 	 */
    967 	if (ap != 0 && ISALIVE(kd) &&
    968 	    !proc_verify(kd, (u_long)p->p_paddr, p))
    969 		ap = 0;
    970 	return (ap);
    971 }
    972 
    973 /*
    974  * Get the command args.  This code is now machine independent.
    975  */
    976 char **
    977 kvm_getargv(kd, kp, nchr)
    978 	kvm_t *kd;
    979 	const struct kinfo_proc *kp;
    980 	int nchr;
    981 {
    982 	struct miniproc p;
    983 
    984 	KPTOMINI(kp, &p);
    985 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
    986 }
    987 
    988 char **
    989 kvm_getenvv(kd, kp, nchr)
    990 	kvm_t *kd;
    991 	const struct kinfo_proc *kp;
    992 	int nchr;
    993 {
    994 	struct miniproc p;
    995 
    996 	KPTOMINI(kp, &p);
    997 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
    998 }
    999 
   1000 static char **
   1001 kvm_doargv2(kd, pid, type, nchr)
   1002 	kvm_t *kd;
   1003 	pid_t pid;
   1004 	int type;
   1005 	int nchr;
   1006 {
   1007 	size_t bufs;
   1008 	int narg, newarglen, mib[4];
   1009 	char **ap, *bp, *endp;
   1010 
   1011 	/*
   1012 	 * Check that there aren't an unreasonable number of agruments.
   1013 	 */
   1014 	if (nchr > ARG_MAX)
   1015 		return NULL;
   1016 
   1017 	if (nchr == 0)
   1018 		nchr = ARG_MAX;
   1019 
   1020 	/* Get number of strings in argv */
   1021 	mib[0] = CTL_KERN;
   1022 	mib[1] = KERN_PROC_ARGS;
   1023 	mib[2] = pid;
   1024 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1025 	bufs = sizeof(narg);
   1026 	if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
   1027 		return NULL;
   1028 
   1029 	if (kd->argv == 0) {
   1030 		/*
   1031 		 * Try to avoid reallocs.
   1032 		 */
   1033 		kd->argc = MAX(narg + 1, 32);
   1034 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
   1035 						sizeof(*kd->argv));
   1036 		if (kd->argv == 0)
   1037 			return NULL;
   1038 	} else if (narg + 1 > kd->argc) {
   1039 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1040 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
   1041 						sizeof(*kd->argv));
   1042 		if (kd->argv == 0)
   1043 			return NULL;
   1044 	}
   1045 
   1046 	newarglen = MIN(nchr, ARG_MAX);
   1047 	if (kd->arglen < newarglen) {
   1048 		if (kd->arglen == 0)
   1049 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
   1050 		else
   1051 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
   1052 			    newarglen);
   1053 		if (kd->argspc == 0)
   1054 			return NULL;
   1055 		kd->arglen = newarglen;
   1056 	}
   1057 	memset(kd->argspc, 0, kd->arglen);	/* XXX necessary? */
   1058 
   1059 	mib[0] = CTL_KERN;
   1060 	mib[1] = KERN_PROC_ARGS;
   1061 	mib[2] = pid;
   1062 	mib[3] = type;
   1063 	bufs = kd->arglen;
   1064 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
   1065 		return NULL;
   1066 
   1067 	bp = kd->argspc;
   1068 	ap = kd->argv;
   1069 	endp = bp + MIN(nchr, bufs);
   1070 
   1071 	while (bp < endp) {
   1072 		*ap++ = bp;
   1073 		/* XXX: don't need following anymore, or stick check for max argc in above while loop? */
   1074 		if (ap >= kd->argv + kd->argc) {
   1075 			kd->argc *= 2;
   1076 			kd->argv = _kvm_realloc(kd, kd->argv,
   1077 			    kd->argc * sizeof(*kd->argv));
   1078 		}
   1079 		bp += strlen(bp) + 1;
   1080 	}
   1081 	*ap = NULL;
   1082 
   1083 	return (kd->argv);
   1084 }
   1085 
   1086 char **
   1087 kvm_getargv2(kd, kp, nchr)
   1088 	kvm_t *kd;
   1089 	const struct kinfo_proc2 *kp;
   1090 	int nchr;
   1091 {
   1092 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1093 }
   1094 
   1095 char **
   1096 kvm_getenvv2(kd, kp, nchr)
   1097 	kvm_t *kd;
   1098 	const struct kinfo_proc2 *kp;
   1099 	int nchr;
   1100 {
   1101 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1102 }
   1103 
   1104 /*
   1105  * Read from user space.  The user context is given by p.
   1106  */
   1107 static ssize_t
   1108 kvm_ureadm(kd, p, uva, buf, len)
   1109 	kvm_t *kd;
   1110 	const struct miniproc *p;
   1111 	u_long uva;
   1112 	char *buf;
   1113 	size_t len;
   1114 {
   1115 	char *cp;
   1116 
   1117 	cp = buf;
   1118 	while (len > 0) {
   1119 		size_t cc;
   1120 		char *dp;
   1121 		u_long cnt;
   1122 
   1123 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1124 		if (dp == 0) {
   1125 			_kvm_err(kd, 0, "invalid address (%x)", uva);
   1126 			return 0;
   1127 		}
   1128 		cc = (size_t)MIN(cnt, len);
   1129 		memcpy(cp, dp, cc);
   1130 		cp += cc;
   1131 		uva += cc;
   1132 		len -= cc;
   1133 	}
   1134 	return (ssize_t)(cp - buf);
   1135 }
   1136 
   1137 ssize_t
   1138 kvm_uread(kd, p, uva, buf, len)
   1139 	kvm_t *kd;
   1140 	const struct proc *p;
   1141 	u_long uva;
   1142 	char *buf;
   1143 	size_t len;
   1144 {
   1145 	struct miniproc mp;
   1146 
   1147 	PTOMINI(p, &mp);
   1148 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1149 }
   1150