Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.37
      1 /*	$NetBSD: kvm_proc.c,v 1.37 2000/06/26 15:35:03 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1989, 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software developed by the Computer Systems
     44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45  * BG 91-66 and contributed to Berkeley.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *	This product includes software developed by the University of
     58  *	California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 #if defined(LIBC_SCCS) && !defined(lint)
     78 #if 0
     79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80 #else
     81 __RCSID("$NetBSD: kvm_proc.c,v 1.37 2000/06/26 15:35:03 mrg Exp $");
     82 #endif
     83 #endif /* LIBC_SCCS and not lint */
     84 
     85 /*
     86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87  * users of this code, so we've factored it out into a separate module.
     88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89  * most other applications are interested only in open/close/read/nlist).
     90  */
     91 
     92 #include <sys/param.h>
     93 #include <sys/user.h>
     94 #include <sys/proc.h>
     95 #include <sys/exec.h>
     96 #include <sys/stat.h>
     97 #include <sys/ioctl.h>
     98 #include <sys/tty.h>
     99 #include <stdlib.h>
    100 #include <string.h>
    101 #include <unistd.h>
    102 #include <nlist.h>
    103 #include <kvm.h>
    104 
    105 #include <vm/vm.h>
    106 
    107 #include <uvm/uvm_extern.h>
    108 #include <uvm/uvm_amap.h>
    109 
    110 #include <sys/sysctl.h>
    111 
    112 #include <limits.h>
    113 #include <db.h>
    114 #include <paths.h>
    115 
    116 #include "kvm_private.h"
    117 
    118 /*
    119  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    120  */
    121 struct miniproc {
    122 	struct	vmspace *p_vmspace;
    123 	char	p_stat;
    124 	struct	proc *p_paddr;
    125 	pid_t	p_pid;
    126 };
    127 
    128 /*
    129  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    130  */
    131 #define PTOMINI(kp, p) \
    132 		do { \
    133 		(p)->p_stat = (kp)->p_stat; \
    134 		(p)->p_pid = (kp)->p_pid; \
    135 		(p)->p_paddr = NULL; \
    136 		(p)->p_vmspace = (kp)->p_vmspace; \
    137 	} while (/*CONSTCOND*/0);
    138 
    139 #define KPTOMINI(kp, p) \
    140 		do { \
    141 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    142 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    143 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    144 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    145 	} while (/*CONSTCOND*/0);
    146 
    147 #define KP2TOMINI(kp, p) \
    148 		do { \
    149 		(p)->p_stat = (kp)->p_stat; \
    150 		(p)->p_pid = (kp)->p_pid; \
    151 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    152 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    153 	} while (/*CONSTCOND*/0);
    154 
    155 
    156 #define	PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(foo))
    157 
    158 #define KREAD(kd, addr, obj) \
    159 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    160 
    161 /* XXX: What uses these two functions? */
    162 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
    163 		    u_long *));
    164 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    165 		    size_t));
    166 
    167 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    168 		    u_long *));
    169 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    170 		    char *, size_t));
    171 
    172 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
    173 		    int));
    174 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
    175 		    int));
    176 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
    177 		    void (*)(struct ps_strings *, u_long *, int *)));
    178 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
    179 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    180 		    struct kinfo_proc *, int));
    181 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
    182 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    183 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    184 
    185 
    186 static char *
    187 _kvm_ureadm(kd, p, va, cnt)
    188 	kvm_t *kd;
    189 	const struct miniproc *p;
    190 	u_long va;
    191 	u_long *cnt;
    192 {
    193 	int true = 1;
    194 	u_long addr, head;
    195 	u_long offset;
    196 	struct vm_map_entry vme;
    197 	struct vm_amap amap;
    198 	struct vm_anon *anonp, anon;
    199 	struct vm_page pg;
    200 	u_long slot;
    201 
    202 	if (kd->swapspc == NULL) {
    203 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    204 		if (kd->swapspc == NULL)
    205 			return NULL;
    206 	}
    207 
    208 	/*
    209 	 * Look through the address map for the memory object
    210 	 * that corresponds to the given virtual address.
    211 	 * The header just has the entire valid range.
    212 	 */
    213 	head = (u_long)&p->p_vmspace->vm_map.header;
    214 	addr = head;
    215 	while (true) {
    216 		if (KREAD(kd, addr, &vme))
    217 			return NULL;
    218 
    219 		if (va >= vme.start && va < vme.end &&
    220 		    vme.aref.ar_amap != NULL)
    221 			break;
    222 
    223 		addr = (u_long)vme.next;
    224 		if (addr == head)
    225 			return NULL;
    226 
    227 	}
    228 
    229 	/*
    230 	 * we found the map entry, now to find the object...
    231 	 */
    232 	if (vme.aref.ar_amap == NULL)
    233 		return NULL;
    234 
    235 	addr = (u_long)vme.aref.ar_amap;
    236 	if (KREAD(kd, addr, &amap))
    237 		return NULL;
    238 
    239 	offset = va - vme.start;
    240 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    241 	/* sanity-check slot number */
    242 	if (slot  > amap.am_nslot)
    243 		return NULL;
    244 
    245 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    246 	if (KREAD(kd, addr, &anonp))
    247 		return NULL;
    248 
    249 	addr = (u_long)anonp;
    250 	if (KREAD(kd, addr, &anon))
    251 		return NULL;
    252 
    253 	addr = (u_long)anon.u.an_page;
    254 	if (addr) {
    255 		if (KREAD(kd, addr, &pg))
    256 			return NULL;
    257 
    258 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    259 		    (off_t)pg.phys_addr) != kd->nbpg)
    260 			return NULL;
    261 	}
    262 	else {
    263 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    264 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    265 			return NULL;
    266 	}
    267 
    268 	/* Found the page. */
    269 	offset %= kd->nbpg;
    270 	*cnt = kd->nbpg - offset;
    271 	return (&kd->swapspc[(size_t)offset]);
    272 }
    273 
    274 char *
    275 _kvm_uread(kd, p, va, cnt)
    276 	kvm_t *kd;
    277 	const struct proc *p;
    278 	u_long va;
    279 	u_long *cnt;
    280 {
    281 	struct miniproc mp;
    282 
    283 	PTOMINI(p, &mp);
    284 	return (_kvm_ureadm(kd, &mp, va, cnt));
    285 }
    286 
    287 /*
    288  * Read proc's from memory file into buffer bp, which has space to hold
    289  * at most maxcnt procs.
    290  */
    291 static int
    292 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    293 	kvm_t *kd;
    294 	int what, arg;
    295 	struct proc *p;
    296 	struct kinfo_proc *bp;
    297 	int maxcnt;
    298 {
    299 	int cnt = 0;
    300 	struct eproc eproc;
    301 	struct pgrp pgrp;
    302 	struct session sess;
    303 	struct tty tty;
    304 	struct proc proc;
    305 
    306 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    307 		if (KREAD(kd, (u_long)p, &proc)) {
    308 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    309 			return (-1);
    310 		}
    311 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    312 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    313 			    &eproc.e_ucred)) {
    314 				_kvm_err(kd, kd->program,
    315 				    "can't read proc credentials at %x", p);
    316 				return -1;
    317 			}
    318 
    319 		switch(what) {
    320 
    321 		case KERN_PROC_PID:
    322 			if (proc.p_pid != (pid_t)arg)
    323 				continue;
    324 			break;
    325 
    326 		case KERN_PROC_UID:
    327 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    328 				continue;
    329 			break;
    330 
    331 		case KERN_PROC_RUID:
    332 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    333 				continue;
    334 			break;
    335 		}
    336 		/*
    337 		 * We're going to add another proc to the set.  If this
    338 		 * will overflow the buffer, assume the reason is because
    339 		 * nprocs (or the proc list) is corrupt and declare an error.
    340 		 */
    341 		if (cnt >= maxcnt) {
    342 			_kvm_err(kd, kd->program, "nprocs corrupt");
    343 			return (-1);
    344 		}
    345 		/*
    346 		 * gather eproc
    347 		 */
    348 		eproc.e_paddr = p;
    349 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    350 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    351 				 proc.p_pgrp);
    352 			return (-1);
    353 		}
    354 		eproc.e_sess = pgrp.pg_session;
    355 		eproc.e_pgid = pgrp.pg_id;
    356 		eproc.e_jobc = pgrp.pg_jobc;
    357 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    358 			_kvm_err(kd, kd->program, "can't read session at %x",
    359 				pgrp.pg_session);
    360 			return (-1);
    361 		}
    362 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    363 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    364 				_kvm_err(kd, kd->program,
    365 					 "can't read tty at %x", sess.s_ttyp);
    366 				return (-1);
    367 			}
    368 			eproc.e_tdev = tty.t_dev;
    369 			eproc.e_tsess = tty.t_session;
    370 			if (tty.t_pgrp != NULL) {
    371 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    372 					_kvm_err(kd, kd->program,
    373 						 "can't read tpgrp at &x",
    374 						tty.t_pgrp);
    375 					return (-1);
    376 				}
    377 				eproc.e_tpgid = pgrp.pg_id;
    378 			} else
    379 				eproc.e_tpgid = -1;
    380 		} else
    381 			eproc.e_tdev = NODEV;
    382 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    383 		eproc.e_sid = sess.s_sid;
    384 		if (sess.s_leader == p)
    385 			eproc.e_flag |= EPROC_SLEADER;
    386 		if (proc.p_wmesg)
    387 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    388 			    eproc.e_wmesg, WMESGLEN);
    389 
    390 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    391 		    sizeof(eproc.e_vm));
    392 
    393 		eproc.e_xsize = eproc.e_xrssize = 0;
    394 		eproc.e_xccount = eproc.e_xswrss = 0;
    395 
    396 		switch (what) {
    397 
    398 		case KERN_PROC_PGRP:
    399 			if (eproc.e_pgid != (pid_t)arg)
    400 				continue;
    401 			break;
    402 
    403 		case KERN_PROC_TTY:
    404 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    405 			     eproc.e_tdev != (dev_t)arg)
    406 				continue;
    407 			break;
    408 		}
    409 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    410 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    411 		++bp;
    412 		++cnt;
    413 	}
    414 	return (cnt);
    415 }
    416 
    417 /*
    418  * Build proc info array by reading in proc list from a crash dump.
    419  * Return number of procs read.  maxcnt is the max we will read.
    420  */
    421 static int
    422 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
    423 	kvm_t *kd;
    424 	int what, arg;
    425 	u_long a_allproc;
    426 	u_long a_deadproc;
    427 	u_long a_zombproc;
    428 	int maxcnt;
    429 {
    430 	struct kinfo_proc *bp = kd->procbase;
    431 	int acnt, dcnt, zcnt;
    432 	struct proc *p;
    433 
    434 	if (KREAD(kd, a_allproc, &p)) {
    435 		_kvm_err(kd, kd->program, "cannot read allproc");
    436 		return (-1);
    437 	}
    438 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    439 	if (acnt < 0)
    440 		return (acnt);
    441 
    442 	if (KREAD(kd, a_deadproc, &p)) {
    443 		_kvm_err(kd, kd->program, "cannot read deadproc");
    444 		return (-1);
    445 	}
    446 
    447 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
    448 	if (dcnt < 0)
    449 		dcnt = 0;
    450 
    451 	if (KREAD(kd, a_zombproc, &p)) {
    452 		_kvm_err(kd, kd->program, "cannot read zombproc");
    453 		return (-1);
    454 	}
    455 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    456 	    maxcnt - (acnt + dcnt));
    457 	if (zcnt < 0)
    458 		zcnt = 0;
    459 
    460 	return (acnt + zcnt);
    461 }
    462 
    463 struct kinfo_proc2 *
    464 kvm_getproc2(kd, op, arg, esize, cnt)
    465 	kvm_t *kd;
    466 	int op, arg;
    467 	size_t esize;
    468 	int *cnt;
    469 {
    470 	size_t size;
    471 	int mib[6], st, nprocs;
    472 	struct user user;
    473 
    474 	if (esize < 0)
    475 		return NULL;
    476 
    477 	if (kd->procbase2 != NULL) {
    478 		free(kd->procbase2);
    479 		/*
    480 		 * Clear this pointer in case this call fails.  Otherwise,
    481 		 * kvm_close() will free it again.
    482 		 */
    483 		kd->procbase2 = NULL;
    484 	}
    485 
    486 	if (ISSYSCTL(kd)) {
    487 		size = 0;
    488 		mib[0] = CTL_KERN;
    489 		mib[1] = KERN_PROC2;
    490 		mib[2] = op;
    491 		mib[3] = arg;
    492 		mib[4] = esize;
    493 		mib[5] = 0;
    494 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
    495 		if (st == -1) {
    496 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    497 			return NULL;
    498 		}
    499 
    500 		mib[5] = size / esize;
    501 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
    502 		if (kd->procbase2 == NULL)
    503 			return NULL;
    504 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
    505 		if (st == -1) {
    506 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    507 			return NULL;
    508 		}
    509 		nprocs = size / esize;
    510 	} else {
    511 		char *kp2c;
    512 		struct kinfo_proc *kp;
    513 		struct kinfo_proc2 kp2, *kp2p;
    514 		int i;
    515 
    516 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    517 		if (kp == NULL)
    518 			return NULL;
    519 
    520 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
    521 		kp2c = (char *)kd->procbase2;
    522 		kp2p = &kp2;
    523 		for (i = 0; i < nprocs; i++, kp++) {
    524 			memset(kp2p, 0, sizeof(kp2));
    525 			kp2p->p_forw = PTRTOINT64(kp->kp_proc.p_forw);
    526 			kp2p->p_back = PTRTOINT64(kp->kp_proc.p_back);
    527 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
    528 
    529 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
    530 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
    531 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
    532 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
    533 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
    534 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
    535 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
    536 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
    537 			kp2p->p_tsess = 0;
    538 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
    539 
    540 			kp2p->p_eflag = 0;
    541 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    542 			kp2p->p_flag = kp->kp_proc.p_flag;
    543 
    544 			kp2p->p_pid = kp->kp_proc.p_pid;
    545 
    546 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    547 			kp2p->p_sid = kp->kp_eproc.e_sid;
    548 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    549 
    550 			kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
    551 
    552 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    553 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    554 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    555 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    556 
    557 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    558 			    MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    559 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    560 
    561 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    562 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    563 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    564 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
    565 
    566 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
    567 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
    568 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
    569 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
    570 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    571 			kp2p->p_swtime = kp->kp_proc.p_swtime;
    572 			kp2p->p_slptime = kp->kp_proc.p_slptime;
    573 #if 0 /* XXX thorpej */
    574 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    575 #else
    576 			kp2p->p_schedflags = 0;
    577 #endif
    578 
    579 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    580 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    581 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    582 
    583 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
    584 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    585 
    586 			kp2p->p_holdcnt = kp->kp_proc.p_holdcnt;
    587 
    588 			memcpy(&kp2p->p_siglist, &kp->kp_proc.p_siglist, sizeof(ki_sigset_t));
    589 			memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigmask, sizeof(ki_sigset_t));
    590 			memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigignore, sizeof(ki_sigset_t));
    591 			memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigcatch, sizeof(ki_sigset_t));
    592 
    593 			kp2p->p_stat = kp->kp_proc.p_stat;
    594 			kp2p->p_priority = kp->kp_proc.p_priority;
    595 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
    596 			kp2p->p_nice = kp->kp_proc.p_nice;
    597 
    598 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    599 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    600 
    601 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    602 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
    603 
    604 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
    605 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
    606 
    607 			strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
    608 
    609 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    610 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    611 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    612 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    613 
    614 			kp2p->p_eflag = kp->kp_eproc.e_flag;
    615 
    616 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
    617 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
    618 				kp2p->p_uvalid = 0;
    619 			} else {
    620 				kp2p->p_uvalid = 1;
    621 
    622 				kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec;
    623 				kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec;
    624 
    625 				kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec;
    626 				kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec;
    627 				kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec;
    628 				kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec;
    629 
    630 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
    631 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
    632 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
    633 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
    634 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
    635 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
    636 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
    637 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
    638 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
    639 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
    640 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
    641 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
    642 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
    643 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
    644 
    645 				kp2p->p_uctime_sec = user.u_stats.p_cru.ru_utime.tv_sec +
    646 				    user.u_stats.p_cru.ru_stime.tv_sec;
    647 				kp2p->p_uctime_usec = user.u_stats.p_cru.ru_utime.tv_usec +
    648 				    user.u_stats.p_cru.ru_stime.tv_usec;
    649 			}
    650 
    651 			memcpy(kp2c, &kp2, esize);
    652 			kp2c += esize;
    653 		}
    654 
    655 		free(kd->procbase);
    656 	}
    657 	*cnt = nprocs;
    658 	return (kd->procbase2);
    659 }
    660 
    661 struct kinfo_proc *
    662 kvm_getprocs(kd, op, arg, cnt)
    663 	kvm_t *kd;
    664 	int op, arg;
    665 	int *cnt;
    666 {
    667 	size_t size;
    668 	int mib[4], st, nprocs;
    669 
    670 	if (kd->procbase != NULL) {
    671 		free(kd->procbase);
    672 		/*
    673 		 * Clear this pointer in case this call fails.  Otherwise,
    674 		 * kvm_close() will free it again.
    675 		 */
    676 		kd->procbase = NULL;
    677 	}
    678 	if (ISKMEM(kd)) {
    679 		size = 0;
    680 		mib[0] = CTL_KERN;
    681 		mib[1] = KERN_PROC;
    682 		mib[2] = op;
    683 		mib[3] = arg;
    684 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    685 		if (st == -1) {
    686 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    687 			return NULL;
    688 		}
    689 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    690 		if (kd->procbase == NULL)
    691 			return NULL;
    692 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    693 		if (st == -1) {
    694 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    695 			return NULL;
    696 		}
    697 		if (size % sizeof(struct kinfo_proc) != 0) {
    698 			_kvm_err(kd, kd->program,
    699 				"proc size mismatch (%d total, %d chunks)",
    700 				size, sizeof(struct kinfo_proc));
    701 			return NULL;
    702 		}
    703 		nprocs = size / sizeof(struct kinfo_proc);
    704 	} else if (ISSYSCTL(kd)) {
    705 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
    706 		    "can't use kvm_getprocs");
    707 		return NULL;
    708 	} else {
    709 		struct nlist nl[5], *p;
    710 
    711 		nl[0].n_name = "_nprocs";
    712 		nl[1].n_name = "_allproc";
    713 		nl[2].n_name = "_deadproc";
    714 		nl[3].n_name = "_zombproc";
    715 		nl[4].n_name = NULL;
    716 
    717 		if (kvm_nlist(kd, nl) != 0) {
    718 			for (p = nl; p->n_type != 0; ++p)
    719 				;
    720 			_kvm_err(kd, kd->program,
    721 				 "%s: no such symbol", p->n_name);
    722 			return NULL;
    723 		}
    724 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    725 			_kvm_err(kd, kd->program, "can't read nprocs");
    726 			return NULL;
    727 		}
    728 		size = nprocs * sizeof(struct kinfo_proc);
    729 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    730 		if (kd->procbase == NULL)
    731 			return NULL;
    732 
    733 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    734 		    nl[2].n_value, nl[3].n_value, nprocs);
    735 		if (nprocs < 0)
    736 			return NULL;
    737 #ifdef notdef
    738 		size = nprocs * sizeof(struct kinfo_proc);
    739 		(void)realloc(kd->procbase, size);
    740 #endif
    741 	}
    742 	*cnt = nprocs;
    743 	return (kd->procbase);
    744 }
    745 
    746 void
    747 _kvm_freeprocs(kd)
    748 	kvm_t *kd;
    749 {
    750 	if (kd->procbase) {
    751 		free(kd->procbase);
    752 		kd->procbase = NULL;
    753 	}
    754 }
    755 
    756 void *
    757 _kvm_realloc(kd, p, n)
    758 	kvm_t *kd;
    759 	void *p;
    760 	size_t n;
    761 {
    762 	void *np = realloc(p, n);
    763 
    764 	if (np == NULL)
    765 		_kvm_err(kd, kd->program, "out of memory");
    766 	return (np);
    767 }
    768 
    769 /*
    770  * Read in an argument vector from the user address space of process p.
    771  * addr if the user-space base address of narg null-terminated contiguous
    772  * strings.  This is used to read in both the command arguments and
    773  * environment strings.  Read at most maxcnt characters of strings.
    774  */
    775 static char **
    776 kvm_argv(kd, p, addr, narg, maxcnt)
    777 	kvm_t *kd;
    778 	const struct miniproc *p;
    779 	u_long addr;
    780 	int narg;
    781 	int maxcnt;
    782 {
    783 	char *np, *cp, *ep, *ap;
    784 	u_long oaddr = (u_long)~0L;
    785 	u_long len;
    786 	size_t cc;
    787 	char **argv;
    788 
    789 	/*
    790 	 * Check that there aren't an unreasonable number of agruments,
    791 	 * and that the address is in user space.
    792 	 */
    793 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    794 		return NULL;
    795 
    796 	if (kd->argv == NULL) {
    797 		/*
    798 		 * Try to avoid reallocs.
    799 		 */
    800 		kd->argc = MAX(narg + 1, 32);
    801 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    802 						sizeof(*kd->argv));
    803 		if (kd->argv == NULL)
    804 			return NULL;
    805 	} else if (narg + 1 > kd->argc) {
    806 		kd->argc = MAX(2 * kd->argc, narg + 1);
    807 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    808 						sizeof(*kd->argv));
    809 		if (kd->argv == NULL)
    810 			return NULL;
    811 	}
    812 	if (kd->argspc == NULL) {
    813 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    814 		if (kd->argspc == NULL)
    815 			return NULL;
    816 		kd->arglen = kd->nbpg;
    817 	}
    818 	if (kd->argbuf == NULL) {
    819 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    820 		if (kd->argbuf == NULL)
    821 			return NULL;
    822 	}
    823 	cc = sizeof(char *) * narg;
    824 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    825 		return NULL;
    826 	ap = np = kd->argspc;
    827 	argv = kd->argv;
    828 	len = 0;
    829 	/*
    830 	 * Loop over pages, filling in the argument vector.
    831 	 */
    832 	while (argv < kd->argv + narg && *argv != NULL) {
    833 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    834 		if (addr != oaddr) {
    835 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    836 			    (size_t)kd->nbpg) != kd->nbpg)
    837 				return NULL;
    838 			oaddr = addr;
    839 		}
    840 		addr = (u_long)*argv & (kd->nbpg - 1);
    841 		cp = kd->argbuf + (size_t)addr;
    842 		cc = kd->nbpg - (size_t)addr;
    843 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    844 			cc = (size_t)(maxcnt - len);
    845 		ep = memchr(cp, '\0', cc);
    846 		if (ep != NULL)
    847 			cc = ep - cp + 1;
    848 		if (len + cc > kd->arglen) {
    849 			int off;
    850 			char **pp;
    851 			char *op = kd->argspc;
    852 
    853 			kd->arglen *= 2;
    854 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    855 			    (size_t)kd->arglen);
    856 			if (kd->argspc == NULL)
    857 				return NULL;
    858 			/*
    859 			 * Adjust argv pointers in case realloc moved
    860 			 * the string space.
    861 			 */
    862 			off = kd->argspc - op;
    863 			for (pp = kd->argv; pp < argv; pp++)
    864 				*pp += off;
    865 			ap += off;
    866 			np += off;
    867 		}
    868 		memcpy(np, cp, cc);
    869 		np += cc;
    870 		len += cc;
    871 		if (ep != NULL) {
    872 			*argv++ = ap;
    873 			ap = np;
    874 		} else
    875 			*argv += cc;
    876 		if (maxcnt > 0 && len >= maxcnt) {
    877 			/*
    878 			 * We're stopping prematurely.  Terminate the
    879 			 * current string.
    880 			 */
    881 			if (ep == NULL) {
    882 				*np = '\0';
    883 				*argv++ = ap;
    884 			}
    885 			break;
    886 		}
    887 	}
    888 	/* Make sure argv is terminated. */
    889 	*argv = NULL;
    890 	return (kd->argv);
    891 }
    892 
    893 static void
    894 ps_str_a(p, addr, n)
    895 	struct ps_strings *p;
    896 	u_long *addr;
    897 	int *n;
    898 {
    899 	*addr = (u_long)p->ps_argvstr;
    900 	*n = p->ps_nargvstr;
    901 }
    902 
    903 static void
    904 ps_str_e(p, addr, n)
    905 	struct ps_strings *p;
    906 	u_long *addr;
    907 	int *n;
    908 {
    909 	*addr = (u_long)p->ps_envstr;
    910 	*n = p->ps_nenvstr;
    911 }
    912 
    913 /*
    914  * Determine if the proc indicated by p is still active.
    915  * This test is not 100% foolproof in theory, but chances of
    916  * being wrong are very low.
    917  */
    918 static int
    919 proc_verify(kd, kernp, p)
    920 	kvm_t *kd;
    921 	u_long kernp;
    922 	const struct miniproc *p;
    923 {
    924 	struct proc kernproc;
    925 
    926 	/*
    927 	 * Just read in the whole proc.  It's not that big relative
    928 	 * to the cost of the read system call.
    929 	 */
    930 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
    931 	    sizeof(kernproc))
    932 		return 0;
    933 	return (p->p_pid == kernproc.p_pid &&
    934 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    935 }
    936 
    937 static char **
    938 kvm_doargv(kd, p, nchr, info)
    939 	kvm_t *kd;
    940 	const struct miniproc *p;
    941 	int nchr;
    942 	void (*info)(struct ps_strings *, u_long *, int *);
    943 {
    944 	char **ap;
    945 	u_long addr;
    946 	int cnt;
    947 	struct ps_strings arginfo;
    948 
    949 	/*
    950 	 * Pointers are stored at the top of the user stack.
    951 	 */
    952 	if (p->p_stat == SZOMB)
    953 		return NULL;
    954 	cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
    955 	    (void *)&arginfo, sizeof(arginfo));
    956 	if (cnt != sizeof(arginfo))
    957 		return NULL;
    958 
    959 	(*info)(&arginfo, &addr, &cnt);
    960 	if (cnt == 0)
    961 		return NULL;
    962 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    963 	/*
    964 	 * For live kernels, make sure this process didn't go away.
    965 	 */
    966 	if (ap != NULL && ISALIVE(kd) &&
    967 	    !proc_verify(kd, (u_long)p->p_paddr, p))
    968 		ap = NULL;
    969 	return (ap);
    970 }
    971 
    972 /*
    973  * Get the command args.  This code is now machine independent.
    974  */
    975 char **
    976 kvm_getargv(kd, kp, nchr)
    977 	kvm_t *kd;
    978 	const struct kinfo_proc *kp;
    979 	int nchr;
    980 {
    981 	struct miniproc p;
    982 
    983 	KPTOMINI(kp, &p);
    984 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
    985 }
    986 
    987 char **
    988 kvm_getenvv(kd, kp, nchr)
    989 	kvm_t *kd;
    990 	const struct kinfo_proc *kp;
    991 	int nchr;
    992 {
    993 	struct miniproc p;
    994 
    995 	KPTOMINI(kp, &p);
    996 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
    997 }
    998 
    999 static char **
   1000 kvm_doargv2(kd, pid, type, nchr)
   1001 	kvm_t *kd;
   1002 	pid_t pid;
   1003 	int type;
   1004 	int nchr;
   1005 {
   1006 	size_t bufs;
   1007 	int narg, newarglen, mib[4];
   1008 	char **ap, *bp, *endp;
   1009 
   1010 	/*
   1011 	 * Check that there aren't an unreasonable number of agruments.
   1012 	 */
   1013 	if (nchr > ARG_MAX)
   1014 		return NULL;
   1015 
   1016 	if (nchr == 0)
   1017 		nchr = ARG_MAX;
   1018 
   1019 	/* Get number of strings in argv */
   1020 	mib[0] = CTL_KERN;
   1021 	mib[1] = KERN_PROC_ARGS;
   1022 	mib[2] = pid;
   1023 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1024 	bufs = sizeof(narg);
   1025 	if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
   1026 		return NULL;
   1027 
   1028 	if (kd->argv == NULL) {
   1029 		/*
   1030 		 * Try to avoid reallocs.
   1031 		 */
   1032 		kd->argc = MAX(narg + 1, 32);
   1033 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
   1034 						sizeof(*kd->argv));
   1035 		if (kd->argv == NULL)
   1036 			return NULL;
   1037 	} else if (narg + 1 > kd->argc) {
   1038 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1039 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
   1040 						sizeof(*kd->argv));
   1041 		if (kd->argv == NULL)
   1042 			return NULL;
   1043 	}
   1044 
   1045 	newarglen = MIN(nchr, ARG_MAX);
   1046 	if (kd->arglen < newarglen) {
   1047 		if (kd->arglen == 0)
   1048 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
   1049 		else
   1050 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
   1051 			    newarglen);
   1052 		if (kd->argspc == NULL)
   1053 			return NULL;
   1054 		kd->arglen = newarglen;
   1055 	}
   1056 	memset(kd->argspc, 0, kd->arglen);	/* XXX necessary? */
   1057 
   1058 	mib[0] = CTL_KERN;
   1059 	mib[1] = KERN_PROC_ARGS;
   1060 	mib[2] = pid;
   1061 	mib[3] = type;
   1062 	bufs = kd->arglen;
   1063 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
   1064 		return NULL;
   1065 
   1066 	bp = kd->argspc;
   1067 	ap = kd->argv;
   1068 	endp = bp + MIN(nchr, bufs);
   1069 
   1070 	while (bp < endp) {
   1071 		*ap++ = bp;
   1072 		/* XXX: don't need following anymore, or stick check for max argc in above while loop? */
   1073 		if (ap >= kd->argv + kd->argc) {
   1074 			kd->argc *= 2;
   1075 			kd->argv = _kvm_realloc(kd, kd->argv,
   1076 			    kd->argc * sizeof(*kd->argv));
   1077 		}
   1078 		bp += strlen(bp) + 1;
   1079 	}
   1080 	*ap = NULL;
   1081 
   1082 	return (kd->argv);
   1083 }
   1084 
   1085 char **
   1086 kvm_getargv2(kd, kp, nchr)
   1087 	kvm_t *kd;
   1088 	const struct kinfo_proc2 *kp;
   1089 	int nchr;
   1090 {
   1091 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1092 }
   1093 
   1094 char **
   1095 kvm_getenvv2(kd, kp, nchr)
   1096 	kvm_t *kd;
   1097 	const struct kinfo_proc2 *kp;
   1098 	int nchr;
   1099 {
   1100 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1101 }
   1102 
   1103 /*
   1104  * Read from user space.  The user context is given by p.
   1105  */
   1106 static ssize_t
   1107 kvm_ureadm(kd, p, uva, buf, len)
   1108 	kvm_t *kd;
   1109 	const struct miniproc *p;
   1110 	u_long uva;
   1111 	char *buf;
   1112 	size_t len;
   1113 {
   1114 	char *cp;
   1115 
   1116 	cp = buf;
   1117 	while (len > 0) {
   1118 		size_t cc;
   1119 		char *dp;
   1120 		u_long cnt;
   1121 
   1122 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1123 		if (dp == NULL) {
   1124 			_kvm_err(kd, 0, "invalid address (%x)", uva);
   1125 			return 0;
   1126 		}
   1127 		cc = (size_t)MIN(cnt, len);
   1128 		memcpy(cp, dp, cc);
   1129 		cp += cc;
   1130 		uva += cc;
   1131 		len -= cc;
   1132 	}
   1133 	return (ssize_t)(cp - buf);
   1134 }
   1135 
   1136 ssize_t
   1137 kvm_uread(kd, p, uva, buf, len)
   1138 	kvm_t *kd;
   1139 	const struct proc *p;
   1140 	u_long uva;
   1141 	char *buf;
   1142 	size_t len;
   1143 {
   1144 	struct miniproc mp;
   1145 
   1146 	PTOMINI(p, &mp);
   1147 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1148 }
   1149