Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.42
      1 /*	$NetBSD: kvm_proc.c,v 1.42 2000/10/05 03:21:01 enami Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1989, 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software developed by the Computer Systems
     44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45  * BG 91-66 and contributed to Berkeley.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *	This product includes software developed by the University of
     58  *	California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 #if defined(LIBC_SCCS) && !defined(lint)
     78 #if 0
     79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80 #else
     81 __RCSID("$NetBSD: kvm_proc.c,v 1.42 2000/10/05 03:21:01 enami Exp $");
     82 #endif
     83 #endif /* LIBC_SCCS and not lint */
     84 
     85 /*
     86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87  * users of this code, so we've factored it out into a separate module.
     88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89  * most other applications are interested only in open/close/read/nlist).
     90  */
     91 
     92 #include <sys/param.h>
     93 #include <sys/user.h>
     94 #include <sys/proc.h>
     95 #include <sys/exec.h>
     96 #include <sys/stat.h>
     97 #include <sys/ioctl.h>
     98 #include <sys/tty.h>
     99 #include <stdlib.h>
    100 #include <string.h>
    101 #include <unistd.h>
    102 #include <nlist.h>
    103 #include <kvm.h>
    104 
    105 #include <uvm/uvm_extern.h>
    106 #include <uvm/uvm_amap.h>
    107 
    108 #include <sys/sysctl.h>
    109 
    110 #include <limits.h>
    111 #include <db.h>
    112 #include <paths.h>
    113 
    114 #include "kvm_private.h"
    115 
    116 /*
    117  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    118  */
    119 struct miniproc {
    120 	struct	vmspace *p_vmspace;
    121 	char	p_stat;
    122 	struct	proc *p_paddr;
    123 	pid_t	p_pid;
    124 };
    125 
    126 /*
    127  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    128  */
    129 #define PTOMINI(kp, p) \
    130 		do { \
    131 		(p)->p_stat = (kp)->p_stat; \
    132 		(p)->p_pid = (kp)->p_pid; \
    133 		(p)->p_paddr = NULL; \
    134 		(p)->p_vmspace = (kp)->p_vmspace; \
    135 	} while (/*CONSTCOND*/0);
    136 
    137 #define KPTOMINI(kp, p) \
    138 		do { \
    139 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    140 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    141 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    142 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    143 	} while (/*CONSTCOND*/0);
    144 
    145 #define KP2TOMINI(kp, p) \
    146 		do { \
    147 		(p)->p_stat = (kp)->p_stat; \
    148 		(p)->p_pid = (kp)->p_pid; \
    149 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    150 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    151 	} while (/*CONSTCOND*/0);
    152 
    153 
    154 #define	PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(void *)(foo))
    155 
    156 #define KREAD(kd, addr, obj) \
    157 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    158 
    159 /* XXX: What uses these two functions? */
    160 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
    161 		    u_long *));
    162 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    163 		    size_t));
    164 
    165 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    166 		    u_long *));
    167 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    168 		    char *, size_t));
    169 
    170 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
    171 		    int));
    172 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
    173 		    int));
    174 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
    175 		    void (*)(struct ps_strings *, u_long *, int *)));
    176 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
    177 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    178 		    struct kinfo_proc *, int));
    179 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
    180 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    181 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    182 
    183 
    184 static char *
    185 _kvm_ureadm(kd, p, va, cnt)
    186 	kvm_t *kd;
    187 	const struct miniproc *p;
    188 	u_long va;
    189 	u_long *cnt;
    190 {
    191 	int true = 1;
    192 	u_long addr, head;
    193 	u_long offset;
    194 	struct vm_map_entry vme;
    195 	struct vm_amap amap;
    196 	struct vm_anon *anonp, anon;
    197 	struct vm_page pg;
    198 	u_long slot;
    199 
    200 	if (kd->swapspc == NULL) {
    201 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    202 		if (kd->swapspc == NULL)
    203 			return NULL;
    204 	}
    205 
    206 	/*
    207 	 * Look through the address map for the memory object
    208 	 * that corresponds to the given virtual address.
    209 	 * The header just has the entire valid range.
    210 	 */
    211 	head = (u_long)&p->p_vmspace->vm_map.header;
    212 	addr = head;
    213 	while (true) {
    214 		if (KREAD(kd, addr, &vme))
    215 			return NULL;
    216 
    217 		if (va >= vme.start && va < vme.end &&
    218 		    vme.aref.ar_amap != NULL)
    219 			break;
    220 
    221 		addr = (u_long)vme.next;
    222 		if (addr == head)
    223 			return NULL;
    224 
    225 	}
    226 
    227 	/*
    228 	 * we found the map entry, now to find the object...
    229 	 */
    230 	if (vme.aref.ar_amap == NULL)
    231 		return NULL;
    232 
    233 	addr = (u_long)vme.aref.ar_amap;
    234 	if (KREAD(kd, addr, &amap))
    235 		return NULL;
    236 
    237 	offset = va - vme.start;
    238 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    239 	/* sanity-check slot number */
    240 	if (slot  > amap.am_nslot)
    241 		return NULL;
    242 
    243 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    244 	if (KREAD(kd, addr, &anonp))
    245 		return NULL;
    246 
    247 	addr = (u_long)anonp;
    248 	if (KREAD(kd, addr, &anon))
    249 		return NULL;
    250 
    251 	addr = (u_long)anon.u.an_page;
    252 	if (addr) {
    253 		if (KREAD(kd, addr, &pg))
    254 			return NULL;
    255 
    256 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    257 		    (off_t)pg.phys_addr) != kd->nbpg)
    258 			return NULL;
    259 	}
    260 	else {
    261 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    262 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    263 			return NULL;
    264 	}
    265 
    266 	/* Found the page. */
    267 	offset %= kd->nbpg;
    268 	*cnt = kd->nbpg - offset;
    269 	return (&kd->swapspc[(size_t)offset]);
    270 }
    271 
    272 char *
    273 _kvm_uread(kd, p, va, cnt)
    274 	kvm_t *kd;
    275 	const struct proc *p;
    276 	u_long va;
    277 	u_long *cnt;
    278 {
    279 	struct miniproc mp;
    280 
    281 	PTOMINI(p, &mp);
    282 	return (_kvm_ureadm(kd, &mp, va, cnt));
    283 }
    284 
    285 /*
    286  * Read proc's from memory file into buffer bp, which has space to hold
    287  * at most maxcnt procs.
    288  */
    289 static int
    290 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    291 	kvm_t *kd;
    292 	int what, arg;
    293 	struct proc *p;
    294 	struct kinfo_proc *bp;
    295 	int maxcnt;
    296 {
    297 	int cnt = 0;
    298 	struct eproc eproc;
    299 	struct pgrp pgrp;
    300 	struct session sess;
    301 	struct tty tty;
    302 	struct proc proc;
    303 
    304 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    305 		if (KREAD(kd, (u_long)p, &proc)) {
    306 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    307 			return (-1);
    308 		}
    309 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    310 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    311 			    &eproc.e_ucred)) {
    312 				_kvm_err(kd, kd->program,
    313 				    "can't read proc credentials at %p", p);
    314 				return -1;
    315 			}
    316 
    317 		switch(what) {
    318 
    319 		case KERN_PROC_PID:
    320 			if (proc.p_pid != (pid_t)arg)
    321 				continue;
    322 			break;
    323 
    324 		case KERN_PROC_UID:
    325 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    326 				continue;
    327 			break;
    328 
    329 		case KERN_PROC_RUID:
    330 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    331 				continue;
    332 			break;
    333 		}
    334 		/*
    335 		 * We're going to add another proc to the set.  If this
    336 		 * will overflow the buffer, assume the reason is because
    337 		 * nprocs (or the proc list) is corrupt and declare an error.
    338 		 */
    339 		if (cnt >= maxcnt) {
    340 			_kvm_err(kd, kd->program, "nprocs corrupt");
    341 			return (-1);
    342 		}
    343 		/*
    344 		 * gather eproc
    345 		 */
    346 		eproc.e_paddr = p;
    347 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    348 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    349 				 proc.p_pgrp);
    350 			return (-1);
    351 		}
    352 		eproc.e_sess = pgrp.pg_session;
    353 		eproc.e_pgid = pgrp.pg_id;
    354 		eproc.e_jobc = pgrp.pg_jobc;
    355 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    356 			_kvm_err(kd, kd->program, "can't read session at %p",
    357 				pgrp.pg_session);
    358 			return (-1);
    359 		}
    360 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    361 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    362 				_kvm_err(kd, kd->program,
    363 					 "can't read tty at %p", sess.s_ttyp);
    364 				return (-1);
    365 			}
    366 			eproc.e_tdev = tty.t_dev;
    367 			eproc.e_tsess = tty.t_session;
    368 			if (tty.t_pgrp != NULL) {
    369 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    370 					_kvm_err(kd, kd->program,
    371 						 "can't read tpgrp at %p",
    372 						tty.t_pgrp);
    373 					return (-1);
    374 				}
    375 				eproc.e_tpgid = pgrp.pg_id;
    376 			} else
    377 				eproc.e_tpgid = -1;
    378 		} else
    379 			eproc.e_tdev = NODEV;
    380 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    381 		eproc.e_sid = sess.s_sid;
    382 		if (sess.s_leader == p)
    383 			eproc.e_flag |= EPROC_SLEADER;
    384 		if (proc.p_wmesg)
    385 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    386 			    eproc.e_wmesg, WMESGLEN);
    387 
    388 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    389 		    sizeof(eproc.e_vm));
    390 
    391 		eproc.e_xsize = eproc.e_xrssize = 0;
    392 		eproc.e_xccount = eproc.e_xswrss = 0;
    393 
    394 		switch (what) {
    395 
    396 		case KERN_PROC_PGRP:
    397 			if (eproc.e_pgid != (pid_t)arg)
    398 				continue;
    399 			break;
    400 
    401 		case KERN_PROC_TTY:
    402 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    403 			     eproc.e_tdev != (dev_t)arg)
    404 				continue;
    405 			break;
    406 		}
    407 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    408 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    409 		++bp;
    410 		++cnt;
    411 	}
    412 	return (cnt);
    413 }
    414 
    415 /*
    416  * Build proc info array by reading in proc list from a crash dump.
    417  * Return number of procs read.  maxcnt is the max we will read.
    418  */
    419 static int
    420 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
    421 	kvm_t *kd;
    422 	int what, arg;
    423 	u_long a_allproc;
    424 	u_long a_deadproc;
    425 	u_long a_zombproc;
    426 	int maxcnt;
    427 {
    428 	struct kinfo_proc *bp = kd->procbase;
    429 	int acnt, dcnt, zcnt;
    430 	struct proc *p;
    431 
    432 	if (KREAD(kd, a_allproc, &p)) {
    433 		_kvm_err(kd, kd->program, "cannot read allproc");
    434 		return (-1);
    435 	}
    436 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    437 	if (acnt < 0)
    438 		return (acnt);
    439 
    440 	if (KREAD(kd, a_deadproc, &p)) {
    441 		_kvm_err(kd, kd->program, "cannot read deadproc");
    442 		return (-1);
    443 	}
    444 
    445 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
    446 	if (dcnt < 0)
    447 		dcnt = 0;
    448 
    449 	if (KREAD(kd, a_zombproc, &p)) {
    450 		_kvm_err(kd, kd->program, "cannot read zombproc");
    451 		return (-1);
    452 	}
    453 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    454 	    maxcnt - (acnt + dcnt));
    455 	if (zcnt < 0)
    456 		zcnt = 0;
    457 
    458 	return (acnt + zcnt);
    459 }
    460 
    461 struct kinfo_proc2 *
    462 kvm_getproc2(kd, op, arg, esize, cnt)
    463 	kvm_t *kd;
    464 	int op, arg;
    465 	size_t esize;
    466 	int *cnt;
    467 {
    468 	size_t size;
    469 	int mib[6], st, nprocs;
    470 	struct user user;
    471 
    472 	if (kd->procbase2 != NULL) {
    473 		free(kd->procbase2);
    474 		/*
    475 		 * Clear this pointer in case this call fails.  Otherwise,
    476 		 * kvm_close() will free it again.
    477 		 */
    478 		kd->procbase2 = NULL;
    479 	}
    480 
    481 	if (ISSYSCTL(kd)) {
    482 		size = 0;
    483 		mib[0] = CTL_KERN;
    484 		mib[1] = KERN_PROC2;
    485 		mib[2] = op;
    486 		mib[3] = arg;
    487 		mib[4] = esize;
    488 		mib[5] = 0;
    489 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
    490 		if (st == -1) {
    491 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    492 			return NULL;
    493 		}
    494 
    495 		mib[5] = size / esize;
    496 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
    497 		if (kd->procbase2 == NULL)
    498 			return NULL;
    499 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
    500 		if (st == -1) {
    501 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    502 			return NULL;
    503 		}
    504 		nprocs = size / esize;
    505 	} else {
    506 		char *kp2c;
    507 		struct kinfo_proc *kp;
    508 		struct kinfo_proc2 kp2, *kp2p;
    509 		int i;
    510 
    511 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    512 		if (kp == NULL)
    513 			return NULL;
    514 
    515 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
    516 		kp2c = (char *)(void *)kd->procbase2;
    517 		kp2p = &kp2;
    518 		for (i = 0; i < nprocs; i++, kp++) {
    519 			memset(kp2p, 0, sizeof(kp2));
    520 			kp2p->p_forw = PTRTOINT64(kp->kp_proc.p_forw);
    521 			kp2p->p_back = PTRTOINT64(kp->kp_proc.p_back);
    522 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
    523 
    524 			kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
    525 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
    526 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
    527 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
    528 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
    529 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
    530 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
    531 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
    532 			kp2p->p_tsess = 0;
    533 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
    534 
    535 			kp2p->p_eflag = 0;
    536 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    537 			kp2p->p_flag = kp->kp_proc.p_flag;
    538 
    539 			kp2p->p_pid = kp->kp_proc.p_pid;
    540 
    541 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    542 			kp2p->p_sid = kp->kp_eproc.e_sid;
    543 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    544 
    545 			kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
    546 
    547 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    548 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    549 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    550 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    551 
    552 			/*CONSTCOND*/
    553 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    554 			    MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    555 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    556 
    557 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    558 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    559 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    560 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
    561 
    562 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
    563 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
    564 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
    565 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
    566 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    567 			kp2p->p_swtime = kp->kp_proc.p_swtime;
    568 			kp2p->p_slptime = kp->kp_proc.p_slptime;
    569 #if 0 /* XXX thorpej */
    570 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    571 #else
    572 			kp2p->p_schedflags = 0;
    573 #endif
    574 
    575 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    576 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    577 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    578 
    579 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
    580 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    581 
    582 			kp2p->p_holdcnt = kp->kp_proc.p_holdcnt;
    583 
    584 			memcpy(&kp2p->p_siglist, &kp->kp_proc.p_siglist, sizeof(ki_sigset_t));
    585 			memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigmask, sizeof(ki_sigset_t));
    586 			memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigignore, sizeof(ki_sigset_t));
    587 			memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigcatch, sizeof(ki_sigset_t));
    588 
    589 			kp2p->p_stat = kp->kp_proc.p_stat;
    590 			kp2p->p_priority = kp->kp_proc.p_priority;
    591 			kp2p->p_usrpri = kp->kp_proc.p_usrpri;
    592 			kp2p->p_nice = kp->kp_proc.p_nice;
    593 
    594 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    595 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    596 
    597 			/*CONSTCOND*/
    598 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    599 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
    600 
    601 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
    602 			kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
    603 
    604 			strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
    605 
    606 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    607 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    608 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    609 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    610 
    611 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    612 
    613 			if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
    614 			    KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
    615 				kp2p->p_uvalid = 0;
    616 			} else {
    617 				kp2p->p_uvalid = 1;
    618 
    619 				kp2p->p_ustart_sec = (u_int32_t)
    620 				    user.u_stats.p_start.tv_sec;
    621 				kp2p->p_ustart_usec = (u_int32_t)
    622 				    user.u_stats.p_start.tv_usec;
    623 
    624 				kp2p->p_uutime_sec = (u_int32_t)
    625 				    user.u_stats.p_ru.ru_utime.tv_sec;
    626 				kp2p->p_uutime_usec = (u_int32_t)
    627 				    user.u_stats.p_ru.ru_utime.tv_usec;
    628 				kp2p->p_ustime_sec = (u_int32_t)
    629 				    user.u_stats.p_ru.ru_stime.tv_sec;
    630 				kp2p->p_ustime_usec = (u_int32_t)
    631 				    user.u_stats.p_ru.ru_stime.tv_usec;
    632 
    633 				kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
    634 				kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
    635 				kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
    636 				kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
    637 				kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
    638 				kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
    639 				kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
    640 				kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
    641 				kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
    642 				kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
    643 				kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
    644 				kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
    645 				kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
    646 				kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
    647 
    648 				kp2p->p_uctime_sec = (u_int32_t)
    649 				    (user.u_stats.p_cru.ru_utime.tv_sec +
    650 				    user.u_stats.p_cru.ru_stime.tv_sec);
    651 				kp2p->p_uctime_usec = (u_int32_t)
    652 				    (user.u_stats.p_cru.ru_utime.tv_usec +
    653 				    user.u_stats.p_cru.ru_stime.tv_usec);
    654 			}
    655 
    656 			memcpy(kp2c, &kp2, esize);
    657 			kp2c += esize;
    658 		}
    659 
    660 		free(kd->procbase);
    661 	}
    662 	*cnt = nprocs;
    663 	return (kd->procbase2);
    664 }
    665 
    666 struct kinfo_proc *
    667 kvm_getprocs(kd, op, arg, cnt)
    668 	kvm_t *kd;
    669 	int op, arg;
    670 	int *cnt;
    671 {
    672 	size_t size;
    673 	int mib[4], st, nprocs;
    674 
    675 	if (kd->procbase != NULL) {
    676 		free(kd->procbase);
    677 		/*
    678 		 * Clear this pointer in case this call fails.  Otherwise,
    679 		 * kvm_close() will free it again.
    680 		 */
    681 		kd->procbase = NULL;
    682 	}
    683 	if (ISKMEM(kd)) {
    684 		size = 0;
    685 		mib[0] = CTL_KERN;
    686 		mib[1] = KERN_PROC;
    687 		mib[2] = op;
    688 		mib[3] = arg;
    689 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    690 		if (st == -1) {
    691 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    692 			return NULL;
    693 		}
    694 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    695 		if (kd->procbase == NULL)
    696 			return NULL;
    697 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    698 		if (st == -1) {
    699 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    700 			return NULL;
    701 		}
    702 		if (size % sizeof(struct kinfo_proc) != 0) {
    703 			_kvm_err(kd, kd->program,
    704 			    "proc size mismatch (%lu total, %lu chunks)",
    705 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    706 			return NULL;
    707 		}
    708 		nprocs = size / sizeof(struct kinfo_proc);
    709 	} else if (ISSYSCTL(kd)) {
    710 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
    711 		    "can't use kvm_getprocs");
    712 		return NULL;
    713 	} else {
    714 		struct nlist nl[5], *p;
    715 
    716 		nl[0].n_name = "_nprocs";
    717 		nl[1].n_name = "_allproc";
    718 		nl[2].n_name = "_deadproc";
    719 		nl[3].n_name = "_zombproc";
    720 		nl[4].n_name = NULL;
    721 
    722 		if (kvm_nlist(kd, nl) != 0) {
    723 			for (p = nl; p->n_type != 0; ++p)
    724 				;
    725 			_kvm_err(kd, kd->program,
    726 				 "%s: no such symbol", p->n_name);
    727 			return NULL;
    728 		}
    729 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    730 			_kvm_err(kd, kd->program, "can't read nprocs");
    731 			return NULL;
    732 		}
    733 		size = nprocs * sizeof(struct kinfo_proc);
    734 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    735 		if (kd->procbase == NULL)
    736 			return NULL;
    737 
    738 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    739 		    nl[2].n_value, nl[3].n_value, nprocs);
    740 		if (nprocs < 0)
    741 			return NULL;
    742 #ifdef notdef
    743 		size = nprocs * sizeof(struct kinfo_proc);
    744 		(void)realloc(kd->procbase, size);
    745 #endif
    746 	}
    747 	*cnt = nprocs;
    748 	return (kd->procbase);
    749 }
    750 
    751 void
    752 _kvm_freeprocs(kd)
    753 	kvm_t *kd;
    754 {
    755 	if (kd->procbase) {
    756 		free(kd->procbase);
    757 		kd->procbase = NULL;
    758 	}
    759 }
    760 
    761 void *
    762 _kvm_realloc(kd, p, n)
    763 	kvm_t *kd;
    764 	void *p;
    765 	size_t n;
    766 {
    767 	void *np = realloc(p, n);
    768 
    769 	if (np == NULL)
    770 		_kvm_err(kd, kd->program, "out of memory");
    771 	return (np);
    772 }
    773 
    774 /*
    775  * Read in an argument vector from the user address space of process p.
    776  * addr if the user-space base address of narg null-terminated contiguous
    777  * strings.  This is used to read in both the command arguments and
    778  * environment strings.  Read at most maxcnt characters of strings.
    779  */
    780 static char **
    781 kvm_argv(kd, p, addr, narg, maxcnt)
    782 	kvm_t *kd;
    783 	const struct miniproc *p;
    784 	u_long addr;
    785 	int narg;
    786 	int maxcnt;
    787 {
    788 	char *np, *cp, *ep, *ap;
    789 	u_long oaddr = (u_long)~0L;
    790 	u_long len;
    791 	size_t cc;
    792 	char **argv;
    793 
    794 	/*
    795 	 * Check that there aren't an unreasonable number of agruments,
    796 	 * and that the address is in user space.
    797 	 */
    798 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    799 		return NULL;
    800 
    801 	if (kd->argv == NULL) {
    802 		/*
    803 		 * Try to avoid reallocs.
    804 		 */
    805 		kd->argc = MAX(narg + 1, 32);
    806 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    807 						sizeof(*kd->argv));
    808 		if (kd->argv == NULL)
    809 			return NULL;
    810 	} else if (narg + 1 > kd->argc) {
    811 		kd->argc = MAX(2 * kd->argc, narg + 1);
    812 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    813 						sizeof(*kd->argv));
    814 		if (kd->argv == NULL)
    815 			return NULL;
    816 	}
    817 	if (kd->argspc == NULL) {
    818 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    819 		if (kd->argspc == NULL)
    820 			return NULL;
    821 		kd->arglen = kd->nbpg;
    822 	}
    823 	if (kd->argbuf == NULL) {
    824 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    825 		if (kd->argbuf == NULL)
    826 			return NULL;
    827 	}
    828 	cc = sizeof(char *) * narg;
    829 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    830 		return NULL;
    831 	ap = np = kd->argspc;
    832 	argv = kd->argv;
    833 	len = 0;
    834 	/*
    835 	 * Loop over pages, filling in the argument vector.
    836 	 */
    837 	while (argv < kd->argv + narg && *argv != NULL) {
    838 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    839 		if (addr != oaddr) {
    840 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    841 			    (size_t)kd->nbpg) != kd->nbpg)
    842 				return NULL;
    843 			oaddr = addr;
    844 		}
    845 		addr = (u_long)*argv & (kd->nbpg - 1);
    846 		cp = kd->argbuf + (size_t)addr;
    847 		cc = kd->nbpg - (size_t)addr;
    848 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    849 			cc = (size_t)(maxcnt - len);
    850 		ep = memchr(cp, '\0', cc);
    851 		if (ep != NULL)
    852 			cc = ep - cp + 1;
    853 		if (len + cc > kd->arglen) {
    854 			int off;
    855 			char **pp;
    856 			char *op = kd->argspc;
    857 
    858 			kd->arglen *= 2;
    859 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    860 			    (size_t)kd->arglen);
    861 			if (kd->argspc == NULL)
    862 				return NULL;
    863 			/*
    864 			 * Adjust argv pointers in case realloc moved
    865 			 * the string space.
    866 			 */
    867 			off = kd->argspc - op;
    868 			for (pp = kd->argv; pp < argv; pp++)
    869 				*pp += off;
    870 			ap += off;
    871 			np += off;
    872 		}
    873 		memcpy(np, cp, cc);
    874 		np += cc;
    875 		len += cc;
    876 		if (ep != NULL) {
    877 			*argv++ = ap;
    878 			ap = np;
    879 		} else
    880 			*argv += cc;
    881 		if (maxcnt > 0 && len >= maxcnt) {
    882 			/*
    883 			 * We're stopping prematurely.  Terminate the
    884 			 * current string.
    885 			 */
    886 			if (ep == NULL) {
    887 				*np = '\0';
    888 				*argv++ = ap;
    889 			}
    890 			break;
    891 		}
    892 	}
    893 	/* Make sure argv is terminated. */
    894 	*argv = NULL;
    895 	return (kd->argv);
    896 }
    897 
    898 static void
    899 ps_str_a(p, addr, n)
    900 	struct ps_strings *p;
    901 	u_long *addr;
    902 	int *n;
    903 {
    904 	*addr = (u_long)p->ps_argvstr;
    905 	*n = p->ps_nargvstr;
    906 }
    907 
    908 static void
    909 ps_str_e(p, addr, n)
    910 	struct ps_strings *p;
    911 	u_long *addr;
    912 	int *n;
    913 {
    914 	*addr = (u_long)p->ps_envstr;
    915 	*n = p->ps_nenvstr;
    916 }
    917 
    918 /*
    919  * Determine if the proc indicated by p is still active.
    920  * This test is not 100% foolproof in theory, but chances of
    921  * being wrong are very low.
    922  */
    923 static int
    924 proc_verify(kd, kernp, p)
    925 	kvm_t *kd;
    926 	u_long kernp;
    927 	const struct miniproc *p;
    928 {
    929 	struct proc kernproc;
    930 
    931 	/*
    932 	 * Just read in the whole proc.  It's not that big relative
    933 	 * to the cost of the read system call.
    934 	 */
    935 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
    936 	    sizeof(kernproc))
    937 		return 0;
    938 	return (p->p_pid == kernproc.p_pid &&
    939 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    940 }
    941 
    942 static char **
    943 kvm_doargv(kd, p, nchr, info)
    944 	kvm_t *kd;
    945 	const struct miniproc *p;
    946 	int nchr;
    947 	void (*info)(struct ps_strings *, u_long *, int *);
    948 {
    949 	char **ap;
    950 	u_long addr;
    951 	int cnt;
    952 	struct ps_strings arginfo;
    953 
    954 	/*
    955 	 * Pointers are stored at the top of the user stack.
    956 	 */
    957 	if (p->p_stat == SZOMB)
    958 		return NULL;
    959 	cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
    960 	    (void *)&arginfo, sizeof(arginfo));
    961 	if (cnt != sizeof(arginfo))
    962 		return NULL;
    963 
    964 	(*info)(&arginfo, &addr, &cnt);
    965 	if (cnt == 0)
    966 		return NULL;
    967 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    968 	/*
    969 	 * For live kernels, make sure this process didn't go away.
    970 	 */
    971 	if (ap != NULL && ISALIVE(kd) &&
    972 	    !proc_verify(kd, (u_long)p->p_paddr, p))
    973 		ap = NULL;
    974 	return (ap);
    975 }
    976 
    977 /*
    978  * Get the command args.  This code is now machine independent.
    979  */
    980 char **
    981 kvm_getargv(kd, kp, nchr)
    982 	kvm_t *kd;
    983 	const struct kinfo_proc *kp;
    984 	int nchr;
    985 {
    986 	struct miniproc p;
    987 
    988 	KPTOMINI(kp, &p);
    989 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
    990 }
    991 
    992 char **
    993 kvm_getenvv(kd, kp, nchr)
    994 	kvm_t *kd;
    995 	const struct kinfo_proc *kp;
    996 	int nchr;
    997 {
    998 	struct miniproc p;
    999 
   1000 	KPTOMINI(kp, &p);
   1001 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1002 }
   1003 
   1004 static char **
   1005 kvm_doargv2(kd, pid, type, nchr)
   1006 	kvm_t *kd;
   1007 	pid_t pid;
   1008 	int type;
   1009 	int nchr;
   1010 {
   1011 	size_t bufs;
   1012 	int narg, mib[4];
   1013 	size_t newarglen;
   1014 	char **ap, *bp, *endp;
   1015 
   1016 	/*
   1017 	 * Check that there aren't an unreasonable number of agruments.
   1018 	 */
   1019 	if (nchr > ARG_MAX)
   1020 		return NULL;
   1021 
   1022 	if (nchr == 0)
   1023 		nchr = ARG_MAX;
   1024 
   1025 	/* Get number of strings in argv */
   1026 	mib[0] = CTL_KERN;
   1027 	mib[1] = KERN_PROC_ARGS;
   1028 	mib[2] = pid;
   1029 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1030 	bufs = sizeof(narg);
   1031 	if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
   1032 		return NULL;
   1033 
   1034 	if (kd->argv == NULL) {
   1035 		/*
   1036 		 * Try to avoid reallocs.
   1037 		 */
   1038 		kd->argc = MAX(narg + 1, 32);
   1039 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
   1040 						sizeof(*kd->argv));
   1041 		if (kd->argv == NULL)
   1042 			return NULL;
   1043 	} else if (narg + 1 > kd->argc) {
   1044 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1045 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
   1046 						sizeof(*kd->argv));
   1047 		if (kd->argv == NULL)
   1048 			return NULL;
   1049 	}
   1050 
   1051 	newarglen = MIN(nchr, ARG_MAX);
   1052 	if (kd->arglen < newarglen) {
   1053 		if (kd->arglen == 0)
   1054 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
   1055 		else
   1056 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
   1057 			    newarglen);
   1058 		if (kd->argspc == NULL)
   1059 			return NULL;
   1060 		kd->arglen = newarglen;
   1061 	}
   1062 	memset(kd->argspc, 0, (size_t)kd->arglen);	/* XXX necessary? */
   1063 
   1064 	mib[0] = CTL_KERN;
   1065 	mib[1] = KERN_PROC_ARGS;
   1066 	mib[2] = pid;
   1067 	mib[3] = type;
   1068 	bufs = kd->arglen;
   1069 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
   1070 		return NULL;
   1071 
   1072 	bp = kd->argspc;
   1073 	ap = kd->argv;
   1074 	endp = bp + MIN(nchr, bufs);
   1075 
   1076 	while (bp < endp) {
   1077 		*ap++ = bp;
   1078 		/* XXX: don't need following anymore, or stick check for max argc in above while loop? */
   1079 		if (ap >= kd->argv + kd->argc) {
   1080 			kd->argc *= 2;
   1081 			kd->argv = _kvm_realloc(kd, kd->argv,
   1082 			    kd->argc * sizeof(*kd->argv));
   1083 		}
   1084 		bp += strlen(bp) + 1;
   1085 	}
   1086 	*ap = NULL;
   1087 
   1088 	return (kd->argv);
   1089 }
   1090 
   1091 char **
   1092 kvm_getargv2(kd, kp, nchr)
   1093 	kvm_t *kd;
   1094 	const struct kinfo_proc2 *kp;
   1095 	int nchr;
   1096 {
   1097 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1098 }
   1099 
   1100 char **
   1101 kvm_getenvv2(kd, kp, nchr)
   1102 	kvm_t *kd;
   1103 	const struct kinfo_proc2 *kp;
   1104 	int nchr;
   1105 {
   1106 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1107 }
   1108 
   1109 /*
   1110  * Read from user space.  The user context is given by p.
   1111  */
   1112 static ssize_t
   1113 kvm_ureadm(kd, p, uva, buf, len)
   1114 	kvm_t *kd;
   1115 	const struct miniproc *p;
   1116 	u_long uva;
   1117 	char *buf;
   1118 	size_t len;
   1119 {
   1120 	char *cp;
   1121 
   1122 	cp = buf;
   1123 	while (len > 0) {
   1124 		size_t cc;
   1125 		char *dp;
   1126 		u_long cnt;
   1127 
   1128 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1129 		if (dp == NULL) {
   1130 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1131 			return 0;
   1132 		}
   1133 		cc = (size_t)MIN(cnt, len);
   1134 		memcpy(cp, dp, cc);
   1135 		cp += cc;
   1136 		uva += cc;
   1137 		len -= cc;
   1138 	}
   1139 	return (ssize_t)(cp - buf);
   1140 }
   1141 
   1142 ssize_t
   1143 kvm_uread(kd, p, uva, buf, len)
   1144 	kvm_t *kd;
   1145 	const struct proc *p;
   1146 	u_long uva;
   1147 	char *buf;
   1148 	size_t len;
   1149 {
   1150 	struct miniproc mp;
   1151 
   1152 	PTOMINI(p, &mp);
   1153 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1154 }
   1155