kvm_proc.c revision 1.45.2.3 1 /* $NetBSD: kvm_proc.c,v 1.45.2.3 2002/04/23 22:03:39 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.45.2.3 2002/04/23 22:03:39 nathanw Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84
85 /*
86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
87 * users of this code, so we've factored it out into a separate module.
88 * Thus, we keep this grunge out of the other kvm applications (i.e.,
89 * most other applications are interested only in open/close/read/nlist).
90 */
91
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/lwp.h>
95 #include <sys/proc.h>
96 #include <sys/exec.h>
97 #include <sys/stat.h>
98 #include <sys/ioctl.h>
99 #include <sys/tty.h>
100 #include <stdlib.h>
101 #include <string.h>
102 #include <unistd.h>
103 #include <nlist.h>
104 #include <kvm.h>
105
106 #include <uvm/uvm_extern.h>
107 #include <uvm/uvm_amap.h>
108
109 #include <sys/sysctl.h>
110
111 #include <limits.h>
112 #include <db.h>
113 #include <paths.h>
114
115 #include "kvm_private.h"
116
117 /*
118 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
119 */
120 struct miniproc {
121 struct vmspace *p_vmspace;
122 char p_stat;
123 struct proc *p_paddr;
124 pid_t p_pid;
125 };
126
127 /*
128 * Convert from struct proc and kinfo_proc{,2} to miniproc.
129 */
130 #define PTOMINI(kp, p) \
131 do { \
132 (p)->p_stat = (kp)->p_stat; \
133 (p)->p_pid = (kp)->p_pid; \
134 (p)->p_paddr = NULL; \
135 (p)->p_vmspace = (kp)->p_vmspace; \
136 } while (/*CONSTCOND*/0);
137
138 #define KPTOMINI(kp, p) \
139 do { \
140 (p)->p_stat = (kp)->kp_proc.p_stat; \
141 (p)->p_pid = (kp)->kp_proc.p_pid; \
142 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
143 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
144 } while (/*CONSTCOND*/0);
145
146 #define KP2TOMINI(kp, p) \
147 do { \
148 (p)->p_stat = (kp)->p_stat; \
149 (p)->p_pid = (kp)->p_pid; \
150 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
151 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
152 } while (/*CONSTCOND*/0);
153
154
155 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(void *)(foo))
156
157 #define KREAD(kd, addr, obj) \
158 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
159
160 /* XXX: What uses these two functions? */
161 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
162 u_long *));
163 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
164 size_t));
165
166 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
167 u_long *));
168 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
169 char *, size_t));
170
171 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
172 int));
173 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
174 int));
175 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
176 void (*)(struct ps_strings *, u_long *, int *)));
177 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
178 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
179 struct kinfo_proc *, int));
180 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
181 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
182 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
183
184
185 static char *
186 _kvm_ureadm(kd, p, va, cnt)
187 kvm_t *kd;
188 const struct miniproc *p;
189 u_long va;
190 u_long *cnt;
191 {
192 int true = 1;
193 u_long addr, head;
194 u_long offset;
195 struct vm_map_entry vme;
196 struct vm_amap amap;
197 struct vm_anon *anonp, anon;
198 struct vm_page pg;
199 u_long slot;
200
201 if (kd->swapspc == NULL) {
202 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
203 if (kd->swapspc == NULL)
204 return NULL;
205 }
206
207 /*
208 * Look through the address map for the memory object
209 * that corresponds to the given virtual address.
210 * The header just has the entire valid range.
211 */
212 head = (u_long)&p->p_vmspace->vm_map.header;
213 addr = head;
214 while (true) {
215 if (KREAD(kd, addr, &vme))
216 return NULL;
217
218 if (va >= vme.start && va < vme.end &&
219 vme.aref.ar_amap != NULL)
220 break;
221
222 addr = (u_long)vme.next;
223 if (addr == head)
224 return NULL;
225
226 }
227
228 /*
229 * we found the map entry, now to find the object...
230 */
231 if (vme.aref.ar_amap == NULL)
232 return NULL;
233
234 addr = (u_long)vme.aref.ar_amap;
235 if (KREAD(kd, addr, &amap))
236 return NULL;
237
238 offset = va - vme.start;
239 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
240 /* sanity-check slot number */
241 if (slot > amap.am_nslot)
242 return NULL;
243
244 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
245 if (KREAD(kd, addr, &anonp))
246 return NULL;
247
248 addr = (u_long)anonp;
249 if (KREAD(kd, addr, &anon))
250 return NULL;
251
252 addr = (u_long)anon.u.an_page;
253 if (addr) {
254 if (KREAD(kd, addr, &pg))
255 return NULL;
256
257 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
258 (off_t)pg.phys_addr) != kd->nbpg)
259 return NULL;
260 }
261 else {
262 if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
263 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
264 return NULL;
265 }
266
267 /* Found the page. */
268 offset %= kd->nbpg;
269 *cnt = kd->nbpg - offset;
270 return (&kd->swapspc[(size_t)offset]);
271 }
272
273 char *
274 _kvm_uread(kd, p, va, cnt)
275 kvm_t *kd;
276 const struct proc *p;
277 u_long va;
278 u_long *cnt;
279 {
280 struct miniproc mp;
281
282 PTOMINI(p, &mp);
283 return (_kvm_ureadm(kd, &mp, va, cnt));
284 }
285
286 /*
287 * Read proc's from memory file into buffer bp, which has space to hold
288 * at most maxcnt procs.
289 */
290 static int
291 kvm_proclist(kd, what, arg, p, bp, maxcnt)
292 kvm_t *kd;
293 int what, arg;
294 struct proc *p;
295 struct kinfo_proc *bp;
296 int maxcnt;
297 {
298 int cnt = 0;
299 int nlwps;
300 struct kinfo_lwp *kl;
301 struct eproc eproc;
302 struct pgrp pgrp;
303 struct session sess;
304 struct tty tty;
305 struct proc proc;
306
307 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
308 if (KREAD(kd, (u_long)p, &proc)) {
309 _kvm_err(kd, kd->program, "can't read proc at %p", p);
310 return (-1);
311 }
312 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
313 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
314 &eproc.e_ucred)) {
315 _kvm_err(kd, kd->program,
316 "can't read proc credentials at %p", p);
317 return -1;
318 }
319
320 switch(what) {
321
322 case KERN_PROC_PID:
323 if (proc.p_pid != (pid_t)arg)
324 continue;
325 break;
326
327 case KERN_PROC_UID:
328 if (eproc.e_ucred.cr_uid != (uid_t)arg)
329 continue;
330 break;
331
332 case KERN_PROC_RUID:
333 if (eproc.e_pcred.p_ruid != (uid_t)arg)
334 continue;
335 break;
336 }
337 /*
338 * We're going to add another proc to the set. If this
339 * will overflow the buffer, assume the reason is because
340 * nprocs (or the proc list) is corrupt and declare an error.
341 */
342 if (cnt >= maxcnt) {
343 _kvm_err(kd, kd->program, "nprocs corrupt");
344 return (-1);
345 }
346 /*
347 * gather eproc
348 */
349 eproc.e_paddr = p;
350 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
351 _kvm_err(kd, kd->program, "can't read pgrp at %p",
352 proc.p_pgrp);
353 return (-1);
354 }
355 eproc.e_sess = pgrp.pg_session;
356 eproc.e_pgid = pgrp.pg_id;
357 eproc.e_jobc = pgrp.pg_jobc;
358 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
359 _kvm_err(kd, kd->program, "can't read session at %p",
360 pgrp.pg_session);
361 return (-1);
362 }
363 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
364 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
365 _kvm_err(kd, kd->program,
366 "can't read tty at %p", sess.s_ttyp);
367 return (-1);
368 }
369 eproc.e_tdev = tty.t_dev;
370 eproc.e_tsess = tty.t_session;
371 if (tty.t_pgrp != NULL) {
372 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
373 _kvm_err(kd, kd->program,
374 "can't read tpgrp at %p",
375 tty.t_pgrp);
376 return (-1);
377 }
378 eproc.e_tpgid = pgrp.pg_id;
379 } else
380 eproc.e_tpgid = -1;
381 } else
382 eproc.e_tdev = NODEV;
383 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
384 eproc.e_sid = sess.s_sid;
385 if (sess.s_leader == p)
386 eproc.e_flag |= EPROC_SLEADER;
387 /* Fill in the old-style proc.p_wmesg by copying the wmesg
388 * from the first avaliable LWP.
389 */
390 kl = kvm_getlwps(kd, proc.p_pid, PTRTOINT64(eproc.e_paddr),
391 sizeof(struct kinfo_lwp), &nlwps);
392 if (kl) {
393 if (nlwps > 0) {
394 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
395 }
396 }
397 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
398 sizeof(eproc.e_vm));
399
400 eproc.e_xsize = eproc.e_xrssize = 0;
401 eproc.e_xccount = eproc.e_xswrss = 0;
402
403 switch (what) {
404
405 case KERN_PROC_PGRP:
406 if (eproc.e_pgid != (pid_t)arg)
407 continue;
408 break;
409
410 case KERN_PROC_TTY:
411 if ((proc.p_flag & P_CONTROLT) == 0 ||
412 eproc.e_tdev != (dev_t)arg)
413 continue;
414 break;
415 }
416 memcpy(&bp->kp_proc, &proc, sizeof(proc));
417 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
418 ++bp;
419 ++cnt;
420 }
421 return (cnt);
422 }
423
424 /*
425 * Build proc info array by reading in proc list from a crash dump.
426 * Return number of procs read. maxcnt is the max we will read.
427 */
428 static int
429 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
430 kvm_t *kd;
431 int what, arg;
432 u_long a_allproc;
433 u_long a_deadproc;
434 u_long a_zombproc;
435 int maxcnt;
436 {
437 struct kinfo_proc *bp = kd->procbase;
438 int acnt, dcnt, zcnt;
439 struct proc *p;
440
441 if (KREAD(kd, a_allproc, &p)) {
442 _kvm_err(kd, kd->program, "cannot read allproc");
443 return (-1);
444 }
445 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
446 if (acnt < 0)
447 return (acnt);
448
449 if (KREAD(kd, a_deadproc, &p)) {
450 _kvm_err(kd, kd->program, "cannot read deadproc");
451 return (-1);
452 }
453
454 dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
455 if (dcnt < 0)
456 dcnt = 0;
457
458 if (KREAD(kd, a_zombproc, &p)) {
459 _kvm_err(kd, kd->program, "cannot read zombproc");
460 return (-1);
461 }
462 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
463 maxcnt - (acnt + dcnt));
464 if (zcnt < 0)
465 zcnt = 0;
466
467 return (acnt + zcnt);
468 }
469
470 struct kinfo_proc2 *
471 kvm_getproc2(kd, op, arg, esize, cnt)
472 kvm_t *kd;
473 int op, arg;
474 size_t esize;
475 int *cnt;
476 {
477 size_t size;
478 int mib[6], st, nprocs;
479 struct pstats pstats;
480
481 if (kd->procbase2 != NULL) {
482 free(kd->procbase2);
483 /*
484 * Clear this pointer in case this call fails. Otherwise,
485 * kvm_close() will free it again.
486 */
487 kd->procbase2 = NULL;
488 }
489
490 if (ISSYSCTL(kd)) {
491 size = 0;
492 mib[0] = CTL_KERN;
493 mib[1] = KERN_PROC2;
494 mib[2] = op;
495 mib[3] = arg;
496 mib[4] = esize;
497 mib[5] = 0;
498 st = sysctl(mib, 6, NULL, &size, NULL, 0);
499 if (st == -1) {
500 _kvm_syserr(kd, kd->program, "kvm_getproc2");
501 return NULL;
502 }
503
504 mib[5] = size / esize;
505 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
506 if (kd->procbase2 == NULL)
507 return NULL;
508 st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
509 if (st == -1) {
510 _kvm_syserr(kd, kd->program, "kvm_getproc2");
511 return NULL;
512 }
513 nprocs = size / esize;
514 } else {
515 char *kp2c;
516 struct kinfo_proc *kp;
517 struct kinfo_proc2 kp2, *kp2p;
518 struct kinfo_lwp *kl;
519 int i, nlwps;
520
521 kp = kvm_getprocs(kd, op, arg, &nprocs);
522 if (kp == NULL)
523 return NULL;
524
525 kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
526 kp2c = (char *)(void *)kd->procbase2;
527 kp2p = &kp2;
528 for (i = 0; i < nprocs; i++, kp++) {
529 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
530 PTRTOINT64(kp->kp_eproc.e_paddr),
531 sizeof(struct kinfo_lwp), &nlwps);
532 /* We use kl[0] as the "representative" LWP */
533 memset(kp2p, 0, sizeof(kp2));
534 kp2p->p_forw = kl[0].l_forw;
535 kp2p->p_back = kl[0].l_back;
536 kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
537 kp2p->p_addr = kl[0].l_addr;
538 kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
539 kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
540 kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
541 kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
542 kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
543 kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
544 kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
545 kp2p->p_tsess = 0;
546 kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
547
548 kp2p->p_eflag = 0;
549 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
550 kp2p->p_flag = kp->kp_proc.p_flag;
551
552 kp2p->p_pid = kp->kp_proc.p_pid;
553
554 kp2p->p_ppid = kp->kp_eproc.e_ppid;
555 kp2p->p_sid = kp->kp_eproc.e_sid;
556 kp2p->p__pgid = kp->kp_eproc.e_pgid;
557
558 kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
559
560 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
561 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
562 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
563 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
564
565 /*CONSTCOND*/
566 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
567 MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
568 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
569
570 kp2p->p_jobc = kp->kp_eproc.e_jobc;
571 kp2p->p_tdev = kp->kp_eproc.e_tdev;
572 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
573 kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
574
575 kp2p->p_estcpu = kp->kp_proc.p_estcpu;
576 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
577 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
578 kp2p->p_cpticks = kp->kp_proc.p_cpticks;
579 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
580 kp2p->p_swtime = kl[0].l_swtime;
581 kp2p->p_slptime = kl[0].l_slptime;
582 #if 0 /* XXX thorpej */
583 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
584 #else
585 kp2p->p_schedflags = 0;
586 #endif
587
588 kp2p->p_uticks = kp->kp_proc.p_uticks;
589 kp2p->p_sticks = kp->kp_proc.p_sticks;
590 kp2p->p_iticks = kp->kp_proc.p_iticks;
591
592 kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
593 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
594
595 kp2p->p_holdcnt = kl[0].l_holdcnt;
596
597 memcpy(&kp2p->p_siglist, &kp->kp_proc.p_sigctx.ps_siglist, sizeof(ki_sigset_t));
598 memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
599 memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigctx.ps_sigignore, sizeof(ki_sigset_t));
600 memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
601
602 kp2p->p_stat = kp->kp_proc.p_stat;
603 kp2p->p_priority = kl[0].l_priority;
604 kp2p->p_usrpri = kl[0].l_usrpri;
605 kp2p->p_nice = kp->kp_proc.p_nice;
606
607 kp2p->p_xstat = kp->kp_proc.p_xstat;
608 kp2p->p_acflag = kp->kp_proc.p_acflag;
609
610 /*CONSTCOND*/
611 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
612 MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
613
614 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
615 kp2p->p_wchan = kl[0].l_wchan;
616 strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
617
618 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
619 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
620 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
621 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
622
623 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
624
625 if (P_ZOMBIE(&kp->kp_proc)
626 ||
627 kp->kp_proc.p_stats == NULL ||
628 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)
629 ) {
630 kp2p->p_uvalid = 0;
631 } else {
632 kp2p->p_uvalid = 1;
633
634 kp2p->p_ustart_sec = (u_int32_t)
635 pstats.p_start.tv_sec;
636 kp2p->p_ustart_usec = (u_int32_t)
637 pstats.p_start.tv_usec;
638
639 kp2p->p_uutime_sec = (u_int32_t)
640 pstats.p_ru.ru_utime.tv_sec;
641 kp2p->p_uutime_usec = (u_int32_t)
642 pstats.p_ru.ru_utime.tv_usec;
643 kp2p->p_ustime_sec = (u_int32_t)
644 pstats.p_ru.ru_stime.tv_sec;
645 kp2p->p_ustime_usec = (u_int32_t)
646 pstats.p_ru.ru_stime.tv_usec;
647
648 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
649 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
650 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
651 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
652 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
653 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
654 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
655 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
656 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
657 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
658 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
659 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
660 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
661 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
662
663 kp2p->p_uctime_sec = (u_int32_t)
664 (pstats.p_cru.ru_utime.tv_sec +
665 pstats.p_cru.ru_stime.tv_sec);
666 kp2p->p_uctime_usec = (u_int32_t)
667 (pstats.p_cru.ru_utime.tv_usec +
668 pstats.p_cru.ru_stime.tv_usec);
669 }
670
671 memcpy(kp2c, &kp2, esize);
672 kp2c += esize;
673 }
674
675 free(kd->procbase);
676 }
677 *cnt = nprocs;
678 return (kd->procbase2);
679 }
680
681 struct kinfo_lwp *
682 kvm_getlwps(kd, pid, paddr, esize, cnt)
683 kvm_t *kd;
684 int pid;
685 u_long paddr;
686 size_t esize;
687 int *cnt;
688 {
689 size_t size;
690 int mib[5], st, nlwps;
691 struct kinfo_lwp *kl;
692
693 if (kd->lwpbase != NULL) {
694 free(kd->lwpbase);
695 /*
696 * Clear this pointer in case this call fails. Otherwise,
697 * kvm_close() will free it again.
698 */
699 kd->lwpbase = NULL;
700 }
701
702 if (ISSYSCTL(kd)) {
703 size = 0;
704 mib[0] = CTL_KERN;
705 mib[1] = KERN_LWP;
706 mib[2] = pid;
707 mib[3] = esize;
708 mib[4] = 0;
709 st = sysctl(mib, 5, NULL, &size, NULL, 0);
710 if (st == -1) {
711 _kvm_syserr(kd, kd->program, "kvm_getlwps");
712 return NULL;
713 }
714
715 mib[4] = size / esize;
716 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
717 if (kd->lwpbase == NULL)
718 return NULL;
719 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, 0);
720 if (st == -1) {
721 _kvm_syserr(kd, kd->program, "kvm_getlwps");
722 return NULL;
723 }
724 nlwps = size / esize;
725 } else {
726 /* grovel through the memory image */
727 struct proc p;
728 struct lwp l;
729 u_long laddr;
730 int i;
731
732 st = kvm_read(kd, paddr, &p, sizeof(p));
733 if (st == -1) {
734 _kvm_syserr(kd, kd->program, "kvm_getlwps");
735 return NULL;
736 }
737
738 nlwps = p.p_nlwps;
739 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
740 nlwps * sizeof(struct kinfo_lwp));
741 if (kd->lwpbase == NULL)
742 return NULL;
743 laddr = PTRTOINT64(p.p_lwps.lh_first);
744 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
745 st = kvm_read(kd, laddr, &l, sizeof(l));
746 if (st == -1) {
747 _kvm_syserr(kd, kd->program, "kvm_getlwps");
748 return NULL;
749 }
750 kl = &kd->lwpbase[i];
751 kl->l_laddr = laddr;
752 kl->l_forw = PTRTOINT64(l.l_forw);
753 kl->l_back = PTRTOINT64(l.l_back);
754 kl->l_addr = PTRTOINT64(l.l_addr);
755 kl->l_lid = l.l_lid;
756 kl->l_flag = l.l_flag;
757 kl->l_swtime = l.l_swtime;
758 kl->l_slptime = l.l_slptime;
759 kl->l_schedflags = 0; /* XXX */
760 kl->l_holdcnt = l.l_holdcnt;
761 kl->l_priority = l.l_priority;
762 kl->l_usrpri = l.l_usrpri;
763 kl->l_stat = l.l_stat;
764 kl->l_wchan = PTRTOINT64(l.l_wchan);
765 strncpy(kl->l_wmesg, l.l_wmesg,
766 sizeof(kl->l_wmesg));
767 kl->l_cpuid = KI_NOCPU;
768 }
769 }
770
771 *cnt = nlwps;
772 return kd->lwpbase;
773 }
774
775 struct kinfo_proc *
776 kvm_getprocs(kd, op, arg, cnt)
777 kvm_t *kd;
778 int op, arg;
779 int *cnt;
780 {
781 size_t size;
782 int mib[4], st, nprocs;
783
784 if (kd->procbase != NULL) {
785 free(kd->procbase);
786 /*
787 * Clear this pointer in case this call fails. Otherwise,
788 * kvm_close() will free it again.
789 */
790 kd->procbase = NULL;
791 }
792 if (ISKMEM(kd)) {
793 size = 0;
794 mib[0] = CTL_KERN;
795 mib[1] = KERN_PROC;
796 mib[2] = op;
797 mib[3] = arg;
798 st = sysctl(mib, 4, NULL, &size, NULL, 0);
799 if (st == -1) {
800 _kvm_syserr(kd, kd->program, "kvm_getprocs");
801 return NULL;
802 }
803 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
804 if (kd->procbase == NULL)
805 return NULL;
806 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
807 if (st == -1) {
808 _kvm_syserr(kd, kd->program, "kvm_getprocs");
809 return NULL;
810 }
811 if (size % sizeof(struct kinfo_proc) != 0) {
812 _kvm_err(kd, kd->program,
813 "proc size mismatch (%lu total, %lu chunks)",
814 (u_long)size, (u_long)sizeof(struct kinfo_proc));
815 return NULL;
816 }
817 nprocs = size / sizeof(struct kinfo_proc);
818 } else if (ISSYSCTL(kd)) {
819 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
820 "can't use kvm_getprocs");
821 return NULL;
822 } else {
823 struct nlist nl[5], *p;
824
825 nl[0].n_name = "_nprocs";
826 nl[1].n_name = "_allproc";
827 nl[2].n_name = "_deadproc";
828 nl[3].n_name = "_zombproc";
829 nl[4].n_name = NULL;
830
831 if (kvm_nlist(kd, nl) != 0) {
832 for (p = nl; p->n_type != 0; ++p)
833 ;
834 _kvm_err(kd, kd->program,
835 "%s: no such symbol", p->n_name);
836 return NULL;
837 }
838 if (KREAD(kd, nl[0].n_value, &nprocs)) {
839 _kvm_err(kd, kd->program, "can't read nprocs");
840 return NULL;
841 }
842 size = nprocs * sizeof(struct kinfo_proc);
843 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
844 if (kd->procbase == NULL)
845 return NULL;
846
847 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
848 nl[2].n_value, nl[3].n_value, nprocs);
849 if (nprocs < 0)
850 return NULL;
851 #ifdef notdef
852 size = nprocs * sizeof(struct kinfo_proc);
853 (void)realloc(kd->procbase, size);
854 #endif
855 }
856 *cnt = nprocs;
857 return (kd->procbase);
858 }
859
860 void
861 _kvm_freeprocs(kd)
862 kvm_t *kd;
863 {
864 if (kd->procbase) {
865 free(kd->procbase);
866 kd->procbase = NULL;
867 }
868 }
869
870 void *
871 _kvm_realloc(kd, p, n)
872 kvm_t *kd;
873 void *p;
874 size_t n;
875 {
876 void *np = realloc(p, n);
877
878 if (np == NULL)
879 _kvm_err(kd, kd->program, "out of memory");
880 return (np);
881 }
882
883 /*
884 * Read in an argument vector from the user address space of process p.
885 * addr if the user-space base address of narg null-terminated contiguous
886 * strings. This is used to read in both the command arguments and
887 * environment strings. Read at most maxcnt characters of strings.
888 */
889 static char **
890 kvm_argv(kd, p, addr, narg, maxcnt)
891 kvm_t *kd;
892 const struct miniproc *p;
893 u_long addr;
894 int narg;
895 int maxcnt;
896 {
897 char *np, *cp, *ep, *ap;
898 u_long oaddr = (u_long)~0L;
899 u_long len;
900 size_t cc;
901 char **argv;
902
903 /*
904 * Check that there aren't an unreasonable number of agruments,
905 * and that the address is in user space.
906 */
907 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
908 return NULL;
909
910 if (kd->argv == NULL) {
911 /*
912 * Try to avoid reallocs.
913 */
914 kd->argc = MAX(narg + 1, 32);
915 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
916 sizeof(*kd->argv));
917 if (kd->argv == NULL)
918 return NULL;
919 } else if (narg + 1 > kd->argc) {
920 kd->argc = MAX(2 * kd->argc, narg + 1);
921 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
922 sizeof(*kd->argv));
923 if (kd->argv == NULL)
924 return NULL;
925 }
926 if (kd->argspc == NULL) {
927 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
928 if (kd->argspc == NULL)
929 return NULL;
930 kd->arglen = kd->nbpg;
931 }
932 if (kd->argbuf == NULL) {
933 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
934 if (kd->argbuf == NULL)
935 return NULL;
936 }
937 cc = sizeof(char *) * narg;
938 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
939 return NULL;
940 ap = np = kd->argspc;
941 argv = kd->argv;
942 len = 0;
943 /*
944 * Loop over pages, filling in the argument vector.
945 */
946 while (argv < kd->argv + narg && *argv != NULL) {
947 addr = (u_long)*argv & ~(kd->nbpg - 1);
948 if (addr != oaddr) {
949 if (kvm_ureadm(kd, p, addr, kd->argbuf,
950 (size_t)kd->nbpg) != kd->nbpg)
951 return NULL;
952 oaddr = addr;
953 }
954 addr = (u_long)*argv & (kd->nbpg - 1);
955 cp = kd->argbuf + (size_t)addr;
956 cc = kd->nbpg - (size_t)addr;
957 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
958 cc = (size_t)(maxcnt - len);
959 ep = memchr(cp, '\0', cc);
960 if (ep != NULL)
961 cc = ep - cp + 1;
962 if (len + cc > kd->arglen) {
963 int off;
964 char **pp;
965 char *op = kd->argspc;
966
967 kd->arglen *= 2;
968 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
969 (size_t)kd->arglen);
970 if (kd->argspc == NULL)
971 return NULL;
972 /*
973 * Adjust argv pointers in case realloc moved
974 * the string space.
975 */
976 off = kd->argspc - op;
977 for (pp = kd->argv; pp < argv; pp++)
978 *pp += off;
979 ap += off;
980 np += off;
981 }
982 memcpy(np, cp, cc);
983 np += cc;
984 len += cc;
985 if (ep != NULL) {
986 *argv++ = ap;
987 ap = np;
988 } else
989 *argv += cc;
990 if (maxcnt > 0 && len >= maxcnt) {
991 /*
992 * We're stopping prematurely. Terminate the
993 * current string.
994 */
995 if (ep == NULL) {
996 *np = '\0';
997 *argv++ = ap;
998 }
999 break;
1000 }
1001 }
1002 /* Make sure argv is terminated. */
1003 *argv = NULL;
1004 return (kd->argv);
1005 }
1006
1007 static void
1008 ps_str_a(p, addr, n)
1009 struct ps_strings *p;
1010 u_long *addr;
1011 int *n;
1012 {
1013 *addr = (u_long)p->ps_argvstr;
1014 *n = p->ps_nargvstr;
1015 }
1016
1017 static void
1018 ps_str_e(p, addr, n)
1019 struct ps_strings *p;
1020 u_long *addr;
1021 int *n;
1022 {
1023 *addr = (u_long)p->ps_envstr;
1024 *n = p->ps_nenvstr;
1025 }
1026
1027 /*
1028 * Determine if the proc indicated by p is still active.
1029 * This test is not 100% foolproof in theory, but chances of
1030 * being wrong are very low.
1031 */
1032 static int
1033 proc_verify(kd, kernp, p)
1034 kvm_t *kd;
1035 u_long kernp;
1036 const struct miniproc *p;
1037 {
1038 struct proc kernproc;
1039
1040 /*
1041 * Just read in the whole proc. It's not that big relative
1042 * to the cost of the read system call.
1043 */
1044 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1045 sizeof(kernproc))
1046 return 0;
1047 return (p->p_pid == kernproc.p_pid &&
1048 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1049 }
1050
1051 static char **
1052 kvm_doargv(kd, p, nchr, info)
1053 kvm_t *kd;
1054 const struct miniproc *p;
1055 int nchr;
1056 void (*info)(struct ps_strings *, u_long *, int *);
1057 {
1058 char **ap;
1059 u_long addr;
1060 int cnt;
1061 struct ps_strings arginfo;
1062
1063 /*
1064 * Pointers are stored at the top of the user stack.
1065 */
1066 if (p->p_stat == SZOMB)
1067 return NULL;
1068 cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1069 (void *)&arginfo, sizeof(arginfo));
1070 if (cnt != sizeof(arginfo))
1071 return NULL;
1072
1073 (*info)(&arginfo, &addr, &cnt);
1074 if (cnt == 0)
1075 return NULL;
1076 ap = kvm_argv(kd, p, addr, cnt, nchr);
1077 /*
1078 * For live kernels, make sure this process didn't go away.
1079 */
1080 if (ap != NULL && ISALIVE(kd) &&
1081 !proc_verify(kd, (u_long)p->p_paddr, p))
1082 ap = NULL;
1083 return (ap);
1084 }
1085
1086 /*
1087 * Get the command args. This code is now machine independent.
1088 */
1089 char **
1090 kvm_getargv(kd, kp, nchr)
1091 kvm_t *kd;
1092 const struct kinfo_proc *kp;
1093 int nchr;
1094 {
1095 struct miniproc p;
1096
1097 KPTOMINI(kp, &p);
1098 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1099 }
1100
1101 char **
1102 kvm_getenvv(kd, kp, nchr)
1103 kvm_t *kd;
1104 const struct kinfo_proc *kp;
1105 int nchr;
1106 {
1107 struct miniproc p;
1108
1109 KPTOMINI(kp, &p);
1110 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1111 }
1112
1113 static char **
1114 kvm_doargv2(kd, pid, type, nchr)
1115 kvm_t *kd;
1116 pid_t pid;
1117 int type;
1118 int nchr;
1119 {
1120 size_t bufs;
1121 int narg, mib[4];
1122 size_t newarglen;
1123 char **ap, *bp, *endp;
1124
1125 /*
1126 * Check that there aren't an unreasonable number of agruments.
1127 */
1128 if (nchr > ARG_MAX)
1129 return NULL;
1130
1131 if (nchr == 0)
1132 nchr = ARG_MAX;
1133
1134 /* Get number of strings in argv */
1135 mib[0] = CTL_KERN;
1136 mib[1] = KERN_PROC_ARGS;
1137 mib[2] = pid;
1138 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1139 bufs = sizeof(narg);
1140 if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
1141 return NULL;
1142
1143 if (kd->argv == NULL) {
1144 /*
1145 * Try to avoid reallocs.
1146 */
1147 kd->argc = MAX(narg + 1, 32);
1148 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1149 sizeof(*kd->argv));
1150 if (kd->argv == NULL)
1151 return NULL;
1152 } else if (narg + 1 > kd->argc) {
1153 kd->argc = MAX(2 * kd->argc, narg + 1);
1154 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1155 sizeof(*kd->argv));
1156 if (kd->argv == NULL)
1157 return NULL;
1158 }
1159
1160 newarglen = MIN(nchr, ARG_MAX);
1161 if (kd->arglen < newarglen) {
1162 if (kd->arglen == 0)
1163 kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1164 else
1165 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1166 newarglen);
1167 if (kd->argspc == NULL)
1168 return NULL;
1169 kd->arglen = newarglen;
1170 }
1171 memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */
1172
1173 mib[0] = CTL_KERN;
1174 mib[1] = KERN_PROC_ARGS;
1175 mib[2] = pid;
1176 mib[3] = type;
1177 bufs = kd->arglen;
1178 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
1179 return NULL;
1180
1181 bp = kd->argspc;
1182 bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */
1183 ap = kd->argv;
1184 endp = bp + MIN(nchr, bufs);
1185
1186 while (bp < endp) {
1187 *ap++ = bp;
1188 /* XXX: don't need following anymore, or stick check for max argc in above while loop? */
1189 if (ap >= kd->argv + kd->argc) {
1190 kd->argc *= 2;
1191 kd->argv = _kvm_realloc(kd, kd->argv,
1192 kd->argc * sizeof(*kd->argv));
1193 ap = kd->argv;
1194 }
1195 bp += strlen(bp) + 1;
1196 }
1197 *ap = NULL;
1198
1199 return (kd->argv);
1200 }
1201
1202 char **
1203 kvm_getargv2(kd, kp, nchr)
1204 kvm_t *kd;
1205 const struct kinfo_proc2 *kp;
1206 int nchr;
1207 {
1208 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1209 }
1210
1211 char **
1212 kvm_getenvv2(kd, kp, nchr)
1213 kvm_t *kd;
1214 const struct kinfo_proc2 *kp;
1215 int nchr;
1216 {
1217 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1218 }
1219
1220 /*
1221 * Read from user space. The user context is given by p.
1222 */
1223 static ssize_t
1224 kvm_ureadm(kd, p, uva, buf, len)
1225 kvm_t *kd;
1226 const struct miniproc *p;
1227 u_long uva;
1228 char *buf;
1229 size_t len;
1230 {
1231 char *cp;
1232
1233 cp = buf;
1234 while (len > 0) {
1235 size_t cc;
1236 char *dp;
1237 u_long cnt;
1238
1239 dp = _kvm_ureadm(kd, p, uva, &cnt);
1240 if (dp == NULL) {
1241 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1242 return 0;
1243 }
1244 cc = (size_t)MIN(cnt, len);
1245 memcpy(cp, dp, cc);
1246 cp += cc;
1247 uva += cc;
1248 len -= cc;
1249 }
1250 return (ssize_t)(cp - buf);
1251 }
1252
1253 ssize_t
1254 kvm_uread(kd, p, uva, buf, len)
1255 kvm_t *kd;
1256 const struct proc *p;
1257 u_long uva;
1258 char *buf;
1259 size_t len;
1260 {
1261 struct miniproc mp;
1262
1263 PTOMINI(p, &mp);
1264 return (kvm_ureadm(kd, &mp, uva, buf, len));
1265 }
1266