kvm_proc.c revision 1.45.2.5 1 /* $NetBSD: kvm_proc.c,v 1.45.2.5 2002/05/09 22:22:39 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.45.2.5 2002/05/09 22:22:39 nathanw Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84
85 /*
86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
87 * users of this code, so we've factored it out into a separate module.
88 * Thus, we keep this grunge out of the other kvm applications (i.e.,
89 * most other applications are interested only in open/close/read/nlist).
90 */
91
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/lwp.h>
95 #include <sys/proc.h>
96 #include <sys/exec.h>
97 #include <sys/stat.h>
98 #include <sys/ioctl.h>
99 #include <sys/tty.h>
100 #include <stdlib.h>
101 #include <string.h>
102 #include <unistd.h>
103 #include <nlist.h>
104 #include <kvm.h>
105
106 #include <uvm/uvm_extern.h>
107 #include <uvm/uvm_amap.h>
108
109 #include <sys/sysctl.h>
110
111 #include <limits.h>
112 #include <db.h>
113 #include <paths.h>
114
115 #include "kvm_private.h"
116
117 /*
118 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
119 */
120 struct miniproc {
121 struct vmspace *p_vmspace;
122 char p_stat;
123 struct proc *p_paddr;
124 pid_t p_pid;
125 };
126
127 /*
128 * Convert from struct proc and kinfo_proc{,2} to miniproc.
129 */
130 #define PTOMINI(kp, p) \
131 do { \
132 (p)->p_stat = (kp)->p_stat; \
133 (p)->p_pid = (kp)->p_pid; \
134 (p)->p_paddr = NULL; \
135 (p)->p_vmspace = (kp)->p_vmspace; \
136 } while (/*CONSTCOND*/0);
137
138 #define KPTOMINI(kp, p) \
139 do { \
140 (p)->p_stat = (kp)->kp_proc.p_stat; \
141 (p)->p_pid = (kp)->kp_proc.p_pid; \
142 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
143 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
144 } while (/*CONSTCOND*/0);
145
146 #define KP2TOMINI(kp, p) \
147 do { \
148 (p)->p_stat = (kp)->p_stat; \
149 (p)->p_pid = (kp)->p_pid; \
150 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
151 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
152 } while (/*CONSTCOND*/0);
153
154
155 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(void *)(foo))
156
157 #define KREAD(kd, addr, obj) \
158 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
159
160 /* XXX: What uses these two functions? */
161 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
162 u_long *));
163 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
164 size_t));
165
166 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
167 u_long *));
168 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
169 char *, size_t));
170
171 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
172 int));
173 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
174 int));
175 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
176 void (*)(struct ps_strings *, u_long *, int *)));
177 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
178 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
179 struct kinfo_proc *, int));
180 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
181 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
182 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
183
184
185 static char *
186 _kvm_ureadm(kd, p, va, cnt)
187 kvm_t *kd;
188 const struct miniproc *p;
189 u_long va;
190 u_long *cnt;
191 {
192 int true = 1;
193 u_long addr, head;
194 u_long offset;
195 struct vm_map_entry vme;
196 struct vm_amap amap;
197 struct vm_anon *anonp, anon;
198 struct vm_page pg;
199 u_long slot;
200
201 if (kd->swapspc == NULL) {
202 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
203 if (kd->swapspc == NULL)
204 return NULL;
205 }
206
207 /*
208 * Look through the address map for the memory object
209 * that corresponds to the given virtual address.
210 * The header just has the entire valid range.
211 */
212 head = (u_long)&p->p_vmspace->vm_map.header;
213 addr = head;
214 while (true) {
215 if (KREAD(kd, addr, &vme))
216 return NULL;
217
218 if (va >= vme.start && va < vme.end &&
219 vme.aref.ar_amap != NULL)
220 break;
221
222 addr = (u_long)vme.next;
223 if (addr == head)
224 return NULL;
225
226 }
227
228 /*
229 * we found the map entry, now to find the object...
230 */
231 if (vme.aref.ar_amap == NULL)
232 return NULL;
233
234 addr = (u_long)vme.aref.ar_amap;
235 if (KREAD(kd, addr, &amap))
236 return NULL;
237
238 offset = va - vme.start;
239 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
240 /* sanity-check slot number */
241 if (slot > amap.am_nslot)
242 return NULL;
243
244 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
245 if (KREAD(kd, addr, &anonp))
246 return NULL;
247
248 addr = (u_long)anonp;
249 if (KREAD(kd, addr, &anon))
250 return NULL;
251
252 addr = (u_long)anon.u.an_page;
253 if (addr) {
254 if (KREAD(kd, addr, &pg))
255 return NULL;
256
257 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
258 (off_t)pg.phys_addr) != kd->nbpg)
259 return NULL;
260 }
261 else {
262 if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
263 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
264 return NULL;
265 }
266
267 /* Found the page. */
268 offset %= kd->nbpg;
269 *cnt = kd->nbpg - offset;
270 return (&kd->swapspc[(size_t)offset]);
271 }
272
273 char *
274 _kvm_uread(kd, p, va, cnt)
275 kvm_t *kd;
276 const struct proc *p;
277 u_long va;
278 u_long *cnt;
279 {
280 struct miniproc mp;
281
282 PTOMINI(p, &mp);
283 return (_kvm_ureadm(kd, &mp, va, cnt));
284 }
285
286 /*
287 * Read proc's from memory file into buffer bp, which has space to hold
288 * at most maxcnt procs.
289 */
290 static int
291 kvm_proclist(kd, what, arg, p, bp, maxcnt)
292 kvm_t *kd;
293 int what, arg;
294 struct proc *p;
295 struct kinfo_proc *bp;
296 int maxcnt;
297 {
298 int cnt = 0;
299 int nlwps;
300 struct kinfo_lwp *kl;
301 struct eproc eproc;
302 struct pgrp pgrp;
303 struct session sess;
304 struct tty tty;
305 struct proc proc;
306
307 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
308 if (KREAD(kd, (u_long)p, &proc)) {
309 _kvm_err(kd, kd->program, "can't read proc at %p", p);
310 return (-1);
311 }
312 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
313 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
314 &eproc.e_ucred)) {
315 _kvm_err(kd, kd->program,
316 "can't read proc credentials at %p", p);
317 return -1;
318 }
319
320 switch(what) {
321
322 case KERN_PROC_PID:
323 if (proc.p_pid != (pid_t)arg)
324 continue;
325 break;
326
327 case KERN_PROC_UID:
328 if (eproc.e_ucred.cr_uid != (uid_t)arg)
329 continue;
330 break;
331
332 case KERN_PROC_RUID:
333 if (eproc.e_pcred.p_ruid != (uid_t)arg)
334 continue;
335 break;
336 }
337 /*
338 * We're going to add another proc to the set. If this
339 * will overflow the buffer, assume the reason is because
340 * nprocs (or the proc list) is corrupt and declare an error.
341 */
342 if (cnt >= maxcnt) {
343 _kvm_err(kd, kd->program, "nprocs corrupt");
344 return (-1);
345 }
346 /*
347 * gather eproc
348 */
349 eproc.e_paddr = p;
350 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
351 _kvm_err(kd, kd->program, "can't read pgrp at %p",
352 proc.p_pgrp);
353 return (-1);
354 }
355 eproc.e_sess = pgrp.pg_session;
356 eproc.e_pgid = pgrp.pg_id;
357 eproc.e_jobc = pgrp.pg_jobc;
358 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
359 _kvm_err(kd, kd->program, "can't read session at %p",
360 pgrp.pg_session);
361 return (-1);
362 }
363 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
364 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
365 _kvm_err(kd, kd->program,
366 "can't read tty at %p", sess.s_ttyp);
367 return (-1);
368 }
369 eproc.e_tdev = tty.t_dev;
370 eproc.e_tsess = tty.t_session;
371 if (tty.t_pgrp != NULL) {
372 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
373 _kvm_err(kd, kd->program,
374 "can't read tpgrp at %p",
375 tty.t_pgrp);
376 return (-1);
377 }
378 eproc.e_tpgid = pgrp.pg_id;
379 } else
380 eproc.e_tpgid = -1;
381 } else
382 eproc.e_tdev = NODEV;
383 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
384 eproc.e_sid = sess.s_sid;
385 if (sess.s_leader == p)
386 eproc.e_flag |= EPROC_SLEADER;
387 /* Fill in the old-style proc.p_wmesg by copying the wmesg
388 * from the first avaliable LWP.
389 */
390 kl = kvm_getlwps(kd, proc.p_pid, PTRTOINT64(eproc.e_paddr),
391 sizeof(struct kinfo_lwp), &nlwps);
392 if (kl) {
393 if (nlwps > 0) {
394 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
395 }
396 }
397 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
398 sizeof(eproc.e_vm));
399
400 eproc.e_xsize = eproc.e_xrssize = 0;
401 eproc.e_xccount = eproc.e_xswrss = 0;
402
403 switch (what) {
404
405 case KERN_PROC_PGRP:
406 if (eproc.e_pgid != (pid_t)arg)
407 continue;
408 break;
409
410 case KERN_PROC_TTY:
411 if ((proc.p_flag & P_CONTROLT) == 0 ||
412 eproc.e_tdev != (dev_t)arg)
413 continue;
414 break;
415 }
416 memcpy(&bp->kp_proc, &proc, sizeof(proc));
417 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
418 ++bp;
419 ++cnt;
420 }
421 return (cnt);
422 }
423
424 /*
425 * Build proc info array by reading in proc list from a crash dump.
426 * Return number of procs read. maxcnt is the max we will read.
427 */
428 static int
429 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
430 kvm_t *kd;
431 int what, arg;
432 u_long a_allproc;
433 u_long a_deadproc;
434 u_long a_zombproc;
435 int maxcnt;
436 {
437 struct kinfo_proc *bp = kd->procbase;
438 int acnt, dcnt, zcnt;
439 struct proc *p;
440
441 if (KREAD(kd, a_allproc, &p)) {
442 _kvm_err(kd, kd->program, "cannot read allproc");
443 return (-1);
444 }
445 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
446 if (acnt < 0)
447 return (acnt);
448
449 if (KREAD(kd, a_deadproc, &p)) {
450 _kvm_err(kd, kd->program, "cannot read deadproc");
451 return (-1);
452 }
453
454 dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
455 if (dcnt < 0)
456 dcnt = 0;
457
458 if (KREAD(kd, a_zombproc, &p)) {
459 _kvm_err(kd, kd->program, "cannot read zombproc");
460 return (-1);
461 }
462 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
463 maxcnt - (acnt + dcnt));
464 if (zcnt < 0)
465 zcnt = 0;
466
467 return (acnt + zcnt);
468 }
469
470 struct kinfo_proc2 *
471 kvm_getproc2(kd, op, arg, esize, cnt)
472 kvm_t *kd;
473 int op, arg;
474 size_t esize;
475 int *cnt;
476 {
477 size_t size;
478 int mib[6], st, nprocs;
479 struct pstats pstats;
480
481 if (kd->procbase2 != NULL) {
482 free(kd->procbase2);
483 /*
484 * Clear this pointer in case this call fails. Otherwise,
485 * kvm_close() will free it again.
486 */
487 kd->procbase2 = NULL;
488 }
489
490 if (ISSYSCTL(kd)) {
491 size = 0;
492 mib[0] = CTL_KERN;
493 mib[1] = KERN_PROC2;
494 mib[2] = op;
495 mib[3] = arg;
496 mib[4] = esize;
497 mib[5] = 0;
498 st = sysctl(mib, 6, NULL, &size, NULL, 0);
499 if (st == -1) {
500 _kvm_syserr(kd, kd->program, "kvm_getproc2");
501 return NULL;
502 }
503
504 mib[5] = size / esize;
505 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
506 if (kd->procbase2 == NULL)
507 return NULL;
508 st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
509 if (st == -1) {
510 _kvm_syserr(kd, kd->program, "kvm_getproc2");
511 return NULL;
512 }
513 nprocs = size / esize;
514 } else {
515 char *kp2c;
516 struct kinfo_proc *kp;
517 struct kinfo_proc2 kp2, *kp2p;
518 struct kinfo_lwp *kl;
519 int i, nlwps;
520
521 kp = kvm_getprocs(kd, op, arg, &nprocs);
522 if (kp == NULL)
523 return NULL;
524
525 kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
526 kp2c = (char *)(void *)kd->procbase2;
527 kp2p = &kp2;
528 for (i = 0; i < nprocs; i++, kp++) {
529 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
530 PTRTOINT64(kp->kp_eproc.e_paddr),
531 sizeof(struct kinfo_lwp), &nlwps);
532 /* We use kl[0] as the "representative" LWP */
533 memset(kp2p, 0, sizeof(kp2));
534 kp2p->p_forw = kl[0].l_forw;
535 kp2p->p_back = kl[0].l_back;
536 kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
537 kp2p->p_addr = kl[0].l_addr;
538 kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
539 kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
540 kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
541 kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
542 kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
543 kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
544 kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
545 kp2p->p_tsess = 0;
546 kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
547
548 kp2p->p_eflag = 0;
549 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
550 kp2p->p_flag = kp->kp_proc.p_flag;
551
552 kp2p->p_pid = kp->kp_proc.p_pid;
553
554 kp2p->p_ppid = kp->kp_eproc.e_ppid;
555 kp2p->p_sid = kp->kp_eproc.e_sid;
556 kp2p->p__pgid = kp->kp_eproc.e_pgid;
557
558 kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
559
560 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
561 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
562 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
563 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
564
565 /*CONSTCOND*/
566 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
567 MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
568 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
569
570 kp2p->p_jobc = kp->kp_eproc.e_jobc;
571 kp2p->p_tdev = kp->kp_eproc.e_tdev;
572 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
573 kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
574
575 kp2p->p_estcpu = kp->kp_proc.p_estcpu;
576 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
577 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
578 kp2p->p_cpticks = kp->kp_proc.p_cpticks;
579 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
580 kp2p->p_swtime = kl[0].l_swtime;
581 kp2p->p_slptime = kl[0].l_slptime;
582 #if 0 /* XXX thorpej */
583 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
584 #else
585 kp2p->p_schedflags = 0;
586 #endif
587
588 kp2p->p_uticks = kp->kp_proc.p_uticks;
589 kp2p->p_sticks = kp->kp_proc.p_sticks;
590 kp2p->p_iticks = kp->kp_proc.p_iticks;
591
592 kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
593 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
594
595 kp2p->p_holdcnt = kl[0].l_holdcnt;
596
597 memcpy(&kp2p->p_siglist, &kp->kp_proc.p_sigctx.ps_siglist, sizeof(ki_sigset_t));
598 memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
599 memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigctx.ps_sigignore, sizeof(ki_sigset_t));
600 memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
601
602 kp2p->p_stat = kp->kp_proc.p_stat;
603 kp2p->p_priority = kl[0].l_priority;
604 kp2p->p_usrpri = kl[0].l_usrpri;
605 kp2p->p_nice = kp->kp_proc.p_nice;
606
607 kp2p->p_xstat = kp->kp_proc.p_xstat;
608 kp2p->p_acflag = kp->kp_proc.p_acflag;
609
610 /*CONSTCOND*/
611 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
612 MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
613
614 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
615 kp2p->p_wchan = kl[0].l_wchan;
616 strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
617
618 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
619 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
620 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
621 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
622
623 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
624
625 kp2p->p_realflag = kp->kp_proc.p_flag;
626 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
627 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
628 kp2p->p_realstat = kp->kp_proc.p_stat;
629
630 if (P_ZOMBIE(&kp->kp_proc)
631 ||
632 kp->kp_proc.p_stats == NULL ||
633 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)
634 ) {
635 kp2p->p_uvalid = 0;
636 } else {
637 kp2p->p_uvalid = 1;
638
639 kp2p->p_ustart_sec = (u_int32_t)
640 pstats.p_start.tv_sec;
641 kp2p->p_ustart_usec = (u_int32_t)
642 pstats.p_start.tv_usec;
643
644 kp2p->p_uutime_sec = (u_int32_t)
645 pstats.p_ru.ru_utime.tv_sec;
646 kp2p->p_uutime_usec = (u_int32_t)
647 pstats.p_ru.ru_utime.tv_usec;
648 kp2p->p_ustime_sec = (u_int32_t)
649 pstats.p_ru.ru_stime.tv_sec;
650 kp2p->p_ustime_usec = (u_int32_t)
651 pstats.p_ru.ru_stime.tv_usec;
652
653 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
654 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
655 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
656 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
657 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
658 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
659 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
660 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
661 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
662 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
663 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
664 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
665 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
666 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
667
668 kp2p->p_uctime_sec = (u_int32_t)
669 (pstats.p_cru.ru_utime.tv_sec +
670 pstats.p_cru.ru_stime.tv_sec);
671 kp2p->p_uctime_usec = (u_int32_t)
672 (pstats.p_cru.ru_utime.tv_usec +
673 pstats.p_cru.ru_stime.tv_usec);
674 }
675
676 memcpy(kp2c, &kp2, esize);
677 kp2c += esize;
678 }
679
680 free(kd->procbase);
681 }
682 *cnt = nprocs;
683 return (kd->procbase2);
684 }
685
686 struct kinfo_lwp *
687 kvm_getlwps(kd, pid, paddr, esize, cnt)
688 kvm_t *kd;
689 int pid;
690 u_long paddr;
691 size_t esize;
692 int *cnt;
693 {
694 size_t size;
695 int mib[5], st, nlwps;
696 struct kinfo_lwp *kl;
697
698 if (kd->lwpbase != NULL) {
699 free(kd->lwpbase);
700 /*
701 * Clear this pointer in case this call fails. Otherwise,
702 * kvm_close() will free it again.
703 */
704 kd->lwpbase = NULL;
705 }
706
707 if (ISSYSCTL(kd)) {
708 size = 0;
709 mib[0] = CTL_KERN;
710 mib[1] = KERN_LWP;
711 mib[2] = pid;
712 mib[3] = esize;
713 mib[4] = 0;
714 st = sysctl(mib, 5, NULL, &size, NULL, 0);
715 if (st == -1) {
716 _kvm_syserr(kd, kd->program, "kvm_getlwps");
717 return NULL;
718 }
719
720 mib[4] = size / esize;
721 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
722 if (kd->lwpbase == NULL)
723 return NULL;
724 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, 0);
725 if (st == -1) {
726 _kvm_syserr(kd, kd->program, "kvm_getlwps");
727 return NULL;
728 }
729 nlwps = size / esize;
730 } else {
731 /* grovel through the memory image */
732 struct proc p;
733 struct lwp l;
734 u_long laddr;
735 int i;
736
737 st = kvm_read(kd, paddr, &p, sizeof(p));
738 if (st == -1) {
739 _kvm_syserr(kd, kd->program, "kvm_getlwps");
740 return NULL;
741 }
742
743 nlwps = p.p_nlwps;
744 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
745 nlwps * sizeof(struct kinfo_lwp));
746 if (kd->lwpbase == NULL)
747 return NULL;
748 laddr = PTRTOINT64(p.p_lwps.lh_first);
749 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
750 st = kvm_read(kd, laddr, &l, sizeof(l));
751 if (st == -1) {
752 _kvm_syserr(kd, kd->program, "kvm_getlwps");
753 return NULL;
754 }
755 kl = &kd->lwpbase[i];
756 kl->l_laddr = laddr;
757 kl->l_forw = PTRTOINT64(l.l_forw);
758 kl->l_back = PTRTOINT64(l.l_back);
759 kl->l_addr = PTRTOINT64(l.l_addr);
760 kl->l_lid = l.l_lid;
761 kl->l_flag = l.l_flag;
762 kl->l_swtime = l.l_swtime;
763 kl->l_slptime = l.l_slptime;
764 kl->l_schedflags = 0; /* XXX */
765 kl->l_holdcnt = l.l_holdcnt;
766 kl->l_priority = l.l_priority;
767 kl->l_usrpri = l.l_usrpri;
768 kl->l_stat = l.l_stat;
769 kl->l_wchan = PTRTOINT64(l.l_wchan);
770 if (l.l_wmesg)
771 (void)kvm_read(kd, (u_long)l.l_wmesg,
772 kl->l_wmesg, WMESGLEN);
773 kl->l_cpuid = KI_NOCPU;
774 laddr = PTRTOINT64(l.l_sibling.le_next);
775 }
776 }
777
778 *cnt = nlwps;
779 return kd->lwpbase;
780 }
781
782 struct kinfo_proc *
783 kvm_getprocs(kd, op, arg, cnt)
784 kvm_t *kd;
785 int op, arg;
786 int *cnt;
787 {
788 size_t size;
789 int mib[4], st, nprocs;
790
791 if (kd->procbase != NULL) {
792 free(kd->procbase);
793 /*
794 * Clear this pointer in case this call fails. Otherwise,
795 * kvm_close() will free it again.
796 */
797 kd->procbase = NULL;
798 }
799 if (ISKMEM(kd)) {
800 size = 0;
801 mib[0] = CTL_KERN;
802 mib[1] = KERN_PROC;
803 mib[2] = op;
804 mib[3] = arg;
805 st = sysctl(mib, 4, NULL, &size, NULL, 0);
806 if (st == -1) {
807 _kvm_syserr(kd, kd->program, "kvm_getprocs");
808 return NULL;
809 }
810 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
811 if (kd->procbase == NULL)
812 return NULL;
813 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
814 if (st == -1) {
815 _kvm_syserr(kd, kd->program, "kvm_getprocs");
816 return NULL;
817 }
818 if (size % sizeof(struct kinfo_proc) != 0) {
819 _kvm_err(kd, kd->program,
820 "proc size mismatch (%lu total, %lu chunks)",
821 (u_long)size, (u_long)sizeof(struct kinfo_proc));
822 return NULL;
823 }
824 nprocs = size / sizeof(struct kinfo_proc);
825 } else if (ISSYSCTL(kd)) {
826 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
827 "can't use kvm_getprocs");
828 return NULL;
829 } else {
830 struct nlist nl[5], *p;
831
832 nl[0].n_name = "_nprocs";
833 nl[1].n_name = "_allproc";
834 nl[2].n_name = "_deadproc";
835 nl[3].n_name = "_zombproc";
836 nl[4].n_name = NULL;
837
838 if (kvm_nlist(kd, nl) != 0) {
839 for (p = nl; p->n_type != 0; ++p)
840 ;
841 _kvm_err(kd, kd->program,
842 "%s: no such symbol", p->n_name);
843 return NULL;
844 }
845 if (KREAD(kd, nl[0].n_value, &nprocs)) {
846 _kvm_err(kd, kd->program, "can't read nprocs");
847 return NULL;
848 }
849 size = nprocs * sizeof(struct kinfo_proc);
850 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
851 if (kd->procbase == NULL)
852 return NULL;
853
854 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
855 nl[2].n_value, nl[3].n_value, nprocs);
856 if (nprocs < 0)
857 return NULL;
858 #ifdef notdef
859 size = nprocs * sizeof(struct kinfo_proc);
860 (void)realloc(kd->procbase, size);
861 #endif
862 }
863 *cnt = nprocs;
864 return (kd->procbase);
865 }
866
867 void
868 _kvm_freeprocs(kd)
869 kvm_t *kd;
870 {
871 if (kd->procbase) {
872 free(kd->procbase);
873 kd->procbase = NULL;
874 }
875 }
876
877 void *
878 _kvm_realloc(kd, p, n)
879 kvm_t *kd;
880 void *p;
881 size_t n;
882 {
883 void *np = realloc(p, n);
884
885 if (np == NULL)
886 _kvm_err(kd, kd->program, "out of memory");
887 return (np);
888 }
889
890 /*
891 * Read in an argument vector from the user address space of process p.
892 * addr if the user-space base address of narg null-terminated contiguous
893 * strings. This is used to read in both the command arguments and
894 * environment strings. Read at most maxcnt characters of strings.
895 */
896 static char **
897 kvm_argv(kd, p, addr, narg, maxcnt)
898 kvm_t *kd;
899 const struct miniproc *p;
900 u_long addr;
901 int narg;
902 int maxcnt;
903 {
904 char *np, *cp, *ep, *ap;
905 u_long oaddr = (u_long)~0L;
906 u_long len;
907 size_t cc;
908 char **argv;
909
910 /*
911 * Check that there aren't an unreasonable number of agruments,
912 * and that the address is in user space.
913 */
914 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
915 return NULL;
916
917 if (kd->argv == NULL) {
918 /*
919 * Try to avoid reallocs.
920 */
921 kd->argc = MAX(narg + 1, 32);
922 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
923 sizeof(*kd->argv));
924 if (kd->argv == NULL)
925 return NULL;
926 } else if (narg + 1 > kd->argc) {
927 kd->argc = MAX(2 * kd->argc, narg + 1);
928 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
929 sizeof(*kd->argv));
930 if (kd->argv == NULL)
931 return NULL;
932 }
933 if (kd->argspc == NULL) {
934 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
935 if (kd->argspc == NULL)
936 return NULL;
937 kd->arglen = kd->nbpg;
938 }
939 if (kd->argbuf == NULL) {
940 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
941 if (kd->argbuf == NULL)
942 return NULL;
943 }
944 cc = sizeof(char *) * narg;
945 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
946 return NULL;
947 ap = np = kd->argspc;
948 argv = kd->argv;
949 len = 0;
950 /*
951 * Loop over pages, filling in the argument vector.
952 */
953 while (argv < kd->argv + narg && *argv != NULL) {
954 addr = (u_long)*argv & ~(kd->nbpg - 1);
955 if (addr != oaddr) {
956 if (kvm_ureadm(kd, p, addr, kd->argbuf,
957 (size_t)kd->nbpg) != kd->nbpg)
958 return NULL;
959 oaddr = addr;
960 }
961 addr = (u_long)*argv & (kd->nbpg - 1);
962 cp = kd->argbuf + (size_t)addr;
963 cc = kd->nbpg - (size_t)addr;
964 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
965 cc = (size_t)(maxcnt - len);
966 ep = memchr(cp, '\0', cc);
967 if (ep != NULL)
968 cc = ep - cp + 1;
969 if (len + cc > kd->arglen) {
970 int off;
971 char **pp;
972 char *op = kd->argspc;
973
974 kd->arglen *= 2;
975 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
976 (size_t)kd->arglen);
977 if (kd->argspc == NULL)
978 return NULL;
979 /*
980 * Adjust argv pointers in case realloc moved
981 * the string space.
982 */
983 off = kd->argspc - op;
984 for (pp = kd->argv; pp < argv; pp++)
985 *pp += off;
986 ap += off;
987 np += off;
988 }
989 memcpy(np, cp, cc);
990 np += cc;
991 len += cc;
992 if (ep != NULL) {
993 *argv++ = ap;
994 ap = np;
995 } else
996 *argv += cc;
997 if (maxcnt > 0 && len >= maxcnt) {
998 /*
999 * We're stopping prematurely. Terminate the
1000 * current string.
1001 */
1002 if (ep == NULL) {
1003 *np = '\0';
1004 *argv++ = ap;
1005 }
1006 break;
1007 }
1008 }
1009 /* Make sure argv is terminated. */
1010 *argv = NULL;
1011 return (kd->argv);
1012 }
1013
1014 static void
1015 ps_str_a(p, addr, n)
1016 struct ps_strings *p;
1017 u_long *addr;
1018 int *n;
1019 {
1020 *addr = (u_long)p->ps_argvstr;
1021 *n = p->ps_nargvstr;
1022 }
1023
1024 static void
1025 ps_str_e(p, addr, n)
1026 struct ps_strings *p;
1027 u_long *addr;
1028 int *n;
1029 {
1030 *addr = (u_long)p->ps_envstr;
1031 *n = p->ps_nenvstr;
1032 }
1033
1034 /*
1035 * Determine if the proc indicated by p is still active.
1036 * This test is not 100% foolproof in theory, but chances of
1037 * being wrong are very low.
1038 */
1039 static int
1040 proc_verify(kd, kernp, p)
1041 kvm_t *kd;
1042 u_long kernp;
1043 const struct miniproc *p;
1044 {
1045 struct proc kernproc;
1046
1047 /*
1048 * Just read in the whole proc. It's not that big relative
1049 * to the cost of the read system call.
1050 */
1051 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1052 sizeof(kernproc))
1053 return 0;
1054 return (p->p_pid == kernproc.p_pid &&
1055 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1056 }
1057
1058 static char **
1059 kvm_doargv(kd, p, nchr, info)
1060 kvm_t *kd;
1061 const struct miniproc *p;
1062 int nchr;
1063 void (*info)(struct ps_strings *, u_long *, int *);
1064 {
1065 char **ap;
1066 u_long addr;
1067 int cnt;
1068 struct ps_strings arginfo;
1069
1070 /*
1071 * Pointers are stored at the top of the user stack.
1072 */
1073 if (p->p_stat == SZOMB)
1074 return NULL;
1075 cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1076 (void *)&arginfo, sizeof(arginfo));
1077 if (cnt != sizeof(arginfo))
1078 return NULL;
1079
1080 (*info)(&arginfo, &addr, &cnt);
1081 if (cnt == 0)
1082 return NULL;
1083 ap = kvm_argv(kd, p, addr, cnt, nchr);
1084 /*
1085 * For live kernels, make sure this process didn't go away.
1086 */
1087 if (ap != NULL && ISALIVE(kd) &&
1088 !proc_verify(kd, (u_long)p->p_paddr, p))
1089 ap = NULL;
1090 return (ap);
1091 }
1092
1093 /*
1094 * Get the command args. This code is now machine independent.
1095 */
1096 char **
1097 kvm_getargv(kd, kp, nchr)
1098 kvm_t *kd;
1099 const struct kinfo_proc *kp;
1100 int nchr;
1101 {
1102 struct miniproc p;
1103
1104 KPTOMINI(kp, &p);
1105 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1106 }
1107
1108 char **
1109 kvm_getenvv(kd, kp, nchr)
1110 kvm_t *kd;
1111 const struct kinfo_proc *kp;
1112 int nchr;
1113 {
1114 struct miniproc p;
1115
1116 KPTOMINI(kp, &p);
1117 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1118 }
1119
1120 static char **
1121 kvm_doargv2(kd, pid, type, nchr)
1122 kvm_t *kd;
1123 pid_t pid;
1124 int type;
1125 int nchr;
1126 {
1127 size_t bufs;
1128 int narg, mib[4];
1129 size_t newarglen;
1130 char **ap, *bp, *endp;
1131
1132 /*
1133 * Check that there aren't an unreasonable number of agruments.
1134 */
1135 if (nchr > ARG_MAX)
1136 return NULL;
1137
1138 if (nchr == 0)
1139 nchr = ARG_MAX;
1140
1141 /* Get number of strings in argv */
1142 mib[0] = CTL_KERN;
1143 mib[1] = KERN_PROC_ARGS;
1144 mib[2] = pid;
1145 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1146 bufs = sizeof(narg);
1147 if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
1148 return NULL;
1149
1150 if (kd->argv == NULL) {
1151 /*
1152 * Try to avoid reallocs.
1153 */
1154 kd->argc = MAX(narg + 1, 32);
1155 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1156 sizeof(*kd->argv));
1157 if (kd->argv == NULL)
1158 return NULL;
1159 } else if (narg + 1 > kd->argc) {
1160 kd->argc = MAX(2 * kd->argc, narg + 1);
1161 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1162 sizeof(*kd->argv));
1163 if (kd->argv == NULL)
1164 return NULL;
1165 }
1166
1167 newarglen = MIN(nchr, ARG_MAX);
1168 if (kd->arglen < newarglen) {
1169 if (kd->arglen == 0)
1170 kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1171 else
1172 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1173 newarglen);
1174 if (kd->argspc == NULL)
1175 return NULL;
1176 kd->arglen = newarglen;
1177 }
1178 memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */
1179
1180 mib[0] = CTL_KERN;
1181 mib[1] = KERN_PROC_ARGS;
1182 mib[2] = pid;
1183 mib[3] = type;
1184 bufs = kd->arglen;
1185 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
1186 return NULL;
1187
1188 bp = kd->argspc;
1189 bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */
1190 ap = kd->argv;
1191 endp = bp + MIN(nchr, bufs);
1192
1193 while (bp < endp) {
1194 *ap++ = bp;
1195 /* XXX: don't need following anymore, or stick check for max argc in above while loop? */
1196 if (ap >= kd->argv + kd->argc) {
1197 kd->argc *= 2;
1198 kd->argv = _kvm_realloc(kd, kd->argv,
1199 kd->argc * sizeof(*kd->argv));
1200 ap = kd->argv;
1201 }
1202 bp += strlen(bp) + 1;
1203 }
1204 *ap = NULL;
1205
1206 return (kd->argv);
1207 }
1208
1209 char **
1210 kvm_getargv2(kd, kp, nchr)
1211 kvm_t *kd;
1212 const struct kinfo_proc2 *kp;
1213 int nchr;
1214 {
1215 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1216 }
1217
1218 char **
1219 kvm_getenvv2(kd, kp, nchr)
1220 kvm_t *kd;
1221 const struct kinfo_proc2 *kp;
1222 int nchr;
1223 {
1224 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1225 }
1226
1227 /*
1228 * Read from user space. The user context is given by p.
1229 */
1230 static ssize_t
1231 kvm_ureadm(kd, p, uva, buf, len)
1232 kvm_t *kd;
1233 const struct miniproc *p;
1234 u_long uva;
1235 char *buf;
1236 size_t len;
1237 {
1238 char *cp;
1239
1240 cp = buf;
1241 while (len > 0) {
1242 size_t cc;
1243 char *dp;
1244 u_long cnt;
1245
1246 dp = _kvm_ureadm(kd, p, uva, &cnt);
1247 if (dp == NULL) {
1248 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1249 return 0;
1250 }
1251 cc = (size_t)MIN(cnt, len);
1252 memcpy(cp, dp, cc);
1253 cp += cc;
1254 uva += cc;
1255 len -= cc;
1256 }
1257 return (ssize_t)(cp - buf);
1258 }
1259
1260 ssize_t
1261 kvm_uread(kd, p, uva, buf, len)
1262 kvm_t *kd;
1263 const struct proc *p;
1264 u_long uva;
1265 char *buf;
1266 size_t len;
1267 {
1268 struct miniproc mp;
1269
1270 PTOMINI(p, &mp);
1271 return (kvm_ureadm(kd, &mp, uva, buf, len));
1272 }
1273