kvm_proc.c revision 1.50 1 /* $NetBSD: kvm_proc.c,v 1.50 2003/03/01 05:41:56 atatat Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.50 2003/03/01 05:41:56 atatat Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84
85 /*
86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
87 * users of this code, so we've factored it out into a separate module.
88 * Thus, we keep this grunge out of the other kvm applications (i.e.,
89 * most other applications are interested only in open/close/read/nlist).
90 */
91
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/lwp.h>
95 #include <sys/proc.h>
96 #include <sys/exec.h>
97 #include <sys/stat.h>
98 #include <sys/ioctl.h>
99 #include <sys/tty.h>
100 #include <stdlib.h>
101 #include <string.h>
102 #include <unistd.h>
103 #include <nlist.h>
104 #include <kvm.h>
105
106 #include <uvm/uvm_extern.h>
107 #include <uvm/uvm_amap.h>
108
109 #include <sys/sysctl.h>
110
111 #include <limits.h>
112 #include <db.h>
113 #include <paths.h>
114
115 #include "kvm_private.h"
116
117 /*
118 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
119 */
120 struct miniproc {
121 struct vmspace *p_vmspace;
122 char p_stat;
123 struct proc *p_paddr;
124 pid_t p_pid;
125 };
126
127 /*
128 * Convert from struct proc and kinfo_proc{,2} to miniproc.
129 */
130 #define PTOMINI(kp, p) \
131 do { \
132 (p)->p_stat = (kp)->p_stat; \
133 (p)->p_pid = (kp)->p_pid; \
134 (p)->p_paddr = NULL; \
135 (p)->p_vmspace = (kp)->p_vmspace; \
136 } while (/*CONSTCOND*/0);
137
138 #define KPTOMINI(kp, p) \
139 do { \
140 (p)->p_stat = (kp)->kp_proc.p_stat; \
141 (p)->p_pid = (kp)->kp_proc.p_pid; \
142 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
143 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
144 } while (/*CONSTCOND*/0);
145
146 #define KP2TOMINI(kp, p) \
147 do { \
148 (p)->p_stat = (kp)->p_stat; \
149 (p)->p_pid = (kp)->p_pid; \
150 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
151 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
152 } while (/*CONSTCOND*/0);
153
154
155 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(void *)(foo))
156
157 #define KREAD(kd, addr, obj) \
158 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
159
160 /* XXX: What uses these two functions? */
161 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
162 u_long *));
163 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
164 size_t));
165
166 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
167 u_long *));
168 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
169 char *, size_t));
170
171 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
172 int));
173 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
174 int));
175 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
176 void (*)(struct ps_strings *, u_long *, int *)));
177 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
178 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
179 struct kinfo_proc *, int));
180 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
181 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
182 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
183
184
185 static char *
186 _kvm_ureadm(kd, p, va, cnt)
187 kvm_t *kd;
188 const struct miniproc *p;
189 u_long va;
190 u_long *cnt;
191 {
192 int true = 1;
193 u_long addr, head;
194 u_long offset;
195 struct vm_map_entry vme;
196 struct vm_amap amap;
197 struct vm_anon *anonp, anon;
198 struct vm_page pg;
199 u_long slot;
200
201 if (kd->swapspc == NULL) {
202 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
203 if (kd->swapspc == NULL)
204 return (NULL);
205 }
206
207 /*
208 * Look through the address map for the memory object
209 * that corresponds to the given virtual address.
210 * The header just has the entire valid range.
211 */
212 head = (u_long)&p->p_vmspace->vm_map.header;
213 addr = head;
214 while (true) {
215 if (KREAD(kd, addr, &vme))
216 return (NULL);
217
218 if (va >= vme.start && va < vme.end &&
219 vme.aref.ar_amap != NULL)
220 break;
221
222 addr = (u_long)vme.next;
223 if (addr == head)
224 return (NULL);
225 }
226
227 /*
228 * we found the map entry, now to find the object...
229 */
230 if (vme.aref.ar_amap == NULL)
231 return (NULL);
232
233 addr = (u_long)vme.aref.ar_amap;
234 if (KREAD(kd, addr, &amap))
235 return (NULL);
236
237 offset = va - vme.start;
238 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
239 /* sanity-check slot number */
240 if (slot > amap.am_nslot)
241 return (NULL);
242
243 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
244 if (KREAD(kd, addr, &anonp))
245 return (NULL);
246
247 addr = (u_long)anonp;
248 if (KREAD(kd, addr, &anon))
249 return (NULL);
250
251 addr = (u_long)anon.u.an_page;
252 if (addr) {
253 if (KREAD(kd, addr, &pg))
254 return (NULL);
255
256 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
257 (off_t)pg.phys_addr) != kd->nbpg)
258 return (NULL);
259 } else {
260 if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
261 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
262 return (NULL);
263 }
264
265 /* Found the page. */
266 offset %= kd->nbpg;
267 *cnt = kd->nbpg - offset;
268 return (&kd->swapspc[(size_t)offset]);
269 }
270
271 char *
272 _kvm_uread(kd, p, va, cnt)
273 kvm_t *kd;
274 const struct proc *p;
275 u_long va;
276 u_long *cnt;
277 {
278 struct miniproc mp;
279
280 PTOMINI(p, &mp);
281 return (_kvm_ureadm(kd, &mp, va, cnt));
282 }
283
284 /*
285 * Read proc's from memory file into buffer bp, which has space to hold
286 * at most maxcnt procs.
287 */
288 static int
289 kvm_proclist(kd, what, arg, p, bp, maxcnt)
290 kvm_t *kd;
291 int what, arg;
292 struct proc *p;
293 struct kinfo_proc *bp;
294 int maxcnt;
295 {
296 int cnt = 0;
297 int nlwps;
298 struct kinfo_lwp *kl;
299 struct eproc eproc;
300 struct pgrp pgrp;
301 struct session sess;
302 struct tty tty;
303 struct proc proc;
304
305 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
306 if (KREAD(kd, (u_long)p, &proc)) {
307 _kvm_err(kd, kd->program, "can't read proc at %p", p);
308 return (-1);
309 }
310 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
311 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
312 &eproc.e_ucred)) {
313 _kvm_err(kd, kd->program,
314 "can't read proc credentials at %p", p);
315 return (-1);
316 }
317
318 switch (what) {
319
320 case KERN_PROC_PID:
321 if (proc.p_pid != (pid_t)arg)
322 continue;
323 break;
324
325 case KERN_PROC_UID:
326 if (eproc.e_ucred.cr_uid != (uid_t)arg)
327 continue;
328 break;
329
330 case KERN_PROC_RUID:
331 if (eproc.e_pcred.p_ruid != (uid_t)arg)
332 continue;
333 break;
334 }
335 /*
336 * We're going to add another proc to the set. If this
337 * will overflow the buffer, assume the reason is because
338 * nprocs (or the proc list) is corrupt and declare an error.
339 */
340 if (cnt >= maxcnt) {
341 _kvm_err(kd, kd->program, "nprocs corrupt");
342 return (-1);
343 }
344 /*
345 * gather eproc
346 */
347 eproc.e_paddr = p;
348 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
349 _kvm_err(kd, kd->program, "can't read pgrp at %p",
350 proc.p_pgrp);
351 return (-1);
352 }
353 eproc.e_sess = pgrp.pg_session;
354 eproc.e_pgid = pgrp.pg_id;
355 eproc.e_jobc = pgrp.pg_jobc;
356 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
357 _kvm_err(kd, kd->program, "can't read session at %p",
358 pgrp.pg_session);
359 return (-1);
360 }
361 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
362 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
363 _kvm_err(kd, kd->program,
364 "can't read tty at %p", sess.s_ttyp);
365 return (-1);
366 }
367 eproc.e_tdev = tty.t_dev;
368 eproc.e_tsess = tty.t_session;
369 if (tty.t_pgrp != NULL) {
370 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
371 _kvm_err(kd, kd->program,
372 "can't read tpgrp at %p",
373 tty.t_pgrp);
374 return (-1);
375 }
376 eproc.e_tpgid = pgrp.pg_id;
377 } else
378 eproc.e_tpgid = -1;
379 } else
380 eproc.e_tdev = NODEV;
381 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
382 eproc.e_sid = sess.s_sid;
383 if (sess.s_leader == p)
384 eproc.e_flag |= EPROC_SLEADER;
385 /*
386 * Fill in the old-style proc.p_wmesg by copying the wmesg
387 * from the first avaliable LWP.
388 */
389 kl = kvm_getlwps(kd, proc.p_pid,
390 (u_long)PTRTOINT64(eproc.e_paddr),
391 sizeof(struct kinfo_lwp), &nlwps);
392 if (kl) {
393 if (nlwps > 0) {
394 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
395 }
396 }
397 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
398 sizeof(eproc.e_vm));
399
400 eproc.e_xsize = eproc.e_xrssize = 0;
401 eproc.e_xccount = eproc.e_xswrss = 0;
402
403 switch (what) {
404
405 case KERN_PROC_PGRP:
406 if (eproc.e_pgid != (pid_t)arg)
407 continue;
408 break;
409
410 case KERN_PROC_TTY:
411 if ((proc.p_flag & P_CONTROLT) == 0 ||
412 eproc.e_tdev != (dev_t)arg)
413 continue;
414 break;
415 }
416 memcpy(&bp->kp_proc, &proc, sizeof(proc));
417 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
418 ++bp;
419 ++cnt;
420 }
421 return (cnt);
422 }
423
424 /*
425 * Build proc info array by reading in proc list from a crash dump.
426 * Return number of procs read. maxcnt is the max we will read.
427 */
428 static int
429 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
430 kvm_t *kd;
431 int what, arg;
432 u_long a_allproc;
433 u_long a_deadproc;
434 u_long a_zombproc;
435 int maxcnt;
436 {
437 struct kinfo_proc *bp = kd->procbase;
438 int acnt, dcnt, zcnt;
439 struct proc *p;
440
441 if (KREAD(kd, a_allproc, &p)) {
442 _kvm_err(kd, kd->program, "cannot read allproc");
443 return (-1);
444 }
445 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
446 if (acnt < 0)
447 return (acnt);
448
449 if (KREAD(kd, a_deadproc, &p)) {
450 _kvm_err(kd, kd->program, "cannot read deadproc");
451 return (-1);
452 }
453
454 dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
455 if (dcnt < 0)
456 dcnt = 0;
457
458 if (KREAD(kd, a_zombproc, &p)) {
459 _kvm_err(kd, kd->program, "cannot read zombproc");
460 return (-1);
461 }
462 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
463 maxcnt - (acnt + dcnt));
464 if (zcnt < 0)
465 zcnt = 0;
466
467 return (acnt + zcnt);
468 }
469
470 struct kinfo_proc2 *
471 kvm_getproc2(kd, op, arg, esize, cnt)
472 kvm_t *kd;
473 int op, arg;
474 size_t esize;
475 int *cnt;
476 {
477 size_t size;
478 int mib[6], st, nprocs;
479 struct pstats pstats;
480
481 if (kd->procbase2 != NULL) {
482 free(kd->procbase2);
483 /*
484 * Clear this pointer in case this call fails. Otherwise,
485 * kvm_close() will free it again.
486 */
487 kd->procbase2 = NULL;
488 }
489
490 if (ISSYSCTL(kd)) {
491 size = 0;
492 mib[0] = CTL_KERN;
493 mib[1] = KERN_PROC2;
494 mib[2] = op;
495 mib[3] = arg;
496 mib[4] = esize;
497 mib[5] = 0;
498 st = sysctl(mib, 6, NULL, &size, NULL, 0);
499 if (st == -1) {
500 _kvm_syserr(kd, kd->program, "kvm_getproc2");
501 return (NULL);
502 }
503
504 mib[5] = size / esize;
505 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
506 if (kd->procbase2 == NULL)
507 return (NULL);
508 st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
509 if (st == -1) {
510 _kvm_syserr(kd, kd->program, "kvm_getproc2");
511 return (NULL);
512 }
513 nprocs = size / esize;
514 } else {
515 char *kp2c;
516 struct kinfo_proc *kp;
517 struct kinfo_proc2 kp2, *kp2p;
518 struct kinfo_lwp *kl;
519 int i, nlwps;
520
521 kp = kvm_getprocs(kd, op, arg, &nprocs);
522 if (kp == NULL)
523 return (NULL);
524
525 kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
526 kp2c = (char *)(void *)kd->procbase2;
527 kp2p = &kp2;
528 for (i = 0; i < nprocs; i++, kp++) {
529 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
530 (u_long)PTRTOINT64(kp->kp_eproc.e_paddr),
531 sizeof(struct kinfo_lwp), &nlwps);
532 /* We use kl[0] as the "representative" LWP */
533 memset(kp2p, 0, sizeof(kp2));
534 kp2p->p_forw = kl[0].l_forw;
535 kp2p->p_back = kl[0].l_back;
536 kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
537 kp2p->p_addr = kl[0].l_addr;
538 kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
539 kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
540 kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
541 kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
542 kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
543 kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
544 kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
545 kp2p->p_tsess = 0;
546 kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
547
548 kp2p->p_eflag = 0;
549 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
550 kp2p->p_flag = kp->kp_proc.p_flag;
551
552 kp2p->p_pid = kp->kp_proc.p_pid;
553
554 kp2p->p_ppid = kp->kp_eproc.e_ppid;
555 kp2p->p_sid = kp->kp_eproc.e_sid;
556 kp2p->p__pgid = kp->kp_eproc.e_pgid;
557
558 kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
559
560 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
561 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
562 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
563 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
564 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
565 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
566
567 /*CONSTCOND*/
568 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
569 MIN(sizeof(kp2p->p_groups),
570 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
571 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
572
573 kp2p->p_jobc = kp->kp_eproc.e_jobc;
574 kp2p->p_tdev = kp->kp_eproc.e_tdev;
575 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
576 kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
577
578 kp2p->p_estcpu = kp->kp_proc.p_estcpu;
579 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
580 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
581 kp2p->p_cpticks = kp->kp_proc.p_cpticks;
582 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
583 kp2p->p_swtime = kl[0].l_swtime;
584 kp2p->p_slptime = kl[0].l_slptime;
585 #if 0 /* XXX thorpej */
586 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
587 #else
588 kp2p->p_schedflags = 0;
589 #endif
590
591 kp2p->p_uticks = kp->kp_proc.p_uticks;
592 kp2p->p_sticks = kp->kp_proc.p_sticks;
593 kp2p->p_iticks = kp->kp_proc.p_iticks;
594
595 kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
596 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
597
598 kp2p->p_holdcnt = kl[0].l_holdcnt;
599
600 memcpy(&kp2p->p_siglist,
601 &kp->kp_proc.p_sigctx.ps_siglist,
602 sizeof(ki_sigset_t));
603 memcpy(&kp2p->p_sigmask,
604 &kp->kp_proc.p_sigctx.ps_sigmask,
605 sizeof(ki_sigset_t));
606 memcpy(&kp2p->p_sigignore,
607 &kp->kp_proc.p_sigctx.ps_sigignore,
608 sizeof(ki_sigset_t));
609 memcpy(&kp2p->p_sigcatch,
610 &kp->kp_proc.p_sigctx.ps_sigcatch,
611 sizeof(ki_sigset_t));
612
613 kp2p->p_stat = kp->kp_proc.p_stat;
614 kp2p->p_priority = kl[0].l_priority;
615 kp2p->p_usrpri = kl[0].l_usrpri;
616 kp2p->p_nice = kp->kp_proc.p_nice;
617
618 kp2p->p_xstat = kp->kp_proc.p_xstat;
619 kp2p->p_acflag = kp->kp_proc.p_acflag;
620
621 /*CONSTCOND*/
622 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
623 MIN(sizeof(kp2p->p_comm),
624 sizeof(kp->kp_proc.p_comm)));
625
626 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
627 sizeof(kp2p->p_wmesg));
628 kp2p->p_wchan = kl[0].l_wchan;
629 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
630 sizeof(kp2p->p_login));
631
632 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
633 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
634 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
635 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
636
637 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
638
639 kp2p->p_realflag = kp->kp_proc.p_flag;
640 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
641 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
642 kp2p->p_realstat = kp->kp_proc.p_stat;
643
644 if (P_ZOMBIE(&kp->kp_proc) ||
645 kp->kp_proc.p_stats == NULL ||
646 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
647 kp2p->p_uvalid = 0;
648 } else {
649 kp2p->p_uvalid = 1;
650
651 kp2p->p_ustart_sec = (u_int32_t)
652 pstats.p_start.tv_sec;
653 kp2p->p_ustart_usec = (u_int32_t)
654 pstats.p_start.tv_usec;
655
656 kp2p->p_uutime_sec = (u_int32_t)
657 pstats.p_ru.ru_utime.tv_sec;
658 kp2p->p_uutime_usec = (u_int32_t)
659 pstats.p_ru.ru_utime.tv_usec;
660 kp2p->p_ustime_sec = (u_int32_t)
661 pstats.p_ru.ru_stime.tv_sec;
662 kp2p->p_ustime_usec = (u_int32_t)
663 pstats.p_ru.ru_stime.tv_usec;
664
665 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
666 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
667 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
668 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
669 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
670 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
671 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
672 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
673 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
674 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
675 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
676 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
677 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
678 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
679
680 kp2p->p_uctime_sec = (u_int32_t)
681 (pstats.p_cru.ru_utime.tv_sec +
682 pstats.p_cru.ru_stime.tv_sec);
683 kp2p->p_uctime_usec = (u_int32_t)
684 (pstats.p_cru.ru_utime.tv_usec +
685 pstats.p_cru.ru_stime.tv_usec);
686 }
687
688 memcpy(kp2c, &kp2, esize);
689 kp2c += esize;
690 }
691
692 _kvm_freeprocs(kd);
693 }
694 *cnt = nprocs;
695 return (kd->procbase2);
696 }
697
698 struct kinfo_lwp *
699 kvm_getlwps(kd, pid, paddr, esize, cnt)
700 kvm_t *kd;
701 int pid;
702 u_long paddr;
703 size_t esize;
704 int *cnt;
705 {
706 size_t size;
707 int mib[5], st, nlwps;
708 struct kinfo_lwp *kl;
709
710 if (kd->lwpbase != NULL) {
711 free(kd->lwpbase);
712 /*
713 * Clear this pointer in case this call fails. Otherwise,
714 * kvm_close() will free it again.
715 */
716 kd->lwpbase = NULL;
717 }
718
719 if (ISSYSCTL(kd)) {
720 size = 0;
721 mib[0] = CTL_KERN;
722 mib[1] = KERN_LWP;
723 mib[2] = pid;
724 mib[3] = esize;
725 mib[4] = 0;
726 st = sysctl(mib, 5, NULL, &size, NULL, 0);
727 if (st == -1) {
728 _kvm_syserr(kd, kd->program, "kvm_getlwps");
729 return (NULL);
730 }
731
732 mib[4] = size / esize;
733 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
734 if (kd->lwpbase == NULL)
735 return (NULL);
736 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, 0);
737 if (st == -1) {
738 _kvm_syserr(kd, kd->program, "kvm_getlwps");
739 return (NULL);
740 }
741 nlwps = size / esize;
742 } else {
743 /* grovel through the memory image */
744 struct proc p;
745 struct lwp l;
746 u_long laddr;
747 int i;
748
749 st = kvm_read(kd, paddr, &p, sizeof(p));
750 if (st == -1) {
751 _kvm_syserr(kd, kd->program, "kvm_getlwps");
752 return (NULL);
753 }
754
755 nlwps = p.p_nlwps;
756 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
757 nlwps * sizeof(struct kinfo_lwp));
758 if (kd->lwpbase == NULL)
759 return (NULL);
760 laddr = (u_long)PTRTOINT64(p.p_lwps.lh_first);
761 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
762 st = kvm_read(kd, laddr, &l, sizeof(l));
763 if (st == -1) {
764 _kvm_syserr(kd, kd->program, "kvm_getlwps");
765 return (NULL);
766 }
767 kl = &kd->lwpbase[i];
768 kl->l_laddr = laddr;
769 kl->l_forw = PTRTOINT64(l.l_forw);
770 kl->l_back = PTRTOINT64(l.l_back);
771 kl->l_addr = PTRTOINT64(l.l_addr);
772 kl->l_lid = l.l_lid;
773 kl->l_flag = l.l_flag;
774 kl->l_swtime = l.l_swtime;
775 kl->l_slptime = l.l_slptime;
776 kl->l_schedflags = 0; /* XXX */
777 kl->l_holdcnt = l.l_holdcnt;
778 kl->l_priority = l.l_priority;
779 kl->l_usrpri = l.l_usrpri;
780 kl->l_stat = l.l_stat;
781 kl->l_wchan = PTRTOINT64(l.l_wchan);
782 if (l.l_wmesg)
783 (void)kvm_read(kd, (u_long)l.l_wmesg,
784 kl->l_wmesg, WMESGLEN);
785 kl->l_cpuid = KI_NOCPU;
786 laddr = (u_long)PTRTOINT64(l.l_sibling.le_next);
787 }
788 }
789
790 *cnt = nlwps;
791 return (kd->lwpbase);
792 }
793
794 struct kinfo_proc *
795 kvm_getprocs(kd, op, arg, cnt)
796 kvm_t *kd;
797 int op, arg;
798 int *cnt;
799 {
800 size_t size;
801 int mib[4], st, nprocs;
802
803 if (kd->procbase != NULL) {
804 free(kd->procbase);
805 /*
806 * Clear this pointer in case this call fails. Otherwise,
807 * kvm_close() will free it again.
808 */
809 kd->procbase = NULL;
810 }
811 if (ISKMEM(kd)) {
812 size = 0;
813 mib[0] = CTL_KERN;
814 mib[1] = KERN_PROC;
815 mib[2] = op;
816 mib[3] = arg;
817 st = sysctl(mib, 4, NULL, &size, NULL, 0);
818 if (st == -1) {
819 _kvm_syserr(kd, kd->program, "kvm_getprocs");
820 return (NULL);
821 }
822 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
823 if (kd->procbase == NULL)
824 return (NULL);
825 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
826 if (st == -1) {
827 _kvm_syserr(kd, kd->program, "kvm_getprocs");
828 return (NULL);
829 }
830 if (size % sizeof(struct kinfo_proc) != 0) {
831 _kvm_err(kd, kd->program,
832 "proc size mismatch (%lu total, %lu chunks)",
833 (u_long)size, (u_long)sizeof(struct kinfo_proc));
834 return (NULL);
835 }
836 nprocs = size / sizeof(struct kinfo_proc);
837 } else if (ISSYSCTL(kd)) {
838 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
839 "can't use kvm_getprocs");
840 return (NULL);
841 } else {
842 struct nlist nl[5], *p;
843
844 nl[0].n_name = "_nprocs";
845 nl[1].n_name = "_allproc";
846 nl[2].n_name = "_deadproc";
847 nl[3].n_name = "_zombproc";
848 nl[4].n_name = NULL;
849
850 if (kvm_nlist(kd, nl) != 0) {
851 for (p = nl; p->n_type != 0; ++p)
852 continue;
853 _kvm_err(kd, kd->program,
854 "%s: no such symbol", p->n_name);
855 return (NULL);
856 }
857 if (KREAD(kd, nl[0].n_value, &nprocs)) {
858 _kvm_err(kd, kd->program, "can't read nprocs");
859 return (NULL);
860 }
861 size = nprocs * sizeof(struct kinfo_proc);
862 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
863 if (kd->procbase == NULL)
864 return (NULL);
865
866 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
867 nl[2].n_value, nl[3].n_value, nprocs);
868 if (nprocs < 0)
869 return (NULL);
870 #ifdef notdef
871 size = nprocs * sizeof(struct kinfo_proc);
872 (void)realloc(kd->procbase, size);
873 #endif
874 }
875 *cnt = nprocs;
876 return (kd->procbase);
877 }
878
879 void
880 _kvm_freeprocs(kd)
881 kvm_t *kd;
882 {
883
884 if (kd->procbase) {
885 free(kd->procbase);
886 kd->procbase = NULL;
887 }
888 }
889
890 void *
891 _kvm_realloc(kd, p, n)
892 kvm_t *kd;
893 void *p;
894 size_t n;
895 {
896 void *np = realloc(p, n);
897
898 if (np == NULL)
899 _kvm_err(kd, kd->program, "out of memory");
900 return (np);
901 }
902
903 /*
904 * Read in an argument vector from the user address space of process p.
905 * addr if the user-space base address of narg null-terminated contiguous
906 * strings. This is used to read in both the command arguments and
907 * environment strings. Read at most maxcnt characters of strings.
908 */
909 static char **
910 kvm_argv(kd, p, addr, narg, maxcnt)
911 kvm_t *kd;
912 const struct miniproc *p;
913 u_long addr;
914 int narg;
915 int maxcnt;
916 {
917 char *np, *cp, *ep, *ap;
918 u_long oaddr = (u_long)~0L;
919 u_long len;
920 size_t cc;
921 char **argv;
922
923 /*
924 * Check that there aren't an unreasonable number of agruments,
925 * and that the address is in user space.
926 */
927 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
928 return (NULL);
929
930 if (kd->argv == NULL) {
931 /*
932 * Try to avoid reallocs.
933 */
934 kd->argc = MAX(narg + 1, 32);
935 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
936 sizeof(*kd->argv));
937 if (kd->argv == NULL)
938 return (NULL);
939 } else if (narg + 1 > kd->argc) {
940 kd->argc = MAX(2 * kd->argc, narg + 1);
941 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
942 sizeof(*kd->argv));
943 if (kd->argv == NULL)
944 return (NULL);
945 }
946 if (kd->argspc == NULL) {
947 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
948 if (kd->argspc == NULL)
949 return (NULL);
950 kd->arglen = kd->nbpg;
951 }
952 if (kd->argbuf == NULL) {
953 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
954 if (kd->argbuf == NULL)
955 return (NULL);
956 }
957 cc = sizeof(char *) * narg;
958 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
959 return (NULL);
960 ap = np = kd->argspc;
961 argv = kd->argv;
962 len = 0;
963 /*
964 * Loop over pages, filling in the argument vector.
965 */
966 while (argv < kd->argv + narg && *argv != NULL) {
967 addr = (u_long)*argv & ~(kd->nbpg - 1);
968 if (addr != oaddr) {
969 if (kvm_ureadm(kd, p, addr, kd->argbuf,
970 (size_t)kd->nbpg) != kd->nbpg)
971 return (NULL);
972 oaddr = addr;
973 }
974 addr = (u_long)*argv & (kd->nbpg - 1);
975 cp = kd->argbuf + (size_t)addr;
976 cc = kd->nbpg - (size_t)addr;
977 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
978 cc = (size_t)(maxcnt - len);
979 ep = memchr(cp, '\0', cc);
980 if (ep != NULL)
981 cc = ep - cp + 1;
982 if (len + cc > kd->arglen) {
983 int off;
984 char **pp;
985 char *op = kd->argspc;
986
987 kd->arglen *= 2;
988 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
989 (size_t)kd->arglen);
990 if (kd->argspc == NULL)
991 return (NULL);
992 /*
993 * Adjust argv pointers in case realloc moved
994 * the string space.
995 */
996 off = kd->argspc - op;
997 for (pp = kd->argv; pp < argv; pp++)
998 *pp += off;
999 ap += off;
1000 np += off;
1001 }
1002 memcpy(np, cp, cc);
1003 np += cc;
1004 len += cc;
1005 if (ep != NULL) {
1006 *argv++ = ap;
1007 ap = np;
1008 } else
1009 *argv += cc;
1010 if (maxcnt > 0 && len >= maxcnt) {
1011 /*
1012 * We're stopping prematurely. Terminate the
1013 * current string.
1014 */
1015 if (ep == NULL) {
1016 *np = '\0';
1017 *argv++ = ap;
1018 }
1019 break;
1020 }
1021 }
1022 /* Make sure argv is terminated. */
1023 *argv = NULL;
1024 return (kd->argv);
1025 }
1026
1027 static void
1028 ps_str_a(p, addr, n)
1029 struct ps_strings *p;
1030 u_long *addr;
1031 int *n;
1032 {
1033
1034 *addr = (u_long)p->ps_argvstr;
1035 *n = p->ps_nargvstr;
1036 }
1037
1038 static void
1039 ps_str_e(p, addr, n)
1040 struct ps_strings *p;
1041 u_long *addr;
1042 int *n;
1043 {
1044
1045 *addr = (u_long)p->ps_envstr;
1046 *n = p->ps_nenvstr;
1047 }
1048
1049 /*
1050 * Determine if the proc indicated by p is still active.
1051 * This test is not 100% foolproof in theory, but chances of
1052 * being wrong are very low.
1053 */
1054 static int
1055 proc_verify(kd, kernp, p)
1056 kvm_t *kd;
1057 u_long kernp;
1058 const struct miniproc *p;
1059 {
1060 struct proc kernproc;
1061
1062 /*
1063 * Just read in the whole proc. It's not that big relative
1064 * to the cost of the read system call.
1065 */
1066 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1067 sizeof(kernproc))
1068 return (0);
1069 return (p->p_pid == kernproc.p_pid &&
1070 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1071 }
1072
1073 static char **
1074 kvm_doargv(kd, p, nchr, info)
1075 kvm_t *kd;
1076 const struct miniproc *p;
1077 int nchr;
1078 void (*info)(struct ps_strings *, u_long *, int *);
1079 {
1080 char **ap;
1081 u_long addr;
1082 int cnt;
1083 struct ps_strings arginfo;
1084
1085 /*
1086 * Pointers are stored at the top of the user stack.
1087 */
1088 if (p->p_stat == SZOMB)
1089 return (NULL);
1090 cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1091 (void *)&arginfo, sizeof(arginfo));
1092 if (cnt != sizeof(arginfo))
1093 return (NULL);
1094
1095 (*info)(&arginfo, &addr, &cnt);
1096 if (cnt == 0)
1097 return (NULL);
1098 ap = kvm_argv(kd, p, addr, cnt, nchr);
1099 /*
1100 * For live kernels, make sure this process didn't go away.
1101 */
1102 if (ap != NULL && ISALIVE(kd) &&
1103 !proc_verify(kd, (u_long)p->p_paddr, p))
1104 ap = NULL;
1105 return (ap);
1106 }
1107
1108 /*
1109 * Get the command args. This code is now machine independent.
1110 */
1111 char **
1112 kvm_getargv(kd, kp, nchr)
1113 kvm_t *kd;
1114 const struct kinfo_proc *kp;
1115 int nchr;
1116 {
1117 struct miniproc p;
1118
1119 KPTOMINI(kp, &p);
1120 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1121 }
1122
1123 char **
1124 kvm_getenvv(kd, kp, nchr)
1125 kvm_t *kd;
1126 const struct kinfo_proc *kp;
1127 int nchr;
1128 {
1129 struct miniproc p;
1130
1131 KPTOMINI(kp, &p);
1132 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1133 }
1134
1135 static char **
1136 kvm_doargv2(kd, pid, type, nchr)
1137 kvm_t *kd;
1138 pid_t pid;
1139 int type;
1140 int nchr;
1141 {
1142 size_t bufs;
1143 int narg, mib[4];
1144 size_t newarglen;
1145 char **ap, *bp, *endp;
1146
1147 /*
1148 * Check that there aren't an unreasonable number of agruments.
1149 */
1150 if (nchr > ARG_MAX)
1151 return (NULL);
1152
1153 if (nchr == 0)
1154 nchr = ARG_MAX;
1155
1156 /* Get number of strings in argv */
1157 mib[0] = CTL_KERN;
1158 mib[1] = KERN_PROC_ARGS;
1159 mib[2] = pid;
1160 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1161 bufs = sizeof(narg);
1162 if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
1163 return (NULL);
1164
1165 if (kd->argv == NULL) {
1166 /*
1167 * Try to avoid reallocs.
1168 */
1169 kd->argc = MAX(narg + 1, 32);
1170 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1171 sizeof(*kd->argv));
1172 if (kd->argv == NULL)
1173 return (NULL);
1174 } else if (narg + 1 > kd->argc) {
1175 kd->argc = MAX(2 * kd->argc, narg + 1);
1176 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1177 sizeof(*kd->argv));
1178 if (kd->argv == NULL)
1179 return (NULL);
1180 }
1181
1182 newarglen = MIN(nchr, ARG_MAX);
1183 if (kd->arglen < newarglen) {
1184 if (kd->arglen == 0)
1185 kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1186 else
1187 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1188 newarglen);
1189 if (kd->argspc == NULL)
1190 return (NULL);
1191 kd->arglen = newarglen;
1192 }
1193 memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */
1194
1195 mib[0] = CTL_KERN;
1196 mib[1] = KERN_PROC_ARGS;
1197 mib[2] = pid;
1198 mib[3] = type;
1199 bufs = kd->arglen;
1200 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
1201 return (NULL);
1202
1203 bp = kd->argspc;
1204 bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */
1205 ap = kd->argv;
1206 endp = bp + MIN(nchr, bufs);
1207
1208 while (bp < endp) {
1209 *ap++ = bp;
1210 /*
1211 * XXX: don't need following anymore, or stick check
1212 * for max argc in above while loop?
1213 */
1214 if (ap >= kd->argv + kd->argc) {
1215 kd->argc *= 2;
1216 kd->argv = _kvm_realloc(kd, kd->argv,
1217 kd->argc * sizeof(*kd->argv));
1218 ap = kd->argv;
1219 }
1220 bp += strlen(bp) + 1;
1221 }
1222 *ap = NULL;
1223
1224 return (kd->argv);
1225 }
1226
1227 char **
1228 kvm_getargv2(kd, kp, nchr)
1229 kvm_t *kd;
1230 const struct kinfo_proc2 *kp;
1231 int nchr;
1232 {
1233
1234 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1235 }
1236
1237 char **
1238 kvm_getenvv2(kd, kp, nchr)
1239 kvm_t *kd;
1240 const struct kinfo_proc2 *kp;
1241 int nchr;
1242 {
1243
1244 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1245 }
1246
1247 /*
1248 * Read from user space. The user context is given by p.
1249 */
1250 static ssize_t
1251 kvm_ureadm(kd, p, uva, buf, len)
1252 kvm_t *kd;
1253 const struct miniproc *p;
1254 u_long uva;
1255 char *buf;
1256 size_t len;
1257 {
1258 char *cp;
1259
1260 cp = buf;
1261 while (len > 0) {
1262 size_t cc;
1263 char *dp;
1264 u_long cnt;
1265
1266 dp = _kvm_ureadm(kd, p, uva, &cnt);
1267 if (dp == NULL) {
1268 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1269 return (0);
1270 }
1271 cc = (size_t)MIN(cnt, len);
1272 memcpy(cp, dp, cc);
1273 cp += cc;
1274 uva += cc;
1275 len -= cc;
1276 }
1277 return (ssize_t)(cp - buf);
1278 }
1279
1280 ssize_t
1281 kvm_uread(kd, p, uva, buf, len)
1282 kvm_t *kd;
1283 const struct proc *p;
1284 u_long uva;
1285 char *buf;
1286 size_t len;
1287 {
1288 struct miniproc mp;
1289
1290 PTOMINI(p, &mp);
1291 return (kvm_ureadm(kd, &mp, uva, buf, len));
1292 }
1293