Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.52
      1 /*	$NetBSD: kvm_proc.c,v 1.52 2003/03/20 22:53:12 ross Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1989, 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software developed by the Computer Systems
     44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45  * BG 91-66 and contributed to Berkeley.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *	This product includes software developed by the University of
     58  *	California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 #if defined(LIBC_SCCS) && !defined(lint)
     78 #if 0
     79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80 #else
     81 __RCSID("$NetBSD: kvm_proc.c,v 1.52 2003/03/20 22:53:12 ross Exp $");
     82 #endif
     83 #endif /* LIBC_SCCS and not lint */
     84 
     85 /*
     86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87  * users of this code, so we've factored it out into a separate module.
     88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89  * most other applications are interested only in open/close/read/nlist).
     90  */
     91 
     92 #include <sys/param.h>
     93 #include <sys/user.h>
     94 #include <sys/lwp.h>
     95 #include <sys/proc.h>
     96 #include <sys/exec.h>
     97 #include <sys/stat.h>
     98 #include <sys/ioctl.h>
     99 #include <sys/tty.h>
    100 #include <stdlib.h>
    101 #include <stddef.h>
    102 #include <string.h>
    103 #include <unistd.h>
    104 #include <nlist.h>
    105 #include <kvm.h>
    106 
    107 #include <uvm/uvm_extern.h>
    108 #include <uvm/uvm_amap.h>
    109 
    110 #include <sys/sysctl.h>
    111 
    112 #include <limits.h>
    113 #include <db.h>
    114 #include <paths.h>
    115 
    116 #include "kvm_private.h"
    117 
    118 /*
    119  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    120  */
    121 struct miniproc {
    122 	struct	vmspace *p_vmspace;
    123 	char	p_stat;
    124 	struct	proc *p_paddr;
    125 	pid_t	p_pid;
    126 };
    127 
    128 /*
    129  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    130  */
    131 #define PTOMINI(kp, p) \
    132 	do { \
    133 		(p)->p_stat = (kp)->p_stat; \
    134 		(p)->p_pid = (kp)->p_pid; \
    135 		(p)->p_paddr = NULL; \
    136 		(p)->p_vmspace = (kp)->p_vmspace; \
    137 	} while (/*CONSTCOND*/0);
    138 
    139 #define KPTOMINI(kp, p) \
    140 	do { \
    141 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    142 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    143 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    144 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    145 	} while (/*CONSTCOND*/0);
    146 
    147 #define KP2TOMINI(kp, p) \
    148 	do { \
    149 		(p)->p_stat = (kp)->p_stat; \
    150 		(p)->p_pid = (kp)->p_pid; \
    151 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    152 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    153 	} while (/*CONSTCOND*/0);
    154 
    155 
    156 #define	PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(void *)(foo))
    157 #define	CONSTPTRTOINT64(foo) ((const u_int64_t)(const uintptr_t)	\
    158 					(const void *)(foo))
    159 
    160 #define KREAD(kd, addr, obj) \
    161 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    162 
    163 /* XXX: What uses these two functions? */
    164 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
    165 		    u_long *));
    166 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    167 		    size_t));
    168 
    169 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    170 		    u_long *));
    171 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    172 		    char *, size_t));
    173 
    174 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
    175 		    int));
    176 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
    177 		    int));
    178 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
    179 		    void (*)(struct ps_strings *, u_long *, int *)));
    180 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
    181 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    182 		    struct kinfo_proc *, int));
    183 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
    184 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    185 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    186 
    187 
    188 static char *
    189 _kvm_ureadm(kd, p, va, cnt)
    190 	kvm_t *kd;
    191 	const struct miniproc *p;
    192 	u_long va;
    193 	u_long *cnt;
    194 {
    195 	int true = 1;
    196 	u_long addr, head;
    197 	u_long offset;
    198 	struct vm_map_entry vme;
    199 	struct vm_amap amap;
    200 	struct vm_anon *anonp, anon;
    201 	struct vm_page pg;
    202 	u_long slot;
    203 
    204 	if (kd->swapspc == NULL) {
    205 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    206 		if (kd->swapspc == NULL)
    207 			return (NULL);
    208 	}
    209 
    210 	/*
    211 	 * Look through the address map for the memory object
    212 	 * that corresponds to the given virtual address.
    213 	 * The header just has the entire valid range.
    214 	 */
    215 	head = (u_long)&p->p_vmspace->vm_map.header;
    216 	addr = head;
    217 	while (true) {
    218 		if (KREAD(kd, addr, &vme))
    219 			return (NULL);
    220 
    221 		if (va >= vme.start && va < vme.end &&
    222 		    vme.aref.ar_amap != NULL)
    223 			break;
    224 
    225 		addr = (u_long)vme.next;
    226 		if (addr == head)
    227 			return (NULL);
    228 	}
    229 
    230 	/*
    231 	 * we found the map entry, now to find the object...
    232 	 */
    233 	if (vme.aref.ar_amap == NULL)
    234 		return (NULL);
    235 
    236 	addr = (u_long)vme.aref.ar_amap;
    237 	if (KREAD(kd, addr, &amap))
    238 		return (NULL);
    239 
    240 	offset = va - vme.start;
    241 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    242 	/* sanity-check slot number */
    243 	if (slot > amap.am_nslot)
    244 		return (NULL);
    245 
    246 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    247 	if (KREAD(kd, addr, &anonp))
    248 		return (NULL);
    249 
    250 	addr = (u_long)anonp;
    251 	if (KREAD(kd, addr, &anon))
    252 		return (NULL);
    253 
    254 	addr = (u_long)anon.u.an_page;
    255 	if (addr) {
    256 		if (KREAD(kd, addr, &pg))
    257 			return (NULL);
    258 
    259 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    260 		    (off_t)pg.phys_addr) != kd->nbpg)
    261 			return (NULL);
    262 	} else {
    263 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    264 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    265 			return (NULL);
    266 	}
    267 
    268 	/* Found the page. */
    269 	offset %= kd->nbpg;
    270 	*cnt = kd->nbpg - offset;
    271 	return (&kd->swapspc[(size_t)offset]);
    272 }
    273 
    274 char *
    275 _kvm_uread(kd, p, va, cnt)
    276 	kvm_t *kd;
    277 	const struct proc *p;
    278 	u_long va;
    279 	u_long *cnt;
    280 {
    281 	struct miniproc mp;
    282 
    283 	PTOMINI(p, &mp);
    284 	return (_kvm_ureadm(kd, &mp, va, cnt));
    285 }
    286 
    287 /*
    288  * Read proc's from memory file into buffer bp, which has space to hold
    289  * at most maxcnt procs.
    290  */
    291 static int
    292 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    293 	kvm_t *kd;
    294 	int what, arg;
    295 	struct proc *p;
    296 	struct kinfo_proc *bp;
    297 	int maxcnt;
    298 {
    299 	int cnt = 0;
    300 	int nlwps;
    301 	struct kinfo_lwp *kl;
    302 	struct eproc eproc;
    303 	struct pgrp pgrp;
    304 	struct session sess;
    305 	struct tty tty;
    306 	struct proc proc;
    307 
    308 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    309 		if (KREAD(kd, (u_long)p, &proc)) {
    310 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    311 			return (-1);
    312 		}
    313 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    314 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    315 			    &eproc.e_ucred)) {
    316 				_kvm_err(kd, kd->program,
    317 				    "can't read proc credentials at %p", p);
    318 				return (-1);
    319 			}
    320 
    321 		switch (what) {
    322 
    323 		case KERN_PROC_PID:
    324 			if (proc.p_pid != (pid_t)arg)
    325 				continue;
    326 			break;
    327 
    328 		case KERN_PROC_UID:
    329 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    330 				continue;
    331 			break;
    332 
    333 		case KERN_PROC_RUID:
    334 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    335 				continue;
    336 			break;
    337 		}
    338 		/*
    339 		 * We're going to add another proc to the set.  If this
    340 		 * will overflow the buffer, assume the reason is because
    341 		 * nprocs (or the proc list) is corrupt and declare an error.
    342 		 */
    343 		if (cnt >= maxcnt) {
    344 			_kvm_err(kd, kd->program, "nprocs corrupt");
    345 			return (-1);
    346 		}
    347 		/*
    348 		 * gather eproc
    349 		 */
    350 		eproc.e_paddr = p;
    351 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    352 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    353 			    proc.p_pgrp);
    354 			return (-1);
    355 		}
    356 		eproc.e_sess = pgrp.pg_session;
    357 		eproc.e_pgid = pgrp.pg_id;
    358 		eproc.e_jobc = pgrp.pg_jobc;
    359 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    360 			_kvm_err(kd, kd->program, "can't read session at %p",
    361 			    pgrp.pg_session);
    362 			return (-1);
    363 		}
    364 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    365 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    366 				_kvm_err(kd, kd->program,
    367 				    "can't read tty at %p", sess.s_ttyp);
    368 				return (-1);
    369 			}
    370 			eproc.e_tdev = tty.t_dev;
    371 			eproc.e_tsess = tty.t_session;
    372 			if (tty.t_pgrp != NULL) {
    373 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    374 					_kvm_err(kd, kd->program,
    375 					    "can't read tpgrp at %p",
    376 					    tty.t_pgrp);
    377 					return (-1);
    378 				}
    379 				eproc.e_tpgid = pgrp.pg_id;
    380 			} else
    381 				eproc.e_tpgid = -1;
    382 		} else
    383 			eproc.e_tdev = NODEV;
    384 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    385 		eproc.e_sid = sess.s_sid;
    386 		if (sess.s_leader == p)
    387 			eproc.e_flag |= EPROC_SLEADER;
    388 		/*
    389 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
    390 		 * from the first avaliable LWP.
    391 		 */
    392 		kl = kvm_getlwps(kd, proc.p_pid,
    393 		    (u_long)PTRTOINT64(eproc.e_paddr),
    394 		    sizeof(struct kinfo_lwp), &nlwps);
    395 		if (kl) {
    396 			if (nlwps > 0) {
    397 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
    398 			}
    399 		}
    400 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    401 		    sizeof(eproc.e_vm));
    402 
    403 		eproc.e_xsize = eproc.e_xrssize = 0;
    404 		eproc.e_xccount = eproc.e_xswrss = 0;
    405 
    406 		switch (what) {
    407 
    408 		case KERN_PROC_PGRP:
    409 			if (eproc.e_pgid != (pid_t)arg)
    410 				continue;
    411 			break;
    412 
    413 		case KERN_PROC_TTY:
    414 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    415 			    eproc.e_tdev != (dev_t)arg)
    416 				continue;
    417 			break;
    418 		}
    419 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    420 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    421 		++bp;
    422 		++cnt;
    423 	}
    424 	return (cnt);
    425 }
    426 
    427 /*
    428  * Build proc info array by reading in proc list from a crash dump.
    429  * Return number of procs read.  maxcnt is the max we will read.
    430  */
    431 static int
    432 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
    433 	kvm_t *kd;
    434 	int what, arg;
    435 	u_long a_allproc;
    436 	u_long a_deadproc;
    437 	u_long a_zombproc;
    438 	int maxcnt;
    439 {
    440 	struct kinfo_proc *bp = kd->procbase;
    441 	int acnt, dcnt, zcnt;
    442 	struct proc *p;
    443 
    444 	if (KREAD(kd, a_allproc, &p)) {
    445 		_kvm_err(kd, kd->program, "cannot read allproc");
    446 		return (-1);
    447 	}
    448 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    449 	if (acnt < 0)
    450 		return (acnt);
    451 
    452 	if (KREAD(kd, a_deadproc, &p)) {
    453 		_kvm_err(kd, kd->program, "cannot read deadproc");
    454 		return (-1);
    455 	}
    456 
    457 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
    458 	if (dcnt < 0)
    459 		dcnt = 0;
    460 
    461 	if (KREAD(kd, a_zombproc, &p)) {
    462 		_kvm_err(kd, kd->program, "cannot read zombproc");
    463 		return (-1);
    464 	}
    465 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    466 	    maxcnt - (acnt + dcnt));
    467 	if (zcnt < 0)
    468 		zcnt = 0;
    469 
    470 	return (acnt + zcnt);
    471 }
    472 
    473 struct kinfo_proc2 *
    474 kvm_getproc2(kd, op, arg, esize, cnt)
    475 	kvm_t *kd;
    476 	int op, arg;
    477 	size_t esize;
    478 	int *cnt;
    479 {
    480 	size_t size;
    481 	int mib[6], st, nprocs;
    482 	struct pstats pstats;
    483 
    484 	if (kd->procbase2 != NULL) {
    485 		free(kd->procbase2);
    486 		/*
    487 		 * Clear this pointer in case this call fails.  Otherwise,
    488 		 * kvm_close() will free it again.
    489 		 */
    490 		kd->procbase2 = NULL;
    491 	}
    492 
    493 	if (ISSYSCTL(kd)) {
    494 		size = 0;
    495 		mib[0] = CTL_KERN;
    496 		mib[1] = KERN_PROC2;
    497 		mib[2] = op;
    498 		mib[3] = arg;
    499 		mib[4] = (int)esize;
    500 		mib[5] = 0;
    501 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
    502 		if (st == -1) {
    503 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    504 			return (NULL);
    505 		}
    506 
    507 		mib[5] = (int) (size / esize);
    508 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
    509 		if (kd->procbase2 == NULL)
    510 			return (NULL);
    511 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
    512 		if (st == -1) {
    513 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    514 			return (NULL);
    515 		}
    516 		nprocs = (int) (size / esize);
    517 	} else {
    518 		char *kp2c;
    519 		struct kinfo_proc *kp;
    520 		struct kinfo_proc2 kp2, *kp2p;
    521 		struct kinfo_lwp *kl;
    522 		int i, nlwps;
    523 
    524 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    525 		if (kp == NULL)
    526 			return (NULL);
    527 
    528 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
    529 		kp2c = (char *)(void *)kd->procbase2;
    530 		kp2p = &kp2;
    531 		for (i = 0; i < nprocs; i++, kp++) {
    532 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
    533 			    (u_long)PTRTOINT64(kp->kp_eproc.e_paddr),
    534 			    sizeof(struct kinfo_lwp), &nlwps);
    535 			/* We use kl[0] as the "representative" LWP */
    536 			memset(kp2p, 0, sizeof(kp2));
    537 			kp2p->p_forw = kl[0].l_forw;
    538 			kp2p->p_back = kl[0].l_back;
    539 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
    540 			kp2p->p_addr = kl[0].l_addr;
    541 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
    542 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
    543 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
    544 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
    545 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
    546 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
    547 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
    548 			kp2p->p_tsess = 0;
    549 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
    550 
    551 			kp2p->p_eflag = 0;
    552 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    553 			kp2p->p_flag = kp->kp_proc.p_flag;
    554 
    555 			kp2p->p_pid = kp->kp_proc.p_pid;
    556 
    557 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    558 			kp2p->p_sid = kp->kp_eproc.e_sid;
    559 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    560 
    561 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
    562 
    563 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    564 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    565 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
    566 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    567 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    568 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
    569 
    570 			/*CONSTCOND*/
    571 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    572 			    MIN(sizeof(kp2p->p_groups),
    573 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    574 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    575 
    576 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    577 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    578 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    579 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
    580 
    581 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
    582 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
    583 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
    584 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
    585 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    586 			kp2p->p_swtime = kl[0].l_swtime;
    587 			kp2p->p_slptime = kl[0].l_slptime;
    588 #if 0 /* XXX thorpej */
    589 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    590 #else
    591 			kp2p->p_schedflags = 0;
    592 #endif
    593 
    594 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    595 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    596 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    597 
    598 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
    599 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    600 
    601 			kp2p->p_holdcnt = kl[0].l_holdcnt;
    602 
    603 			memcpy(&kp2p->p_siglist,
    604 			    &kp->kp_proc.p_sigctx.ps_siglist,
    605 			    sizeof(ki_sigset_t));
    606 			memcpy(&kp2p->p_sigmask,
    607 			    &kp->kp_proc.p_sigctx.ps_sigmask,
    608 			    sizeof(ki_sigset_t));
    609 			memcpy(&kp2p->p_sigignore,
    610 			    &kp->kp_proc.p_sigctx.ps_sigignore,
    611 			    sizeof(ki_sigset_t));
    612 			memcpy(&kp2p->p_sigcatch,
    613 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
    614 			    sizeof(ki_sigset_t));
    615 
    616 			kp2p->p_stat = kp->kp_proc.p_stat;
    617 			kp2p->p_priority = kl[0].l_priority;
    618 			kp2p->p_usrpri = kl[0].l_usrpri;
    619 			kp2p->p_nice = kp->kp_proc.p_nice;
    620 
    621 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    622 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    623 
    624 			/*CONSTCOND*/
    625 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    626 			    MIN(sizeof(kp2p->p_comm),
    627 			    sizeof(kp->kp_proc.p_comm)));
    628 
    629 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
    630 			    sizeof(kp2p->p_wmesg));
    631 			kp2p->p_wchan = kl[0].l_wchan;
    632 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
    633 			    sizeof(kp2p->p_login));
    634 
    635 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    636 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    637 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    638 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    639 
    640 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    641 
    642 			kp2p->p_realflag = kp->kp_proc.p_flag;
    643 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
    644 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
    645 			kp2p->p_realstat = kp->kp_proc.p_stat;
    646 
    647 			if (P_ZOMBIE(&kp->kp_proc) ||
    648 			    kp->kp_proc.p_stats == NULL ||
    649 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
    650 				kp2p->p_uvalid = 0;
    651 			} else {
    652 				kp2p->p_uvalid = 1;
    653 
    654 				kp2p->p_ustart_sec = (u_int32_t)
    655 				    pstats.p_start.tv_sec;
    656 				kp2p->p_ustart_usec = (u_int32_t)
    657 				    pstats.p_start.tv_usec;
    658 
    659 				kp2p->p_uutime_sec = (u_int32_t)
    660 				    pstats.p_ru.ru_utime.tv_sec;
    661 				kp2p->p_uutime_usec = (u_int32_t)
    662 				    pstats.p_ru.ru_utime.tv_usec;
    663 				kp2p->p_ustime_sec = (u_int32_t)
    664 				    pstats.p_ru.ru_stime.tv_sec;
    665 				kp2p->p_ustime_usec = (u_int32_t)
    666 				    pstats.p_ru.ru_stime.tv_usec;
    667 
    668 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
    669 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
    670 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
    671 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
    672 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
    673 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
    674 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
    675 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
    676 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
    677 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
    678 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
    679 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
    680 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
    681 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
    682 
    683 				kp2p->p_uctime_sec = (u_int32_t)
    684 				    (pstats.p_cru.ru_utime.tv_sec +
    685 				    pstats.p_cru.ru_stime.tv_sec);
    686 				kp2p->p_uctime_usec = (u_int32_t)
    687 				    (pstats.p_cru.ru_utime.tv_usec +
    688 				    pstats.p_cru.ru_stime.tv_usec);
    689 			}
    690 
    691 			memcpy(kp2c, &kp2, esize);
    692 			kp2c += esize;
    693 		}
    694 
    695 		_kvm_freeprocs(kd);
    696 	}
    697 	*cnt = nprocs;
    698 	return (kd->procbase2);
    699 }
    700 
    701 struct kinfo_lwp *
    702 kvm_getlwps(kd, pid, paddr, esize, cnt)
    703 	kvm_t *kd;
    704 	int pid;
    705 	u_long paddr;
    706 	size_t esize;
    707 	int *cnt;
    708 {
    709 	size_t size;
    710 	int mib[5], nlwps;
    711 	ssize_t st;
    712 	struct kinfo_lwp *kl;
    713 
    714 	if (kd->lwpbase != NULL) {
    715 		free(kd->lwpbase);
    716 		/*
    717 		 * Clear this pointer in case this call fails.  Otherwise,
    718 		 * kvm_close() will free it again.
    719 		 */
    720 		kd->lwpbase = NULL;
    721 	}
    722 
    723 	if (ISSYSCTL(kd)) {
    724 		size = 0;
    725 		mib[0] = CTL_KERN;
    726 		mib[1] = KERN_LWP;
    727 		mib[2] = pid;
    728 		mib[3] = (int)esize;
    729 		mib[4] = 0;
    730 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
    731 		if (st == -1) {
    732 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    733 			return (NULL);
    734 		}
    735 
    736 		mib[4] = (int) (size / esize);
    737 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
    738 		if (kd->lwpbase == NULL)
    739 			return (NULL);
    740 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
    741 		if (st == -1) {
    742 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    743 			return (NULL);
    744 		}
    745 		nlwps = (int) (size / esize);
    746 	} else {
    747 		/* grovel through the memory image */
    748 		struct proc p;
    749 		struct lwp l;
    750 		u_long laddr;
    751 		int i;
    752 
    753 		st = kvm_read(kd, paddr, &p, sizeof(p));
    754 		if (st == -1) {
    755 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    756 			return (NULL);
    757 		}
    758 
    759 		nlwps = p.p_nlwps;
    760 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
    761 		    nlwps * sizeof(struct kinfo_lwp));
    762 		if (kd->lwpbase == NULL)
    763 			return (NULL);
    764 		laddr = (u_long)PTRTOINT64(p.p_lwps.lh_first);
    765 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
    766 			st = kvm_read(kd, laddr, &l, sizeof(l));
    767 			if (st == -1) {
    768 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    769 				return (NULL);
    770 			}
    771 			kl = &kd->lwpbase[i];
    772 			kl->l_laddr = laddr;
    773 			kl->l_forw = PTRTOINT64(l.l_forw);
    774 			kl->l_back = PTRTOINT64(l.l_back);
    775 			kl->l_addr = PTRTOINT64(l.l_addr);
    776 			kl->l_lid = l.l_lid;
    777 			kl->l_flag = l.l_flag;
    778 			kl->l_swtime = l.l_swtime;
    779 			kl->l_slptime = l.l_slptime;
    780 			kl->l_schedflags = 0; /* XXX */
    781 			kl->l_holdcnt = l.l_holdcnt;
    782 			kl->l_priority = l.l_priority;
    783 			kl->l_usrpri = l.l_usrpri;
    784 			kl->l_stat = l.l_stat;
    785 			kl->l_wchan = CONSTPTRTOINT64(l.l_wchan);
    786 			if (l.l_wmesg)
    787 				(void)kvm_read(kd, (u_long)l.l_wmesg,
    788 				    kl->l_wmesg, (size_t)WMESGLEN);
    789 			kl->l_cpuid = KI_NOCPU;
    790 			laddr = (u_long)PTRTOINT64(l.l_sibling.le_next);
    791 		}
    792 	}
    793 
    794 	*cnt = nlwps;
    795 	return (kd->lwpbase);
    796 }
    797 
    798 struct kinfo_proc *
    799 kvm_getprocs(kd, op, arg, cnt)
    800 	kvm_t *kd;
    801 	int op, arg;
    802 	int *cnt;
    803 {
    804 	size_t size;
    805 	int mib[4], st, nprocs;
    806 
    807 	if (kd->procbase != NULL) {
    808 		free(kd->procbase);
    809 		/*
    810 		 * Clear this pointer in case this call fails.  Otherwise,
    811 		 * kvm_close() will free it again.
    812 		 */
    813 		kd->procbase = NULL;
    814 	}
    815 	if (ISKMEM(kd)) {
    816 		size = 0;
    817 		mib[0] = CTL_KERN;
    818 		mib[1] = KERN_PROC;
    819 		mib[2] = op;
    820 		mib[3] = arg;
    821 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
    822 		if (st == -1) {
    823 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    824 			return (NULL);
    825 		}
    826 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    827 		if (kd->procbase == NULL)
    828 			return (NULL);
    829 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
    830 		if (st == -1) {
    831 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    832 			return (NULL);
    833 		}
    834 		if (size % sizeof(struct kinfo_proc) != 0) {
    835 			_kvm_err(kd, kd->program,
    836 			    "proc size mismatch (%lu total, %lu chunks)",
    837 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    838 			return (NULL);
    839 		}
    840 		nprocs = (int) (size / sizeof(struct kinfo_proc));
    841 	} else if (ISSYSCTL(kd)) {
    842 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
    843 		    "can't use kvm_getprocs");
    844 		return (NULL);
    845 	} else {
    846 		struct nlist nl[5], *p;
    847 
    848 		nl[0].n_name = "_nprocs";
    849 		nl[1].n_name = "_allproc";
    850 		nl[2].n_name = "_deadproc";
    851 		nl[3].n_name = "_zombproc";
    852 		nl[4].n_name = NULL;
    853 
    854 		if (kvm_nlist(kd, nl) != 0) {
    855 			for (p = nl; p->n_type != 0; ++p)
    856 				continue;
    857 			_kvm_err(kd, kd->program,
    858 			    "%s: no such symbol", p->n_name);
    859 			return (NULL);
    860 		}
    861 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    862 			_kvm_err(kd, kd->program, "can't read nprocs");
    863 			return (NULL);
    864 		}
    865 		size = nprocs * sizeof(struct kinfo_proc);
    866 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    867 		if (kd->procbase == NULL)
    868 			return (NULL);
    869 
    870 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    871 		    nl[2].n_value, nl[3].n_value, nprocs);
    872 		if (nprocs < 0)
    873 			return (NULL);
    874 #ifdef notdef
    875 		size = nprocs * sizeof(struct kinfo_proc);
    876 		(void)realloc(kd->procbase, size);
    877 #endif
    878 	}
    879 	*cnt = nprocs;
    880 	return (kd->procbase);
    881 }
    882 
    883 void
    884 _kvm_freeprocs(kd)
    885 	kvm_t *kd;
    886 {
    887 
    888 	if (kd->procbase) {
    889 		free(kd->procbase);
    890 		kd->procbase = NULL;
    891 	}
    892 }
    893 
    894 void *
    895 _kvm_realloc(kd, p, n)
    896 	kvm_t *kd;
    897 	void *p;
    898 	size_t n;
    899 {
    900 	void *np = realloc(p, n);
    901 
    902 	if (np == NULL)
    903 		_kvm_err(kd, kd->program, "out of memory");
    904 	return (np);
    905 }
    906 
    907 /*
    908  * Read in an argument vector from the user address space of process p.
    909  * addr if the user-space base address of narg null-terminated contiguous
    910  * strings.  This is used to read in both the command arguments and
    911  * environment strings.  Read at most maxcnt characters of strings.
    912  */
    913 static char **
    914 kvm_argv(kd, p, addr, narg, maxcnt)
    915 	kvm_t *kd;
    916 	const struct miniproc *p;
    917 	u_long addr;
    918 	int narg;
    919 	int maxcnt;
    920 {
    921 	char *np, *cp, *ep, *ap;
    922 	u_long oaddr = (u_long)~0L;
    923 	u_long len;
    924 	size_t cc;
    925 	char **argv;
    926 
    927 	/*
    928 	 * Check that there aren't an unreasonable number of agruments,
    929 	 * and that the address is in user space.
    930 	 */
    931 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    932 		return (NULL);
    933 
    934 	if (kd->argv == NULL) {
    935 		/*
    936 		 * Try to avoid reallocs.
    937 		 */
    938 		kd->argc = MAX(narg + 1, 32);
    939 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    940 		    sizeof(*kd->argv));
    941 		if (kd->argv == NULL)
    942 			return (NULL);
    943 	} else if (narg + 1 > kd->argc) {
    944 		kd->argc = MAX(2 * kd->argc, narg + 1);
    945 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    946 		    sizeof(*kd->argv));
    947 		if (kd->argv == NULL)
    948 			return (NULL);
    949 	}
    950 	if (kd->argspc == NULL) {
    951 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    952 		if (kd->argspc == NULL)
    953 			return (NULL);
    954 		kd->arglen = kd->nbpg;
    955 	}
    956 	if (kd->argbuf == NULL) {
    957 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    958 		if (kd->argbuf == NULL)
    959 			return (NULL);
    960 	}
    961 	cc = sizeof(char *) * narg;
    962 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    963 		return (NULL);
    964 	ap = np = kd->argspc;
    965 	argv = kd->argv;
    966 	len = 0;
    967 	/*
    968 	 * Loop over pages, filling in the argument vector.
    969 	 */
    970 	while (argv < kd->argv + narg && *argv != NULL) {
    971 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    972 		if (addr != oaddr) {
    973 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    974 			    (size_t)kd->nbpg) != kd->nbpg)
    975 				return (NULL);
    976 			oaddr = addr;
    977 		}
    978 		addr = (u_long)*argv & (kd->nbpg - 1);
    979 		cp = kd->argbuf + (size_t)addr;
    980 		cc = kd->nbpg - (size_t)addr;
    981 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    982 			cc = (size_t)(maxcnt - len);
    983 		ep = memchr(cp, '\0', cc);
    984 		if (ep != NULL)
    985 			cc = ep - cp + 1;
    986 		if (len + cc > kd->arglen) {
    987 			ptrdiff_t off;
    988 			char **pp;
    989 			char *op = kd->argspc;
    990 
    991 			kd->arglen *= 2;
    992 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    993 			    (size_t)kd->arglen);
    994 			if (kd->argspc == NULL)
    995 				return (NULL);
    996 			/*
    997 			 * Adjust argv pointers in case realloc moved
    998 			 * the string space.
    999 			 */
   1000 			off = kd->argspc - op;
   1001 			for (pp = kd->argv; pp < argv; pp++)
   1002 				*pp += off;
   1003 			ap += off;
   1004 			np += off;
   1005 		}
   1006 		memcpy(np, cp, cc);
   1007 		np += cc;
   1008 		len += cc;
   1009 		if (ep != NULL) {
   1010 			*argv++ = ap;
   1011 			ap = np;
   1012 		} else
   1013 			*argv += cc;
   1014 		if (maxcnt > 0 && len >= maxcnt) {
   1015 			/*
   1016 			 * We're stopping prematurely.  Terminate the
   1017 			 * current string.
   1018 			 */
   1019 			if (ep == NULL) {
   1020 				*np = '\0';
   1021 				*argv++ = ap;
   1022 			}
   1023 			break;
   1024 		}
   1025 	}
   1026 	/* Make sure argv is terminated. */
   1027 	*argv = NULL;
   1028 	return (kd->argv);
   1029 }
   1030 
   1031 static void
   1032 ps_str_a(p, addr, n)
   1033 	struct ps_strings *p;
   1034 	u_long *addr;
   1035 	int *n;
   1036 {
   1037 
   1038 	*addr = (u_long)p->ps_argvstr;
   1039 	*n = p->ps_nargvstr;
   1040 }
   1041 
   1042 static void
   1043 ps_str_e(p, addr, n)
   1044 	struct ps_strings *p;
   1045 	u_long *addr;
   1046 	int *n;
   1047 {
   1048 
   1049 	*addr = (u_long)p->ps_envstr;
   1050 	*n = p->ps_nenvstr;
   1051 }
   1052 
   1053 /*
   1054  * Determine if the proc indicated by p is still active.
   1055  * This test is not 100% foolproof in theory, but chances of
   1056  * being wrong are very low.
   1057  */
   1058 static int
   1059 proc_verify(kd, kernp, p)
   1060 	kvm_t *kd;
   1061 	u_long kernp;
   1062 	const struct miniproc *p;
   1063 {
   1064 	struct proc kernproc;
   1065 
   1066 	/*
   1067 	 * Just read in the whole proc.  It's not that big relative
   1068 	 * to the cost of the read system call.
   1069 	 */
   1070 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
   1071 	    sizeof(kernproc))
   1072 		return (0);
   1073 	return (p->p_pid == kernproc.p_pid &&
   1074 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
   1075 }
   1076 
   1077 static char **
   1078 kvm_doargv(kd, p, nchr, info)
   1079 	kvm_t *kd;
   1080 	const struct miniproc *p;
   1081 	int nchr;
   1082 	void (*info)(struct ps_strings *, u_long *, int *);
   1083 {
   1084 	char **ap;
   1085 	u_long addr;
   1086 	int cnt;
   1087 	struct ps_strings arginfo;
   1088 
   1089 	/*
   1090 	 * Pointers are stored at the top of the user stack.
   1091 	 */
   1092 	if (p->p_stat == SZOMB)
   1093 		return (NULL);
   1094 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
   1095 	    (void *)&arginfo, sizeof(arginfo));
   1096 	if (cnt != sizeof(arginfo))
   1097 		return (NULL);
   1098 
   1099 	(*info)(&arginfo, &addr, &cnt);
   1100 	if (cnt == 0)
   1101 		return (NULL);
   1102 	ap = kvm_argv(kd, p, addr, cnt, nchr);
   1103 	/*
   1104 	 * For live kernels, make sure this process didn't go away.
   1105 	 */
   1106 	if (ap != NULL && ISALIVE(kd) &&
   1107 	    !proc_verify(kd, (u_long)p->p_paddr, p))
   1108 		ap = NULL;
   1109 	return (ap);
   1110 }
   1111 
   1112 /*
   1113  * Get the command args.  This code is now machine independent.
   1114  */
   1115 char **
   1116 kvm_getargv(kd, kp, nchr)
   1117 	kvm_t *kd;
   1118 	const struct kinfo_proc *kp;
   1119 	int nchr;
   1120 {
   1121 	struct miniproc p;
   1122 
   1123 	KPTOMINI(kp, &p);
   1124 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
   1125 }
   1126 
   1127 char **
   1128 kvm_getenvv(kd, kp, nchr)
   1129 	kvm_t *kd;
   1130 	const struct kinfo_proc *kp;
   1131 	int nchr;
   1132 {
   1133 	struct miniproc p;
   1134 
   1135 	KPTOMINI(kp, &p);
   1136 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1137 }
   1138 
   1139 static char **
   1140 kvm_doargv2(kd, pid, type, nchr)
   1141 	kvm_t *kd;
   1142 	pid_t pid;
   1143 	int type;
   1144 	int nchr;
   1145 {
   1146 	size_t bufs;
   1147 	int narg, mib[4];
   1148 	size_t newarglen;
   1149 	char **ap, *bp, *endp;
   1150 
   1151 	/*
   1152 	 * Check that there aren't an unreasonable number of agruments.
   1153 	 */
   1154 	if (nchr > ARG_MAX)
   1155 		return (NULL);
   1156 
   1157 	if (nchr == 0)
   1158 		nchr = ARG_MAX;
   1159 
   1160 	/* Get number of strings in argv */
   1161 	mib[0] = CTL_KERN;
   1162 	mib[1] = KERN_PROC_ARGS;
   1163 	mib[2] = pid;
   1164 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1165 	bufs = sizeof(narg);
   1166 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
   1167 		return (NULL);
   1168 
   1169 	if (kd->argv == NULL) {
   1170 		/*
   1171 		 * Try to avoid reallocs.
   1172 		 */
   1173 		kd->argc = MAX(narg + 1, 32);
   1174 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
   1175 		    sizeof(*kd->argv));
   1176 		if (kd->argv == NULL)
   1177 			return (NULL);
   1178 	} else if (narg + 1 > kd->argc) {
   1179 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1180 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
   1181 		    sizeof(*kd->argv));
   1182 		if (kd->argv == NULL)
   1183 			return (NULL);
   1184 	}
   1185 
   1186 	newarglen = MIN(nchr, ARG_MAX);
   1187 	if (kd->arglen < newarglen) {
   1188 		if (kd->arglen == 0)
   1189 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
   1190 		else
   1191 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
   1192 			    newarglen);
   1193 		if (kd->argspc == NULL)
   1194 			return (NULL);
   1195 		if (newarglen > INT_MAX)
   1196 			return NULL;
   1197 		kd->arglen = (int)newarglen;
   1198 	}
   1199 	memset(kd->argspc, 0, (size_t)kd->arglen);	/* XXX necessary? */
   1200 
   1201 	mib[0] = CTL_KERN;
   1202 	mib[1] = KERN_PROC_ARGS;
   1203 	mib[2] = pid;
   1204 	mib[3] = type;
   1205 	bufs = kd->arglen;
   1206 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
   1207 		return (NULL);
   1208 
   1209 	bp = kd->argspc;
   1210 	bp[kd->arglen-1] = '\0';	/* make sure the string ends with nul */
   1211 	ap = kd->argv;
   1212 	endp = bp + MIN(nchr, bufs);
   1213 
   1214 	while (bp < endp) {
   1215 		*ap++ = bp;
   1216 		/*
   1217 		 * XXX: don't need following anymore, or stick check
   1218 		 * for max argc in above while loop?
   1219 		 */
   1220 		if (ap >= kd->argv + kd->argc) {
   1221 			kd->argc *= 2;
   1222 			kd->argv = _kvm_realloc(kd, kd->argv,
   1223 			    kd->argc * sizeof(*kd->argv));
   1224 			ap = kd->argv;
   1225 		}
   1226 		bp += strlen(bp) + 1;
   1227 	}
   1228 	*ap = NULL;
   1229 
   1230 	return (kd->argv);
   1231 }
   1232 
   1233 char **
   1234 kvm_getargv2(kd, kp, nchr)
   1235 	kvm_t *kd;
   1236 	const struct kinfo_proc2 *kp;
   1237 	int nchr;
   1238 {
   1239 
   1240 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1241 }
   1242 
   1243 char **
   1244 kvm_getenvv2(kd, kp, nchr)
   1245 	kvm_t *kd;
   1246 	const struct kinfo_proc2 *kp;
   1247 	int nchr;
   1248 {
   1249 
   1250 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1251 }
   1252 
   1253 /*
   1254  * Read from user space.  The user context is given by p.
   1255  */
   1256 static ssize_t
   1257 kvm_ureadm(kd, p, uva, buf, len)
   1258 	kvm_t *kd;
   1259 	const struct miniproc *p;
   1260 	u_long uva;
   1261 	char *buf;
   1262 	size_t len;
   1263 {
   1264 	char *cp;
   1265 
   1266 	cp = buf;
   1267 	while (len > 0) {
   1268 		size_t cc;
   1269 		char *dp;
   1270 		u_long cnt;
   1271 
   1272 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1273 		if (dp == NULL) {
   1274 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1275 			return (0);
   1276 		}
   1277 		cc = (size_t)MIN(cnt, len);
   1278 		memcpy(cp, dp, cc);
   1279 		cp += cc;
   1280 		uva += cc;
   1281 		len -= cc;
   1282 	}
   1283 	return (ssize_t)(cp - buf);
   1284 }
   1285 
   1286 ssize_t
   1287 kvm_uread(kd, p, uva, buf, len)
   1288 	kvm_t *kd;
   1289 	const struct proc *p;
   1290 	u_long uva;
   1291 	char *buf;
   1292 	size_t len;
   1293 {
   1294 	struct miniproc mp;
   1295 
   1296 	PTOMINI(p, &mp);
   1297 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1298 }
   1299