kvm_proc.c revision 1.53 1 /* $NetBSD: kvm_proc.c,v 1.53 2003/03/28 14:01:32 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.53 2003/03/28 14:01:32 christos Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84
85 /*
86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
87 * users of this code, so we've factored it out into a separate module.
88 * Thus, we keep this grunge out of the other kvm applications (i.e.,
89 * most other applications are interested only in open/close/read/nlist).
90 */
91
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/lwp.h>
95 #include <sys/proc.h>
96 #include <sys/exec.h>
97 #include <sys/stat.h>
98 #include <sys/ioctl.h>
99 #include <sys/tty.h>
100 #include <stdlib.h>
101 #include <stddef.h>
102 #include <string.h>
103 #include <unistd.h>
104 #include <nlist.h>
105 #include <kvm.h>
106
107 #include <uvm/uvm_extern.h>
108 #include <uvm/uvm_amap.h>
109
110 #include <sys/sysctl.h>
111
112 #include <limits.h>
113 #include <db.h>
114 #include <paths.h>
115
116 #include "kvm_private.h"
117
118 /*
119 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
120 */
121 struct miniproc {
122 struct vmspace *p_vmspace;
123 char p_stat;
124 struct proc *p_paddr;
125 pid_t p_pid;
126 };
127
128 /*
129 * Convert from struct proc and kinfo_proc{,2} to miniproc.
130 */
131 #define PTOMINI(kp, p) \
132 do { \
133 (p)->p_stat = (kp)->p_stat; \
134 (p)->p_pid = (kp)->p_pid; \
135 (p)->p_paddr = NULL; \
136 (p)->p_vmspace = (kp)->p_vmspace; \
137 } while (/*CONSTCOND*/0);
138
139 #define KPTOMINI(kp, p) \
140 do { \
141 (p)->p_stat = (kp)->kp_proc.p_stat; \
142 (p)->p_pid = (kp)->kp_proc.p_pid; \
143 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
144 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
145 } while (/*CONSTCOND*/0);
146
147 #define KP2TOMINI(kp, p) \
148 do { \
149 (p)->p_stat = (kp)->p_stat; \
150 (p)->p_pid = (kp)->p_pid; \
151 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
152 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
153 } while (/*CONSTCOND*/0);
154
155
156 #define PTRTOINT64(foo) ((u_int64_t)(const uintptr_t)(const void *)(foo))
157
158 #define KREAD(kd, addr, obj) \
159 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
160
161 /* XXX: What uses these two functions? */
162 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
163 u_long *));
164 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
165 size_t));
166
167 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
168 u_long *));
169 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
170 char *, size_t));
171
172 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
173 int));
174 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
175 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
176 void (*)(struct ps_strings *, u_long *, int *)));
177 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
178 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
179 struct kinfo_proc *, int));
180 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
181 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
182 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
183
184
185 static char *
186 _kvm_ureadm(kd, p, va, cnt)
187 kvm_t *kd;
188 const struct miniproc *p;
189 u_long va;
190 u_long *cnt;
191 {
192 int true = 1;
193 u_long addr, head;
194 u_long offset;
195 struct vm_map_entry vme;
196 struct vm_amap amap;
197 struct vm_anon *anonp, anon;
198 struct vm_page pg;
199 u_long slot;
200
201 if (kd->swapspc == NULL) {
202 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
203 if (kd->swapspc == NULL)
204 return (NULL);
205 }
206
207 /*
208 * Look through the address map for the memory object
209 * that corresponds to the given virtual address.
210 * The header just has the entire valid range.
211 */
212 head = (u_long)&p->p_vmspace->vm_map.header;
213 addr = head;
214 while (true) {
215 if (KREAD(kd, addr, &vme))
216 return (NULL);
217
218 if (va >= vme.start && va < vme.end &&
219 vme.aref.ar_amap != NULL)
220 break;
221
222 addr = (u_long)vme.next;
223 if (addr == head)
224 return (NULL);
225 }
226
227 /*
228 * we found the map entry, now to find the object...
229 */
230 if (vme.aref.ar_amap == NULL)
231 return (NULL);
232
233 addr = (u_long)vme.aref.ar_amap;
234 if (KREAD(kd, addr, &amap))
235 return (NULL);
236
237 offset = va - vme.start;
238 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
239 /* sanity-check slot number */
240 if (slot > amap.am_nslot)
241 return (NULL);
242
243 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
244 if (KREAD(kd, addr, &anonp))
245 return (NULL);
246
247 addr = (u_long)anonp;
248 if (KREAD(kd, addr, &anon))
249 return (NULL);
250
251 addr = (u_long)anon.u.an_page;
252 if (addr) {
253 if (KREAD(kd, addr, &pg))
254 return (NULL);
255
256 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
257 (off_t)pg.phys_addr) != kd->nbpg)
258 return (NULL);
259 } else {
260 if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
261 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
262 return (NULL);
263 }
264
265 /* Found the page. */
266 offset %= kd->nbpg;
267 *cnt = kd->nbpg - offset;
268 return (&kd->swapspc[(size_t)offset]);
269 }
270
271 char *
272 _kvm_uread(kd, p, va, cnt)
273 kvm_t *kd;
274 const struct proc *p;
275 u_long va;
276 u_long *cnt;
277 {
278 struct miniproc mp;
279
280 PTOMINI(p, &mp);
281 return (_kvm_ureadm(kd, &mp, va, cnt));
282 }
283
284 /*
285 * Read proc's from memory file into buffer bp, which has space to hold
286 * at most maxcnt procs.
287 */
288 static int
289 kvm_proclist(kd, what, arg, p, bp, maxcnt)
290 kvm_t *kd;
291 int what, arg;
292 struct proc *p;
293 struct kinfo_proc *bp;
294 int maxcnt;
295 {
296 int cnt = 0;
297 int nlwps;
298 struct kinfo_lwp *kl;
299 struct eproc eproc;
300 struct pgrp pgrp;
301 struct session sess;
302 struct tty tty;
303 struct proc proc;
304
305 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
306 if (KREAD(kd, (u_long)p, &proc)) {
307 _kvm_err(kd, kd->program, "can't read proc at %p", p);
308 return (-1);
309 }
310 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
311 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
312 &eproc.e_ucred)) {
313 _kvm_err(kd, kd->program,
314 "can't read proc credentials at %p", p);
315 return (-1);
316 }
317
318 switch (what) {
319
320 case KERN_PROC_PID:
321 if (proc.p_pid != (pid_t)arg)
322 continue;
323 break;
324
325 case KERN_PROC_UID:
326 if (eproc.e_ucred.cr_uid != (uid_t)arg)
327 continue;
328 break;
329
330 case KERN_PROC_RUID:
331 if (eproc.e_pcred.p_ruid != (uid_t)arg)
332 continue;
333 break;
334 }
335 /*
336 * We're going to add another proc to the set. If this
337 * will overflow the buffer, assume the reason is because
338 * nprocs (or the proc list) is corrupt and declare an error.
339 */
340 if (cnt >= maxcnt) {
341 _kvm_err(kd, kd->program, "nprocs corrupt");
342 return (-1);
343 }
344 /*
345 * gather eproc
346 */
347 eproc.e_paddr = p;
348 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
349 _kvm_err(kd, kd->program, "can't read pgrp at %p",
350 proc.p_pgrp);
351 return (-1);
352 }
353 eproc.e_sess = pgrp.pg_session;
354 eproc.e_pgid = pgrp.pg_id;
355 eproc.e_jobc = pgrp.pg_jobc;
356 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
357 _kvm_err(kd, kd->program, "can't read session at %p",
358 pgrp.pg_session);
359 return (-1);
360 }
361 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
362 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
363 _kvm_err(kd, kd->program,
364 "can't read tty at %p", sess.s_ttyp);
365 return (-1);
366 }
367 eproc.e_tdev = tty.t_dev;
368 eproc.e_tsess = tty.t_session;
369 if (tty.t_pgrp != NULL) {
370 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
371 _kvm_err(kd, kd->program,
372 "can't read tpgrp at %p",
373 tty.t_pgrp);
374 return (-1);
375 }
376 eproc.e_tpgid = pgrp.pg_id;
377 } else
378 eproc.e_tpgid = -1;
379 } else
380 eproc.e_tdev = NODEV;
381 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
382 eproc.e_sid = sess.s_sid;
383 if (sess.s_leader == p)
384 eproc.e_flag |= EPROC_SLEADER;
385 /*
386 * Fill in the old-style proc.p_wmesg by copying the wmesg
387 * from the first avaliable LWP.
388 */
389 kl = kvm_getlwps(kd, proc.p_pid,
390 (u_long)PTRTOINT64(eproc.e_paddr),
391 sizeof(struct kinfo_lwp), &nlwps);
392 if (kl) {
393 if (nlwps > 0) {
394 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
395 }
396 }
397 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
398 sizeof(eproc.e_vm));
399
400 eproc.e_xsize = eproc.e_xrssize = 0;
401 eproc.e_xccount = eproc.e_xswrss = 0;
402
403 switch (what) {
404
405 case KERN_PROC_PGRP:
406 if (eproc.e_pgid != (pid_t)arg)
407 continue;
408 break;
409
410 case KERN_PROC_TTY:
411 if ((proc.p_flag & P_CONTROLT) == 0 ||
412 eproc.e_tdev != (dev_t)arg)
413 continue;
414 break;
415 }
416 memcpy(&bp->kp_proc, &proc, sizeof(proc));
417 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
418 ++bp;
419 ++cnt;
420 }
421 return (cnt);
422 }
423
424 /*
425 * Build proc info array by reading in proc list from a crash dump.
426 * Return number of procs read. maxcnt is the max we will read.
427 */
428 static int
429 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
430 kvm_t *kd;
431 int what, arg;
432 u_long a_allproc;
433 u_long a_zombproc;
434 int maxcnt;
435 {
436 struct kinfo_proc *bp = kd->procbase;
437 int acnt, zcnt;
438 struct proc *p;
439
440 if (KREAD(kd, a_allproc, &p)) {
441 _kvm_err(kd, kd->program, "cannot read allproc");
442 return (-1);
443 }
444 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
445 if (acnt < 0)
446 return (acnt);
447
448 if (KREAD(kd, a_zombproc, &p)) {
449 _kvm_err(kd, kd->program, "cannot read zombproc");
450 return (-1);
451 }
452 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
453 maxcnt - acnt);
454 if (zcnt < 0)
455 zcnt = 0;
456
457 return (acnt + zcnt);
458 }
459
460 struct kinfo_proc2 *
461 kvm_getproc2(kd, op, arg, esize, cnt)
462 kvm_t *kd;
463 int op, arg;
464 size_t esize;
465 int *cnt;
466 {
467 size_t size;
468 int mib[6], st, nprocs;
469 struct pstats pstats;
470
471 if (kd->procbase2 != NULL) {
472 free(kd->procbase2);
473 /*
474 * Clear this pointer in case this call fails. Otherwise,
475 * kvm_close() will free it again.
476 */
477 kd->procbase2 = NULL;
478 }
479
480 if (ISSYSCTL(kd)) {
481 size = 0;
482 mib[0] = CTL_KERN;
483 mib[1] = KERN_PROC2;
484 mib[2] = op;
485 mib[3] = arg;
486 mib[4] = (int)esize;
487 mib[5] = 0;
488 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
489 if (st == -1) {
490 _kvm_syserr(kd, kd->program, "kvm_getproc2");
491 return (NULL);
492 }
493
494 mib[5] = (int) (size / esize);
495 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
496 if (kd->procbase2 == NULL)
497 return (NULL);
498 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
499 if (st == -1) {
500 _kvm_syserr(kd, kd->program, "kvm_getproc2");
501 return (NULL);
502 }
503 nprocs = (int) (size / esize);
504 } else {
505 char *kp2c;
506 struct kinfo_proc *kp;
507 struct kinfo_proc2 kp2, *kp2p;
508 struct kinfo_lwp *kl;
509 int i, nlwps;
510
511 kp = kvm_getprocs(kd, op, arg, &nprocs);
512 if (kp == NULL)
513 return (NULL);
514
515 kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
516 kp2c = (char *)(void *)kd->procbase2;
517 kp2p = &kp2;
518 for (i = 0; i < nprocs; i++, kp++) {
519 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
520 (u_long)PTRTOINT64(kp->kp_eproc.e_paddr),
521 sizeof(struct kinfo_lwp), &nlwps);
522 /* We use kl[0] as the "representative" LWP */
523 memset(kp2p, 0, sizeof(kp2));
524 kp2p->p_forw = kl[0].l_forw;
525 kp2p->p_back = kl[0].l_back;
526 kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
527 kp2p->p_addr = kl[0].l_addr;
528 kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
529 kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
530 kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
531 kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
532 kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
533 kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
534 kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
535 kp2p->p_tsess = 0;
536 kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
537
538 kp2p->p_eflag = 0;
539 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
540 kp2p->p_flag = kp->kp_proc.p_flag;
541
542 kp2p->p_pid = kp->kp_proc.p_pid;
543
544 kp2p->p_ppid = kp->kp_eproc.e_ppid;
545 kp2p->p_sid = kp->kp_eproc.e_sid;
546 kp2p->p__pgid = kp->kp_eproc.e_pgid;
547
548 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
549
550 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
551 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
552 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
553 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
554 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
555 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
556
557 /*CONSTCOND*/
558 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
559 MIN(sizeof(kp2p->p_groups),
560 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
561 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
562
563 kp2p->p_jobc = kp->kp_eproc.e_jobc;
564 kp2p->p_tdev = kp->kp_eproc.e_tdev;
565 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
566 kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
567
568 kp2p->p_estcpu = kp->kp_proc.p_estcpu;
569 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
570 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
571 kp2p->p_cpticks = kp->kp_proc.p_cpticks;
572 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
573 kp2p->p_swtime = kl[0].l_swtime;
574 kp2p->p_slptime = kl[0].l_slptime;
575 #if 0 /* XXX thorpej */
576 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
577 #else
578 kp2p->p_schedflags = 0;
579 #endif
580
581 kp2p->p_uticks = kp->kp_proc.p_uticks;
582 kp2p->p_sticks = kp->kp_proc.p_sticks;
583 kp2p->p_iticks = kp->kp_proc.p_iticks;
584
585 kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
586 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
587
588 kp2p->p_holdcnt = kl[0].l_holdcnt;
589
590 memcpy(&kp2p->p_siglist,
591 &kp->kp_proc.p_sigctx.ps_siglist,
592 sizeof(ki_sigset_t));
593 memcpy(&kp2p->p_sigmask,
594 &kp->kp_proc.p_sigctx.ps_sigmask,
595 sizeof(ki_sigset_t));
596 memcpy(&kp2p->p_sigignore,
597 &kp->kp_proc.p_sigctx.ps_sigignore,
598 sizeof(ki_sigset_t));
599 memcpy(&kp2p->p_sigcatch,
600 &kp->kp_proc.p_sigctx.ps_sigcatch,
601 sizeof(ki_sigset_t));
602
603 kp2p->p_stat = kp->kp_proc.p_stat;
604 kp2p->p_priority = kl[0].l_priority;
605 kp2p->p_usrpri = kl[0].l_usrpri;
606 kp2p->p_nice = kp->kp_proc.p_nice;
607
608 kp2p->p_xstat = kp->kp_proc.p_xstat;
609 kp2p->p_acflag = kp->kp_proc.p_acflag;
610
611 /*CONSTCOND*/
612 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
613 MIN(sizeof(kp2p->p_comm),
614 sizeof(kp->kp_proc.p_comm)));
615
616 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
617 sizeof(kp2p->p_wmesg));
618 kp2p->p_wchan = kl[0].l_wchan;
619 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
620 sizeof(kp2p->p_login));
621
622 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
623 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
624 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
625 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
626
627 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
628
629 kp2p->p_realflag = kp->kp_proc.p_flag;
630 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
631 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
632 kp2p->p_realstat = kp->kp_proc.p_stat;
633
634 if (P_ZOMBIE(&kp->kp_proc) ||
635 kp->kp_proc.p_stats == NULL ||
636 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
637 kp2p->p_uvalid = 0;
638 } else {
639 kp2p->p_uvalid = 1;
640
641 kp2p->p_ustart_sec = (u_int32_t)
642 pstats.p_start.tv_sec;
643 kp2p->p_ustart_usec = (u_int32_t)
644 pstats.p_start.tv_usec;
645
646 kp2p->p_uutime_sec = (u_int32_t)
647 pstats.p_ru.ru_utime.tv_sec;
648 kp2p->p_uutime_usec = (u_int32_t)
649 pstats.p_ru.ru_utime.tv_usec;
650 kp2p->p_ustime_sec = (u_int32_t)
651 pstats.p_ru.ru_stime.tv_sec;
652 kp2p->p_ustime_usec = (u_int32_t)
653 pstats.p_ru.ru_stime.tv_usec;
654
655 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
656 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
657 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
658 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
659 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
660 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
661 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
662 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
663 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
664 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
665 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
666 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
667 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
668 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
669
670 kp2p->p_uctime_sec = (u_int32_t)
671 (pstats.p_cru.ru_utime.tv_sec +
672 pstats.p_cru.ru_stime.tv_sec);
673 kp2p->p_uctime_usec = (u_int32_t)
674 (pstats.p_cru.ru_utime.tv_usec +
675 pstats.p_cru.ru_stime.tv_usec);
676 }
677
678 memcpy(kp2c, &kp2, esize);
679 kp2c += esize;
680 }
681
682 _kvm_freeprocs(kd);
683 }
684 *cnt = nprocs;
685 return (kd->procbase2);
686 }
687
688 struct kinfo_lwp *
689 kvm_getlwps(kd, pid, paddr, esize, cnt)
690 kvm_t *kd;
691 int pid;
692 u_long paddr;
693 size_t esize;
694 int *cnt;
695 {
696 size_t size;
697 int mib[5], nlwps;
698 ssize_t st;
699 struct kinfo_lwp *kl;
700
701 if (kd->lwpbase != NULL) {
702 free(kd->lwpbase);
703 /*
704 * Clear this pointer in case this call fails. Otherwise,
705 * kvm_close() will free it again.
706 */
707 kd->lwpbase = NULL;
708 }
709
710 if (ISSYSCTL(kd)) {
711 size = 0;
712 mib[0] = CTL_KERN;
713 mib[1] = KERN_LWP;
714 mib[2] = pid;
715 mib[3] = (int)esize;
716 mib[4] = 0;
717 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
718 if (st == -1) {
719 _kvm_syserr(kd, kd->program, "kvm_getlwps");
720 return (NULL);
721 }
722
723 mib[4] = (int) (size / esize);
724 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
725 if (kd->lwpbase == NULL)
726 return (NULL);
727 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
728 if (st == -1) {
729 _kvm_syserr(kd, kd->program, "kvm_getlwps");
730 return (NULL);
731 }
732 nlwps = (int) (size / esize);
733 } else {
734 /* grovel through the memory image */
735 struct proc p;
736 struct lwp l;
737 u_long laddr;
738 int i;
739
740 st = kvm_read(kd, paddr, &p, sizeof(p));
741 if (st == -1) {
742 _kvm_syserr(kd, kd->program, "kvm_getlwps");
743 return (NULL);
744 }
745
746 nlwps = p.p_nlwps;
747 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
748 nlwps * sizeof(struct kinfo_lwp));
749 if (kd->lwpbase == NULL)
750 return (NULL);
751 laddr = (u_long)PTRTOINT64(p.p_lwps.lh_first);
752 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
753 st = kvm_read(kd, laddr, &l, sizeof(l));
754 if (st == -1) {
755 _kvm_syserr(kd, kd->program, "kvm_getlwps");
756 return (NULL);
757 }
758 kl = &kd->lwpbase[i];
759 kl->l_laddr = laddr;
760 kl->l_forw = PTRTOINT64(l.l_forw);
761 kl->l_back = PTRTOINT64(l.l_back);
762 kl->l_addr = PTRTOINT64(l.l_addr);
763 kl->l_lid = l.l_lid;
764 kl->l_flag = l.l_flag;
765 kl->l_swtime = l.l_swtime;
766 kl->l_slptime = l.l_slptime;
767 kl->l_schedflags = 0; /* XXX */
768 kl->l_holdcnt = l.l_holdcnt;
769 kl->l_priority = l.l_priority;
770 kl->l_usrpri = l.l_usrpri;
771 kl->l_stat = l.l_stat;
772 kl->l_wchan = PTRTOINT64(l.l_wchan);
773 if (l.l_wmesg)
774 (void)kvm_read(kd, (u_long)l.l_wmesg,
775 kl->l_wmesg, (size_t)WMESGLEN);
776 kl->l_cpuid = KI_NOCPU;
777 laddr = (u_long)PTRTOINT64(l.l_sibling.le_next);
778 }
779 }
780
781 *cnt = nlwps;
782 return (kd->lwpbase);
783 }
784
785 struct kinfo_proc *
786 kvm_getprocs(kd, op, arg, cnt)
787 kvm_t *kd;
788 int op, arg;
789 int *cnt;
790 {
791 size_t size;
792 int mib[4], st, nprocs;
793
794 if (kd->procbase != NULL) {
795 free(kd->procbase);
796 /*
797 * Clear this pointer in case this call fails. Otherwise,
798 * kvm_close() will free it again.
799 */
800 kd->procbase = NULL;
801 }
802 if (ISKMEM(kd)) {
803 size = 0;
804 mib[0] = CTL_KERN;
805 mib[1] = KERN_PROC;
806 mib[2] = op;
807 mib[3] = arg;
808 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
809 if (st == -1) {
810 _kvm_syserr(kd, kd->program, "kvm_getprocs");
811 return (NULL);
812 }
813 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
814 if (kd->procbase == NULL)
815 return (NULL);
816 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
817 if (st == -1) {
818 _kvm_syserr(kd, kd->program, "kvm_getprocs");
819 return (NULL);
820 }
821 if (size % sizeof(struct kinfo_proc) != 0) {
822 _kvm_err(kd, kd->program,
823 "proc size mismatch (%lu total, %lu chunks)",
824 (u_long)size, (u_long)sizeof(struct kinfo_proc));
825 return (NULL);
826 }
827 nprocs = (int) (size / sizeof(struct kinfo_proc));
828 } else if (ISSYSCTL(kd)) {
829 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
830 "can't use kvm_getprocs");
831 return (NULL);
832 } else {
833 struct nlist nl[4], *p;
834
835 nl[0].n_name = "_nprocs";
836 nl[1].n_name = "_allproc";
837 nl[2].n_name = "_zombproc";
838 nl[3].n_name = NULL;
839
840 if (kvm_nlist(kd, nl) != 0) {
841 for (p = nl; p->n_type != 0; ++p)
842 continue;
843 _kvm_err(kd, kd->program,
844 "%s: no such symbol", p->n_name);
845 return (NULL);
846 }
847 if (KREAD(kd, nl[0].n_value, &nprocs)) {
848 _kvm_err(kd, kd->program, "can't read nprocs");
849 return (NULL);
850 }
851 size = nprocs * sizeof(struct kinfo_proc);
852 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
853 if (kd->procbase == NULL)
854 return (NULL);
855
856 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
857 nl[2].n_value, nprocs);
858 if (nprocs < 0)
859 return (NULL);
860 #ifdef notdef
861 size = nprocs * sizeof(struct kinfo_proc);
862 (void)realloc(kd->procbase, size);
863 #endif
864 }
865 *cnt = nprocs;
866 return (kd->procbase);
867 }
868
869 void
870 _kvm_freeprocs(kd)
871 kvm_t *kd;
872 {
873
874 if (kd->procbase) {
875 free(kd->procbase);
876 kd->procbase = NULL;
877 }
878 }
879
880 void *
881 _kvm_realloc(kd, p, n)
882 kvm_t *kd;
883 void *p;
884 size_t n;
885 {
886 void *np = realloc(p, n);
887
888 if (np == NULL)
889 _kvm_err(kd, kd->program, "out of memory");
890 return (np);
891 }
892
893 /*
894 * Read in an argument vector from the user address space of process p.
895 * addr if the user-space base address of narg null-terminated contiguous
896 * strings. This is used to read in both the command arguments and
897 * environment strings. Read at most maxcnt characters of strings.
898 */
899 static char **
900 kvm_argv(kd, p, addr, narg, maxcnt)
901 kvm_t *kd;
902 const struct miniproc *p;
903 u_long addr;
904 int narg;
905 int maxcnt;
906 {
907 char *np, *cp, *ep, *ap;
908 u_long oaddr = (u_long)~0L;
909 u_long len;
910 size_t cc;
911 char **argv;
912
913 /*
914 * Check that there aren't an unreasonable number of agruments,
915 * and that the address is in user space.
916 */
917 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
918 return (NULL);
919
920 if (kd->argv == NULL) {
921 /*
922 * Try to avoid reallocs.
923 */
924 kd->argc = MAX(narg + 1, 32);
925 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
926 sizeof(*kd->argv));
927 if (kd->argv == NULL)
928 return (NULL);
929 } else if (narg + 1 > kd->argc) {
930 kd->argc = MAX(2 * kd->argc, narg + 1);
931 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
932 sizeof(*kd->argv));
933 if (kd->argv == NULL)
934 return (NULL);
935 }
936 if (kd->argspc == NULL) {
937 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
938 if (kd->argspc == NULL)
939 return (NULL);
940 kd->arglen = kd->nbpg;
941 }
942 if (kd->argbuf == NULL) {
943 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
944 if (kd->argbuf == NULL)
945 return (NULL);
946 }
947 cc = sizeof(char *) * narg;
948 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
949 return (NULL);
950 ap = np = kd->argspc;
951 argv = kd->argv;
952 len = 0;
953 /*
954 * Loop over pages, filling in the argument vector.
955 */
956 while (argv < kd->argv + narg && *argv != NULL) {
957 addr = (u_long)*argv & ~(kd->nbpg - 1);
958 if (addr != oaddr) {
959 if (kvm_ureadm(kd, p, addr, kd->argbuf,
960 (size_t)kd->nbpg) != kd->nbpg)
961 return (NULL);
962 oaddr = addr;
963 }
964 addr = (u_long)*argv & (kd->nbpg - 1);
965 cp = kd->argbuf + (size_t)addr;
966 cc = kd->nbpg - (size_t)addr;
967 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
968 cc = (size_t)(maxcnt - len);
969 ep = memchr(cp, '\0', cc);
970 if (ep != NULL)
971 cc = ep - cp + 1;
972 if (len + cc > kd->arglen) {
973 ptrdiff_t off;
974 char **pp;
975 char *op = kd->argspc;
976
977 kd->arglen *= 2;
978 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
979 (size_t)kd->arglen);
980 if (kd->argspc == NULL)
981 return (NULL);
982 /*
983 * Adjust argv pointers in case realloc moved
984 * the string space.
985 */
986 off = kd->argspc - op;
987 for (pp = kd->argv; pp < argv; pp++)
988 *pp += off;
989 ap += off;
990 np += off;
991 }
992 memcpy(np, cp, cc);
993 np += cc;
994 len += cc;
995 if (ep != NULL) {
996 *argv++ = ap;
997 ap = np;
998 } else
999 *argv += cc;
1000 if (maxcnt > 0 && len >= maxcnt) {
1001 /*
1002 * We're stopping prematurely. Terminate the
1003 * current string.
1004 */
1005 if (ep == NULL) {
1006 *np = '\0';
1007 *argv++ = ap;
1008 }
1009 break;
1010 }
1011 }
1012 /* Make sure argv is terminated. */
1013 *argv = NULL;
1014 return (kd->argv);
1015 }
1016
1017 static void
1018 ps_str_a(p, addr, n)
1019 struct ps_strings *p;
1020 u_long *addr;
1021 int *n;
1022 {
1023
1024 *addr = (u_long)p->ps_argvstr;
1025 *n = p->ps_nargvstr;
1026 }
1027
1028 static void
1029 ps_str_e(p, addr, n)
1030 struct ps_strings *p;
1031 u_long *addr;
1032 int *n;
1033 {
1034
1035 *addr = (u_long)p->ps_envstr;
1036 *n = p->ps_nenvstr;
1037 }
1038
1039 /*
1040 * Determine if the proc indicated by p is still active.
1041 * This test is not 100% foolproof in theory, but chances of
1042 * being wrong are very low.
1043 */
1044 static int
1045 proc_verify(kd, kernp, p)
1046 kvm_t *kd;
1047 u_long kernp;
1048 const struct miniproc *p;
1049 {
1050 struct proc kernproc;
1051
1052 /*
1053 * Just read in the whole proc. It's not that big relative
1054 * to the cost of the read system call.
1055 */
1056 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1057 sizeof(kernproc))
1058 return (0);
1059 return (p->p_pid == kernproc.p_pid &&
1060 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1061 }
1062
1063 static char **
1064 kvm_doargv(kd, p, nchr, info)
1065 kvm_t *kd;
1066 const struct miniproc *p;
1067 int nchr;
1068 void (*info)(struct ps_strings *, u_long *, int *);
1069 {
1070 char **ap;
1071 u_long addr;
1072 int cnt;
1073 struct ps_strings arginfo;
1074
1075 /*
1076 * Pointers are stored at the top of the user stack.
1077 */
1078 if (p->p_stat == SZOMB)
1079 return (NULL);
1080 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1081 (void *)&arginfo, sizeof(arginfo));
1082 if (cnt != sizeof(arginfo))
1083 return (NULL);
1084
1085 (*info)(&arginfo, &addr, &cnt);
1086 if (cnt == 0)
1087 return (NULL);
1088 ap = kvm_argv(kd, p, addr, cnt, nchr);
1089 /*
1090 * For live kernels, make sure this process didn't go away.
1091 */
1092 if (ap != NULL && ISALIVE(kd) &&
1093 !proc_verify(kd, (u_long)p->p_paddr, p))
1094 ap = NULL;
1095 return (ap);
1096 }
1097
1098 /*
1099 * Get the command args. This code is now machine independent.
1100 */
1101 char **
1102 kvm_getargv(kd, kp, nchr)
1103 kvm_t *kd;
1104 const struct kinfo_proc *kp;
1105 int nchr;
1106 {
1107 struct miniproc p;
1108
1109 KPTOMINI(kp, &p);
1110 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1111 }
1112
1113 char **
1114 kvm_getenvv(kd, kp, nchr)
1115 kvm_t *kd;
1116 const struct kinfo_proc *kp;
1117 int nchr;
1118 {
1119 struct miniproc p;
1120
1121 KPTOMINI(kp, &p);
1122 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1123 }
1124
1125 static char **
1126 kvm_doargv2(kd, pid, type, nchr)
1127 kvm_t *kd;
1128 pid_t pid;
1129 int type;
1130 int nchr;
1131 {
1132 size_t bufs;
1133 int narg, mib[4];
1134 size_t newarglen;
1135 char **ap, *bp, *endp;
1136
1137 /*
1138 * Check that there aren't an unreasonable number of agruments.
1139 */
1140 if (nchr > ARG_MAX)
1141 return (NULL);
1142
1143 if (nchr == 0)
1144 nchr = ARG_MAX;
1145
1146 /* Get number of strings in argv */
1147 mib[0] = CTL_KERN;
1148 mib[1] = KERN_PROC_ARGS;
1149 mib[2] = pid;
1150 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1151 bufs = sizeof(narg);
1152 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1153 return (NULL);
1154
1155 if (kd->argv == NULL) {
1156 /*
1157 * Try to avoid reallocs.
1158 */
1159 kd->argc = MAX(narg + 1, 32);
1160 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1161 sizeof(*kd->argv));
1162 if (kd->argv == NULL)
1163 return (NULL);
1164 } else if (narg + 1 > kd->argc) {
1165 kd->argc = MAX(2 * kd->argc, narg + 1);
1166 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1167 sizeof(*kd->argv));
1168 if (kd->argv == NULL)
1169 return (NULL);
1170 }
1171
1172 newarglen = MIN(nchr, ARG_MAX);
1173 if (kd->arglen < newarglen) {
1174 if (kd->arglen == 0)
1175 kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1176 else
1177 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1178 newarglen);
1179 if (kd->argspc == NULL)
1180 return (NULL);
1181 if (newarglen > INT_MAX)
1182 return NULL;
1183 kd->arglen = (int)newarglen;
1184 }
1185 memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */
1186
1187 mib[0] = CTL_KERN;
1188 mib[1] = KERN_PROC_ARGS;
1189 mib[2] = pid;
1190 mib[3] = type;
1191 bufs = kd->arglen;
1192 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1193 return (NULL);
1194
1195 bp = kd->argspc;
1196 bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */
1197 ap = kd->argv;
1198 endp = bp + MIN(nchr, bufs);
1199
1200 while (bp < endp) {
1201 *ap++ = bp;
1202 /*
1203 * XXX: don't need following anymore, or stick check
1204 * for max argc in above while loop?
1205 */
1206 if (ap >= kd->argv + kd->argc) {
1207 kd->argc *= 2;
1208 kd->argv = _kvm_realloc(kd, kd->argv,
1209 kd->argc * sizeof(*kd->argv));
1210 ap = kd->argv;
1211 }
1212 bp += strlen(bp) + 1;
1213 }
1214 *ap = NULL;
1215
1216 return (kd->argv);
1217 }
1218
1219 char **
1220 kvm_getargv2(kd, kp, nchr)
1221 kvm_t *kd;
1222 const struct kinfo_proc2 *kp;
1223 int nchr;
1224 {
1225
1226 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1227 }
1228
1229 char **
1230 kvm_getenvv2(kd, kp, nchr)
1231 kvm_t *kd;
1232 const struct kinfo_proc2 *kp;
1233 int nchr;
1234 {
1235
1236 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1237 }
1238
1239 /*
1240 * Read from user space. The user context is given by p.
1241 */
1242 static ssize_t
1243 kvm_ureadm(kd, p, uva, buf, len)
1244 kvm_t *kd;
1245 const struct miniproc *p;
1246 u_long uva;
1247 char *buf;
1248 size_t len;
1249 {
1250 char *cp;
1251
1252 cp = buf;
1253 while (len > 0) {
1254 size_t cc;
1255 char *dp;
1256 u_long cnt;
1257
1258 dp = _kvm_ureadm(kd, p, uva, &cnt);
1259 if (dp == NULL) {
1260 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1261 return (0);
1262 }
1263 cc = (size_t)MIN(cnt, len);
1264 memcpy(cp, dp, cc);
1265 cp += cc;
1266 uva += cc;
1267 len -= cc;
1268 }
1269 return (ssize_t)(cp - buf);
1270 }
1271
1272 ssize_t
1273 kvm_uread(kd, p, uva, buf, len)
1274 kvm_t *kd;
1275 const struct proc *p;
1276 u_long uva;
1277 char *buf;
1278 size_t len;
1279 {
1280 struct miniproc mp;
1281
1282 PTOMINI(p, &mp);
1283 return (kvm_ureadm(kd, &mp, uva, buf, len));
1284 }
1285