Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.53
      1 /*	$NetBSD: kvm_proc.c,v 1.53 2003/03/28 14:01:32 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1989, 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software developed by the Computer Systems
     44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45  * BG 91-66 and contributed to Berkeley.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *	This product includes software developed by the University of
     58  *	California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 #if defined(LIBC_SCCS) && !defined(lint)
     78 #if 0
     79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     80 #else
     81 __RCSID("$NetBSD: kvm_proc.c,v 1.53 2003/03/28 14:01:32 christos Exp $");
     82 #endif
     83 #endif /* LIBC_SCCS and not lint */
     84 
     85 /*
     86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     87  * users of this code, so we've factored it out into a separate module.
     88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     89  * most other applications are interested only in open/close/read/nlist).
     90  */
     91 
     92 #include <sys/param.h>
     93 #include <sys/user.h>
     94 #include <sys/lwp.h>
     95 #include <sys/proc.h>
     96 #include <sys/exec.h>
     97 #include <sys/stat.h>
     98 #include <sys/ioctl.h>
     99 #include <sys/tty.h>
    100 #include <stdlib.h>
    101 #include <stddef.h>
    102 #include <string.h>
    103 #include <unistd.h>
    104 #include <nlist.h>
    105 #include <kvm.h>
    106 
    107 #include <uvm/uvm_extern.h>
    108 #include <uvm/uvm_amap.h>
    109 
    110 #include <sys/sysctl.h>
    111 
    112 #include <limits.h>
    113 #include <db.h>
    114 #include <paths.h>
    115 
    116 #include "kvm_private.h"
    117 
    118 /*
    119  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    120  */
    121 struct miniproc {
    122 	struct	vmspace *p_vmspace;
    123 	char	p_stat;
    124 	struct	proc *p_paddr;
    125 	pid_t	p_pid;
    126 };
    127 
    128 /*
    129  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    130  */
    131 #define PTOMINI(kp, p) \
    132 	do { \
    133 		(p)->p_stat = (kp)->p_stat; \
    134 		(p)->p_pid = (kp)->p_pid; \
    135 		(p)->p_paddr = NULL; \
    136 		(p)->p_vmspace = (kp)->p_vmspace; \
    137 	} while (/*CONSTCOND*/0);
    138 
    139 #define KPTOMINI(kp, p) \
    140 	do { \
    141 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    142 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    143 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    144 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    145 	} while (/*CONSTCOND*/0);
    146 
    147 #define KP2TOMINI(kp, p) \
    148 	do { \
    149 		(p)->p_stat = (kp)->p_stat; \
    150 		(p)->p_pid = (kp)->p_pid; \
    151 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    152 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    153 	} while (/*CONSTCOND*/0);
    154 
    155 
    156 #define	PTRTOINT64(foo)	((u_int64_t)(const uintptr_t)(const void *)(foo))
    157 
    158 #define KREAD(kd, addr, obj) \
    159 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    160 
    161 /* XXX: What uses these two functions? */
    162 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
    163 		    u_long *));
    164 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    165 		    size_t));
    166 
    167 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    168 		    u_long *));
    169 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    170 		    char *, size_t));
    171 
    172 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
    173 		    int));
    174 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
    175 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
    176 		    void (*)(struct ps_strings *, u_long *, int *)));
    177 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
    178 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    179 		    struct kinfo_proc *, int));
    180 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
    181 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    182 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    183 
    184 
    185 static char *
    186 _kvm_ureadm(kd, p, va, cnt)
    187 	kvm_t *kd;
    188 	const struct miniproc *p;
    189 	u_long va;
    190 	u_long *cnt;
    191 {
    192 	int true = 1;
    193 	u_long addr, head;
    194 	u_long offset;
    195 	struct vm_map_entry vme;
    196 	struct vm_amap amap;
    197 	struct vm_anon *anonp, anon;
    198 	struct vm_page pg;
    199 	u_long slot;
    200 
    201 	if (kd->swapspc == NULL) {
    202 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    203 		if (kd->swapspc == NULL)
    204 			return (NULL);
    205 	}
    206 
    207 	/*
    208 	 * Look through the address map for the memory object
    209 	 * that corresponds to the given virtual address.
    210 	 * The header just has the entire valid range.
    211 	 */
    212 	head = (u_long)&p->p_vmspace->vm_map.header;
    213 	addr = head;
    214 	while (true) {
    215 		if (KREAD(kd, addr, &vme))
    216 			return (NULL);
    217 
    218 		if (va >= vme.start && va < vme.end &&
    219 		    vme.aref.ar_amap != NULL)
    220 			break;
    221 
    222 		addr = (u_long)vme.next;
    223 		if (addr == head)
    224 			return (NULL);
    225 	}
    226 
    227 	/*
    228 	 * we found the map entry, now to find the object...
    229 	 */
    230 	if (vme.aref.ar_amap == NULL)
    231 		return (NULL);
    232 
    233 	addr = (u_long)vme.aref.ar_amap;
    234 	if (KREAD(kd, addr, &amap))
    235 		return (NULL);
    236 
    237 	offset = va - vme.start;
    238 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    239 	/* sanity-check slot number */
    240 	if (slot > amap.am_nslot)
    241 		return (NULL);
    242 
    243 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    244 	if (KREAD(kd, addr, &anonp))
    245 		return (NULL);
    246 
    247 	addr = (u_long)anonp;
    248 	if (KREAD(kd, addr, &anon))
    249 		return (NULL);
    250 
    251 	addr = (u_long)anon.u.an_page;
    252 	if (addr) {
    253 		if (KREAD(kd, addr, &pg))
    254 			return (NULL);
    255 
    256 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    257 		    (off_t)pg.phys_addr) != kd->nbpg)
    258 			return (NULL);
    259 	} else {
    260 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    261 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    262 			return (NULL);
    263 	}
    264 
    265 	/* Found the page. */
    266 	offset %= kd->nbpg;
    267 	*cnt = kd->nbpg - offset;
    268 	return (&kd->swapspc[(size_t)offset]);
    269 }
    270 
    271 char *
    272 _kvm_uread(kd, p, va, cnt)
    273 	kvm_t *kd;
    274 	const struct proc *p;
    275 	u_long va;
    276 	u_long *cnt;
    277 {
    278 	struct miniproc mp;
    279 
    280 	PTOMINI(p, &mp);
    281 	return (_kvm_ureadm(kd, &mp, va, cnt));
    282 }
    283 
    284 /*
    285  * Read proc's from memory file into buffer bp, which has space to hold
    286  * at most maxcnt procs.
    287  */
    288 static int
    289 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    290 	kvm_t *kd;
    291 	int what, arg;
    292 	struct proc *p;
    293 	struct kinfo_proc *bp;
    294 	int maxcnt;
    295 {
    296 	int cnt = 0;
    297 	int nlwps;
    298 	struct kinfo_lwp *kl;
    299 	struct eproc eproc;
    300 	struct pgrp pgrp;
    301 	struct session sess;
    302 	struct tty tty;
    303 	struct proc proc;
    304 
    305 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    306 		if (KREAD(kd, (u_long)p, &proc)) {
    307 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    308 			return (-1);
    309 		}
    310 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    311 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    312 			    &eproc.e_ucred)) {
    313 				_kvm_err(kd, kd->program,
    314 				    "can't read proc credentials at %p", p);
    315 				return (-1);
    316 			}
    317 
    318 		switch (what) {
    319 
    320 		case KERN_PROC_PID:
    321 			if (proc.p_pid != (pid_t)arg)
    322 				continue;
    323 			break;
    324 
    325 		case KERN_PROC_UID:
    326 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    327 				continue;
    328 			break;
    329 
    330 		case KERN_PROC_RUID:
    331 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    332 				continue;
    333 			break;
    334 		}
    335 		/*
    336 		 * We're going to add another proc to the set.  If this
    337 		 * will overflow the buffer, assume the reason is because
    338 		 * nprocs (or the proc list) is corrupt and declare an error.
    339 		 */
    340 		if (cnt >= maxcnt) {
    341 			_kvm_err(kd, kd->program, "nprocs corrupt");
    342 			return (-1);
    343 		}
    344 		/*
    345 		 * gather eproc
    346 		 */
    347 		eproc.e_paddr = p;
    348 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    349 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    350 			    proc.p_pgrp);
    351 			return (-1);
    352 		}
    353 		eproc.e_sess = pgrp.pg_session;
    354 		eproc.e_pgid = pgrp.pg_id;
    355 		eproc.e_jobc = pgrp.pg_jobc;
    356 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    357 			_kvm_err(kd, kd->program, "can't read session at %p",
    358 			    pgrp.pg_session);
    359 			return (-1);
    360 		}
    361 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    362 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    363 				_kvm_err(kd, kd->program,
    364 				    "can't read tty at %p", sess.s_ttyp);
    365 				return (-1);
    366 			}
    367 			eproc.e_tdev = tty.t_dev;
    368 			eproc.e_tsess = tty.t_session;
    369 			if (tty.t_pgrp != NULL) {
    370 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    371 					_kvm_err(kd, kd->program,
    372 					    "can't read tpgrp at %p",
    373 					    tty.t_pgrp);
    374 					return (-1);
    375 				}
    376 				eproc.e_tpgid = pgrp.pg_id;
    377 			} else
    378 				eproc.e_tpgid = -1;
    379 		} else
    380 			eproc.e_tdev = NODEV;
    381 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    382 		eproc.e_sid = sess.s_sid;
    383 		if (sess.s_leader == p)
    384 			eproc.e_flag |= EPROC_SLEADER;
    385 		/*
    386 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
    387 		 * from the first avaliable LWP.
    388 		 */
    389 		kl = kvm_getlwps(kd, proc.p_pid,
    390 		    (u_long)PTRTOINT64(eproc.e_paddr),
    391 		    sizeof(struct kinfo_lwp), &nlwps);
    392 		if (kl) {
    393 			if (nlwps > 0) {
    394 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
    395 			}
    396 		}
    397 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    398 		    sizeof(eproc.e_vm));
    399 
    400 		eproc.e_xsize = eproc.e_xrssize = 0;
    401 		eproc.e_xccount = eproc.e_xswrss = 0;
    402 
    403 		switch (what) {
    404 
    405 		case KERN_PROC_PGRP:
    406 			if (eproc.e_pgid != (pid_t)arg)
    407 				continue;
    408 			break;
    409 
    410 		case KERN_PROC_TTY:
    411 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    412 			    eproc.e_tdev != (dev_t)arg)
    413 				continue;
    414 			break;
    415 		}
    416 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    417 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    418 		++bp;
    419 		++cnt;
    420 	}
    421 	return (cnt);
    422 }
    423 
    424 /*
    425  * Build proc info array by reading in proc list from a crash dump.
    426  * Return number of procs read.  maxcnt is the max we will read.
    427  */
    428 static int
    429 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    430 	kvm_t *kd;
    431 	int what, arg;
    432 	u_long a_allproc;
    433 	u_long a_zombproc;
    434 	int maxcnt;
    435 {
    436 	struct kinfo_proc *bp = kd->procbase;
    437 	int acnt, zcnt;
    438 	struct proc *p;
    439 
    440 	if (KREAD(kd, a_allproc, &p)) {
    441 		_kvm_err(kd, kd->program, "cannot read allproc");
    442 		return (-1);
    443 	}
    444 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    445 	if (acnt < 0)
    446 		return (acnt);
    447 
    448 	if (KREAD(kd, a_zombproc, &p)) {
    449 		_kvm_err(kd, kd->program, "cannot read zombproc");
    450 		return (-1);
    451 	}
    452 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    453 	    maxcnt - acnt);
    454 	if (zcnt < 0)
    455 		zcnt = 0;
    456 
    457 	return (acnt + zcnt);
    458 }
    459 
    460 struct kinfo_proc2 *
    461 kvm_getproc2(kd, op, arg, esize, cnt)
    462 	kvm_t *kd;
    463 	int op, arg;
    464 	size_t esize;
    465 	int *cnt;
    466 {
    467 	size_t size;
    468 	int mib[6], st, nprocs;
    469 	struct pstats pstats;
    470 
    471 	if (kd->procbase2 != NULL) {
    472 		free(kd->procbase2);
    473 		/*
    474 		 * Clear this pointer in case this call fails.  Otherwise,
    475 		 * kvm_close() will free it again.
    476 		 */
    477 		kd->procbase2 = NULL;
    478 	}
    479 
    480 	if (ISSYSCTL(kd)) {
    481 		size = 0;
    482 		mib[0] = CTL_KERN;
    483 		mib[1] = KERN_PROC2;
    484 		mib[2] = op;
    485 		mib[3] = arg;
    486 		mib[4] = (int)esize;
    487 		mib[5] = 0;
    488 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
    489 		if (st == -1) {
    490 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    491 			return (NULL);
    492 		}
    493 
    494 		mib[5] = (int) (size / esize);
    495 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
    496 		if (kd->procbase2 == NULL)
    497 			return (NULL);
    498 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
    499 		if (st == -1) {
    500 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    501 			return (NULL);
    502 		}
    503 		nprocs = (int) (size / esize);
    504 	} else {
    505 		char *kp2c;
    506 		struct kinfo_proc *kp;
    507 		struct kinfo_proc2 kp2, *kp2p;
    508 		struct kinfo_lwp *kl;
    509 		int i, nlwps;
    510 
    511 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    512 		if (kp == NULL)
    513 			return (NULL);
    514 
    515 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
    516 		kp2c = (char *)(void *)kd->procbase2;
    517 		kp2p = &kp2;
    518 		for (i = 0; i < nprocs; i++, kp++) {
    519 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
    520 			    (u_long)PTRTOINT64(kp->kp_eproc.e_paddr),
    521 			    sizeof(struct kinfo_lwp), &nlwps);
    522 			/* We use kl[0] as the "representative" LWP */
    523 			memset(kp2p, 0, sizeof(kp2));
    524 			kp2p->p_forw = kl[0].l_forw;
    525 			kp2p->p_back = kl[0].l_back;
    526 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
    527 			kp2p->p_addr = kl[0].l_addr;
    528 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
    529 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
    530 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
    531 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
    532 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
    533 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
    534 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
    535 			kp2p->p_tsess = 0;
    536 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
    537 
    538 			kp2p->p_eflag = 0;
    539 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    540 			kp2p->p_flag = kp->kp_proc.p_flag;
    541 
    542 			kp2p->p_pid = kp->kp_proc.p_pid;
    543 
    544 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    545 			kp2p->p_sid = kp->kp_eproc.e_sid;
    546 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    547 
    548 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
    549 
    550 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    551 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    552 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
    553 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    554 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    555 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
    556 
    557 			/*CONSTCOND*/
    558 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    559 			    MIN(sizeof(kp2p->p_groups),
    560 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    561 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    562 
    563 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    564 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    565 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    566 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
    567 
    568 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
    569 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
    570 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
    571 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
    572 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    573 			kp2p->p_swtime = kl[0].l_swtime;
    574 			kp2p->p_slptime = kl[0].l_slptime;
    575 #if 0 /* XXX thorpej */
    576 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    577 #else
    578 			kp2p->p_schedflags = 0;
    579 #endif
    580 
    581 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    582 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    583 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    584 
    585 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
    586 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    587 
    588 			kp2p->p_holdcnt = kl[0].l_holdcnt;
    589 
    590 			memcpy(&kp2p->p_siglist,
    591 			    &kp->kp_proc.p_sigctx.ps_siglist,
    592 			    sizeof(ki_sigset_t));
    593 			memcpy(&kp2p->p_sigmask,
    594 			    &kp->kp_proc.p_sigctx.ps_sigmask,
    595 			    sizeof(ki_sigset_t));
    596 			memcpy(&kp2p->p_sigignore,
    597 			    &kp->kp_proc.p_sigctx.ps_sigignore,
    598 			    sizeof(ki_sigset_t));
    599 			memcpy(&kp2p->p_sigcatch,
    600 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
    601 			    sizeof(ki_sigset_t));
    602 
    603 			kp2p->p_stat = kp->kp_proc.p_stat;
    604 			kp2p->p_priority = kl[0].l_priority;
    605 			kp2p->p_usrpri = kl[0].l_usrpri;
    606 			kp2p->p_nice = kp->kp_proc.p_nice;
    607 
    608 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    609 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    610 
    611 			/*CONSTCOND*/
    612 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    613 			    MIN(sizeof(kp2p->p_comm),
    614 			    sizeof(kp->kp_proc.p_comm)));
    615 
    616 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
    617 			    sizeof(kp2p->p_wmesg));
    618 			kp2p->p_wchan = kl[0].l_wchan;
    619 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
    620 			    sizeof(kp2p->p_login));
    621 
    622 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    623 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    624 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    625 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    626 
    627 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    628 
    629 			kp2p->p_realflag = kp->kp_proc.p_flag;
    630 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
    631 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
    632 			kp2p->p_realstat = kp->kp_proc.p_stat;
    633 
    634 			if (P_ZOMBIE(&kp->kp_proc) ||
    635 			    kp->kp_proc.p_stats == NULL ||
    636 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
    637 				kp2p->p_uvalid = 0;
    638 			} else {
    639 				kp2p->p_uvalid = 1;
    640 
    641 				kp2p->p_ustart_sec = (u_int32_t)
    642 				    pstats.p_start.tv_sec;
    643 				kp2p->p_ustart_usec = (u_int32_t)
    644 				    pstats.p_start.tv_usec;
    645 
    646 				kp2p->p_uutime_sec = (u_int32_t)
    647 				    pstats.p_ru.ru_utime.tv_sec;
    648 				kp2p->p_uutime_usec = (u_int32_t)
    649 				    pstats.p_ru.ru_utime.tv_usec;
    650 				kp2p->p_ustime_sec = (u_int32_t)
    651 				    pstats.p_ru.ru_stime.tv_sec;
    652 				kp2p->p_ustime_usec = (u_int32_t)
    653 				    pstats.p_ru.ru_stime.tv_usec;
    654 
    655 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
    656 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
    657 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
    658 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
    659 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
    660 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
    661 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
    662 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
    663 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
    664 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
    665 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
    666 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
    667 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
    668 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
    669 
    670 				kp2p->p_uctime_sec = (u_int32_t)
    671 				    (pstats.p_cru.ru_utime.tv_sec +
    672 				    pstats.p_cru.ru_stime.tv_sec);
    673 				kp2p->p_uctime_usec = (u_int32_t)
    674 				    (pstats.p_cru.ru_utime.tv_usec +
    675 				    pstats.p_cru.ru_stime.tv_usec);
    676 			}
    677 
    678 			memcpy(kp2c, &kp2, esize);
    679 			kp2c += esize;
    680 		}
    681 
    682 		_kvm_freeprocs(kd);
    683 	}
    684 	*cnt = nprocs;
    685 	return (kd->procbase2);
    686 }
    687 
    688 struct kinfo_lwp *
    689 kvm_getlwps(kd, pid, paddr, esize, cnt)
    690 	kvm_t *kd;
    691 	int pid;
    692 	u_long paddr;
    693 	size_t esize;
    694 	int *cnt;
    695 {
    696 	size_t size;
    697 	int mib[5], nlwps;
    698 	ssize_t st;
    699 	struct kinfo_lwp *kl;
    700 
    701 	if (kd->lwpbase != NULL) {
    702 		free(kd->lwpbase);
    703 		/*
    704 		 * Clear this pointer in case this call fails.  Otherwise,
    705 		 * kvm_close() will free it again.
    706 		 */
    707 		kd->lwpbase = NULL;
    708 	}
    709 
    710 	if (ISSYSCTL(kd)) {
    711 		size = 0;
    712 		mib[0] = CTL_KERN;
    713 		mib[1] = KERN_LWP;
    714 		mib[2] = pid;
    715 		mib[3] = (int)esize;
    716 		mib[4] = 0;
    717 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
    718 		if (st == -1) {
    719 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    720 			return (NULL);
    721 		}
    722 
    723 		mib[4] = (int) (size / esize);
    724 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
    725 		if (kd->lwpbase == NULL)
    726 			return (NULL);
    727 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
    728 		if (st == -1) {
    729 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    730 			return (NULL);
    731 		}
    732 		nlwps = (int) (size / esize);
    733 	} else {
    734 		/* grovel through the memory image */
    735 		struct proc p;
    736 		struct lwp l;
    737 		u_long laddr;
    738 		int i;
    739 
    740 		st = kvm_read(kd, paddr, &p, sizeof(p));
    741 		if (st == -1) {
    742 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    743 			return (NULL);
    744 		}
    745 
    746 		nlwps = p.p_nlwps;
    747 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
    748 		    nlwps * sizeof(struct kinfo_lwp));
    749 		if (kd->lwpbase == NULL)
    750 			return (NULL);
    751 		laddr = (u_long)PTRTOINT64(p.p_lwps.lh_first);
    752 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
    753 			st = kvm_read(kd, laddr, &l, sizeof(l));
    754 			if (st == -1) {
    755 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    756 				return (NULL);
    757 			}
    758 			kl = &kd->lwpbase[i];
    759 			kl->l_laddr = laddr;
    760 			kl->l_forw = PTRTOINT64(l.l_forw);
    761 			kl->l_back = PTRTOINT64(l.l_back);
    762 			kl->l_addr = PTRTOINT64(l.l_addr);
    763 			kl->l_lid = l.l_lid;
    764 			kl->l_flag = l.l_flag;
    765 			kl->l_swtime = l.l_swtime;
    766 			kl->l_slptime = l.l_slptime;
    767 			kl->l_schedflags = 0; /* XXX */
    768 			kl->l_holdcnt = l.l_holdcnt;
    769 			kl->l_priority = l.l_priority;
    770 			kl->l_usrpri = l.l_usrpri;
    771 			kl->l_stat = l.l_stat;
    772 			kl->l_wchan = PTRTOINT64(l.l_wchan);
    773 			if (l.l_wmesg)
    774 				(void)kvm_read(kd, (u_long)l.l_wmesg,
    775 				    kl->l_wmesg, (size_t)WMESGLEN);
    776 			kl->l_cpuid = KI_NOCPU;
    777 			laddr = (u_long)PTRTOINT64(l.l_sibling.le_next);
    778 		}
    779 	}
    780 
    781 	*cnt = nlwps;
    782 	return (kd->lwpbase);
    783 }
    784 
    785 struct kinfo_proc *
    786 kvm_getprocs(kd, op, arg, cnt)
    787 	kvm_t *kd;
    788 	int op, arg;
    789 	int *cnt;
    790 {
    791 	size_t size;
    792 	int mib[4], st, nprocs;
    793 
    794 	if (kd->procbase != NULL) {
    795 		free(kd->procbase);
    796 		/*
    797 		 * Clear this pointer in case this call fails.  Otherwise,
    798 		 * kvm_close() will free it again.
    799 		 */
    800 		kd->procbase = NULL;
    801 	}
    802 	if (ISKMEM(kd)) {
    803 		size = 0;
    804 		mib[0] = CTL_KERN;
    805 		mib[1] = KERN_PROC;
    806 		mib[2] = op;
    807 		mib[3] = arg;
    808 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
    809 		if (st == -1) {
    810 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    811 			return (NULL);
    812 		}
    813 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    814 		if (kd->procbase == NULL)
    815 			return (NULL);
    816 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
    817 		if (st == -1) {
    818 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    819 			return (NULL);
    820 		}
    821 		if (size % sizeof(struct kinfo_proc) != 0) {
    822 			_kvm_err(kd, kd->program,
    823 			    "proc size mismatch (%lu total, %lu chunks)",
    824 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    825 			return (NULL);
    826 		}
    827 		nprocs = (int) (size / sizeof(struct kinfo_proc));
    828 	} else if (ISSYSCTL(kd)) {
    829 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
    830 		    "can't use kvm_getprocs");
    831 		return (NULL);
    832 	} else {
    833 		struct nlist nl[4], *p;
    834 
    835 		nl[0].n_name = "_nprocs";
    836 		nl[1].n_name = "_allproc";
    837 		nl[2].n_name = "_zombproc";
    838 		nl[3].n_name = NULL;
    839 
    840 		if (kvm_nlist(kd, nl) != 0) {
    841 			for (p = nl; p->n_type != 0; ++p)
    842 				continue;
    843 			_kvm_err(kd, kd->program,
    844 			    "%s: no such symbol", p->n_name);
    845 			return (NULL);
    846 		}
    847 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    848 			_kvm_err(kd, kd->program, "can't read nprocs");
    849 			return (NULL);
    850 		}
    851 		size = nprocs * sizeof(struct kinfo_proc);
    852 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    853 		if (kd->procbase == NULL)
    854 			return (NULL);
    855 
    856 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    857 		    nl[2].n_value, nprocs);
    858 		if (nprocs < 0)
    859 			return (NULL);
    860 #ifdef notdef
    861 		size = nprocs * sizeof(struct kinfo_proc);
    862 		(void)realloc(kd->procbase, size);
    863 #endif
    864 	}
    865 	*cnt = nprocs;
    866 	return (kd->procbase);
    867 }
    868 
    869 void
    870 _kvm_freeprocs(kd)
    871 	kvm_t *kd;
    872 {
    873 
    874 	if (kd->procbase) {
    875 		free(kd->procbase);
    876 		kd->procbase = NULL;
    877 	}
    878 }
    879 
    880 void *
    881 _kvm_realloc(kd, p, n)
    882 	kvm_t *kd;
    883 	void *p;
    884 	size_t n;
    885 {
    886 	void *np = realloc(p, n);
    887 
    888 	if (np == NULL)
    889 		_kvm_err(kd, kd->program, "out of memory");
    890 	return (np);
    891 }
    892 
    893 /*
    894  * Read in an argument vector from the user address space of process p.
    895  * addr if the user-space base address of narg null-terminated contiguous
    896  * strings.  This is used to read in both the command arguments and
    897  * environment strings.  Read at most maxcnt characters of strings.
    898  */
    899 static char **
    900 kvm_argv(kd, p, addr, narg, maxcnt)
    901 	kvm_t *kd;
    902 	const struct miniproc *p;
    903 	u_long addr;
    904 	int narg;
    905 	int maxcnt;
    906 {
    907 	char *np, *cp, *ep, *ap;
    908 	u_long oaddr = (u_long)~0L;
    909 	u_long len;
    910 	size_t cc;
    911 	char **argv;
    912 
    913 	/*
    914 	 * Check that there aren't an unreasonable number of agruments,
    915 	 * and that the address is in user space.
    916 	 */
    917 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    918 		return (NULL);
    919 
    920 	if (kd->argv == NULL) {
    921 		/*
    922 		 * Try to avoid reallocs.
    923 		 */
    924 		kd->argc = MAX(narg + 1, 32);
    925 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    926 		    sizeof(*kd->argv));
    927 		if (kd->argv == NULL)
    928 			return (NULL);
    929 	} else if (narg + 1 > kd->argc) {
    930 		kd->argc = MAX(2 * kd->argc, narg + 1);
    931 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    932 		    sizeof(*kd->argv));
    933 		if (kd->argv == NULL)
    934 			return (NULL);
    935 	}
    936 	if (kd->argspc == NULL) {
    937 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    938 		if (kd->argspc == NULL)
    939 			return (NULL);
    940 		kd->arglen = kd->nbpg;
    941 	}
    942 	if (kd->argbuf == NULL) {
    943 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    944 		if (kd->argbuf == NULL)
    945 			return (NULL);
    946 	}
    947 	cc = sizeof(char *) * narg;
    948 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    949 		return (NULL);
    950 	ap = np = kd->argspc;
    951 	argv = kd->argv;
    952 	len = 0;
    953 	/*
    954 	 * Loop over pages, filling in the argument vector.
    955 	 */
    956 	while (argv < kd->argv + narg && *argv != NULL) {
    957 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    958 		if (addr != oaddr) {
    959 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    960 			    (size_t)kd->nbpg) != kd->nbpg)
    961 				return (NULL);
    962 			oaddr = addr;
    963 		}
    964 		addr = (u_long)*argv & (kd->nbpg - 1);
    965 		cp = kd->argbuf + (size_t)addr;
    966 		cc = kd->nbpg - (size_t)addr;
    967 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    968 			cc = (size_t)(maxcnt - len);
    969 		ep = memchr(cp, '\0', cc);
    970 		if (ep != NULL)
    971 			cc = ep - cp + 1;
    972 		if (len + cc > kd->arglen) {
    973 			ptrdiff_t off;
    974 			char **pp;
    975 			char *op = kd->argspc;
    976 
    977 			kd->arglen *= 2;
    978 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    979 			    (size_t)kd->arglen);
    980 			if (kd->argspc == NULL)
    981 				return (NULL);
    982 			/*
    983 			 * Adjust argv pointers in case realloc moved
    984 			 * the string space.
    985 			 */
    986 			off = kd->argspc - op;
    987 			for (pp = kd->argv; pp < argv; pp++)
    988 				*pp += off;
    989 			ap += off;
    990 			np += off;
    991 		}
    992 		memcpy(np, cp, cc);
    993 		np += cc;
    994 		len += cc;
    995 		if (ep != NULL) {
    996 			*argv++ = ap;
    997 			ap = np;
    998 		} else
    999 			*argv += cc;
   1000 		if (maxcnt > 0 && len >= maxcnt) {
   1001 			/*
   1002 			 * We're stopping prematurely.  Terminate the
   1003 			 * current string.
   1004 			 */
   1005 			if (ep == NULL) {
   1006 				*np = '\0';
   1007 				*argv++ = ap;
   1008 			}
   1009 			break;
   1010 		}
   1011 	}
   1012 	/* Make sure argv is terminated. */
   1013 	*argv = NULL;
   1014 	return (kd->argv);
   1015 }
   1016 
   1017 static void
   1018 ps_str_a(p, addr, n)
   1019 	struct ps_strings *p;
   1020 	u_long *addr;
   1021 	int *n;
   1022 {
   1023 
   1024 	*addr = (u_long)p->ps_argvstr;
   1025 	*n = p->ps_nargvstr;
   1026 }
   1027 
   1028 static void
   1029 ps_str_e(p, addr, n)
   1030 	struct ps_strings *p;
   1031 	u_long *addr;
   1032 	int *n;
   1033 {
   1034 
   1035 	*addr = (u_long)p->ps_envstr;
   1036 	*n = p->ps_nenvstr;
   1037 }
   1038 
   1039 /*
   1040  * Determine if the proc indicated by p is still active.
   1041  * This test is not 100% foolproof in theory, but chances of
   1042  * being wrong are very low.
   1043  */
   1044 static int
   1045 proc_verify(kd, kernp, p)
   1046 	kvm_t *kd;
   1047 	u_long kernp;
   1048 	const struct miniproc *p;
   1049 {
   1050 	struct proc kernproc;
   1051 
   1052 	/*
   1053 	 * Just read in the whole proc.  It's not that big relative
   1054 	 * to the cost of the read system call.
   1055 	 */
   1056 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
   1057 	    sizeof(kernproc))
   1058 		return (0);
   1059 	return (p->p_pid == kernproc.p_pid &&
   1060 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
   1061 }
   1062 
   1063 static char **
   1064 kvm_doargv(kd, p, nchr, info)
   1065 	kvm_t *kd;
   1066 	const struct miniproc *p;
   1067 	int nchr;
   1068 	void (*info)(struct ps_strings *, u_long *, int *);
   1069 {
   1070 	char **ap;
   1071 	u_long addr;
   1072 	int cnt;
   1073 	struct ps_strings arginfo;
   1074 
   1075 	/*
   1076 	 * Pointers are stored at the top of the user stack.
   1077 	 */
   1078 	if (p->p_stat == SZOMB)
   1079 		return (NULL);
   1080 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
   1081 	    (void *)&arginfo, sizeof(arginfo));
   1082 	if (cnt != sizeof(arginfo))
   1083 		return (NULL);
   1084 
   1085 	(*info)(&arginfo, &addr, &cnt);
   1086 	if (cnt == 0)
   1087 		return (NULL);
   1088 	ap = kvm_argv(kd, p, addr, cnt, nchr);
   1089 	/*
   1090 	 * For live kernels, make sure this process didn't go away.
   1091 	 */
   1092 	if (ap != NULL && ISALIVE(kd) &&
   1093 	    !proc_verify(kd, (u_long)p->p_paddr, p))
   1094 		ap = NULL;
   1095 	return (ap);
   1096 }
   1097 
   1098 /*
   1099  * Get the command args.  This code is now machine independent.
   1100  */
   1101 char **
   1102 kvm_getargv(kd, kp, nchr)
   1103 	kvm_t *kd;
   1104 	const struct kinfo_proc *kp;
   1105 	int nchr;
   1106 {
   1107 	struct miniproc p;
   1108 
   1109 	KPTOMINI(kp, &p);
   1110 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
   1111 }
   1112 
   1113 char **
   1114 kvm_getenvv(kd, kp, nchr)
   1115 	kvm_t *kd;
   1116 	const struct kinfo_proc *kp;
   1117 	int nchr;
   1118 {
   1119 	struct miniproc p;
   1120 
   1121 	KPTOMINI(kp, &p);
   1122 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1123 }
   1124 
   1125 static char **
   1126 kvm_doargv2(kd, pid, type, nchr)
   1127 	kvm_t *kd;
   1128 	pid_t pid;
   1129 	int type;
   1130 	int nchr;
   1131 {
   1132 	size_t bufs;
   1133 	int narg, mib[4];
   1134 	size_t newarglen;
   1135 	char **ap, *bp, *endp;
   1136 
   1137 	/*
   1138 	 * Check that there aren't an unreasonable number of agruments.
   1139 	 */
   1140 	if (nchr > ARG_MAX)
   1141 		return (NULL);
   1142 
   1143 	if (nchr == 0)
   1144 		nchr = ARG_MAX;
   1145 
   1146 	/* Get number of strings in argv */
   1147 	mib[0] = CTL_KERN;
   1148 	mib[1] = KERN_PROC_ARGS;
   1149 	mib[2] = pid;
   1150 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1151 	bufs = sizeof(narg);
   1152 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
   1153 		return (NULL);
   1154 
   1155 	if (kd->argv == NULL) {
   1156 		/*
   1157 		 * Try to avoid reallocs.
   1158 		 */
   1159 		kd->argc = MAX(narg + 1, 32);
   1160 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
   1161 		    sizeof(*kd->argv));
   1162 		if (kd->argv == NULL)
   1163 			return (NULL);
   1164 	} else if (narg + 1 > kd->argc) {
   1165 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1166 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
   1167 		    sizeof(*kd->argv));
   1168 		if (kd->argv == NULL)
   1169 			return (NULL);
   1170 	}
   1171 
   1172 	newarglen = MIN(nchr, ARG_MAX);
   1173 	if (kd->arglen < newarglen) {
   1174 		if (kd->arglen == 0)
   1175 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
   1176 		else
   1177 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
   1178 			    newarglen);
   1179 		if (kd->argspc == NULL)
   1180 			return (NULL);
   1181 		if (newarglen > INT_MAX)
   1182 			return NULL;
   1183 		kd->arglen = (int)newarglen;
   1184 	}
   1185 	memset(kd->argspc, 0, (size_t)kd->arglen);	/* XXX necessary? */
   1186 
   1187 	mib[0] = CTL_KERN;
   1188 	mib[1] = KERN_PROC_ARGS;
   1189 	mib[2] = pid;
   1190 	mib[3] = type;
   1191 	bufs = kd->arglen;
   1192 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
   1193 		return (NULL);
   1194 
   1195 	bp = kd->argspc;
   1196 	bp[kd->arglen-1] = '\0';	/* make sure the string ends with nul */
   1197 	ap = kd->argv;
   1198 	endp = bp + MIN(nchr, bufs);
   1199 
   1200 	while (bp < endp) {
   1201 		*ap++ = bp;
   1202 		/*
   1203 		 * XXX: don't need following anymore, or stick check
   1204 		 * for max argc in above while loop?
   1205 		 */
   1206 		if (ap >= kd->argv + kd->argc) {
   1207 			kd->argc *= 2;
   1208 			kd->argv = _kvm_realloc(kd, kd->argv,
   1209 			    kd->argc * sizeof(*kd->argv));
   1210 			ap = kd->argv;
   1211 		}
   1212 		bp += strlen(bp) + 1;
   1213 	}
   1214 	*ap = NULL;
   1215 
   1216 	return (kd->argv);
   1217 }
   1218 
   1219 char **
   1220 kvm_getargv2(kd, kp, nchr)
   1221 	kvm_t *kd;
   1222 	const struct kinfo_proc2 *kp;
   1223 	int nchr;
   1224 {
   1225 
   1226 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1227 }
   1228 
   1229 char **
   1230 kvm_getenvv2(kd, kp, nchr)
   1231 	kvm_t *kd;
   1232 	const struct kinfo_proc2 *kp;
   1233 	int nchr;
   1234 {
   1235 
   1236 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1237 }
   1238 
   1239 /*
   1240  * Read from user space.  The user context is given by p.
   1241  */
   1242 static ssize_t
   1243 kvm_ureadm(kd, p, uva, buf, len)
   1244 	kvm_t *kd;
   1245 	const struct miniproc *p;
   1246 	u_long uva;
   1247 	char *buf;
   1248 	size_t len;
   1249 {
   1250 	char *cp;
   1251 
   1252 	cp = buf;
   1253 	while (len > 0) {
   1254 		size_t cc;
   1255 		char *dp;
   1256 		u_long cnt;
   1257 
   1258 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1259 		if (dp == NULL) {
   1260 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1261 			return (0);
   1262 		}
   1263 		cc = (size_t)MIN(cnt, len);
   1264 		memcpy(cp, dp, cc);
   1265 		cp += cc;
   1266 		uva += cc;
   1267 		len -= cc;
   1268 	}
   1269 	return (ssize_t)(cp - buf);
   1270 }
   1271 
   1272 ssize_t
   1273 kvm_uread(kd, p, uva, buf, len)
   1274 	kvm_t *kd;
   1275 	const struct proc *p;
   1276 	u_long uva;
   1277 	char *buf;
   1278 	size_t len;
   1279 {
   1280 	struct miniproc mp;
   1281 
   1282 	PTOMINI(p, &mp);
   1283 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1284 }
   1285