kvm_proc.c revision 1.54 1 /* $NetBSD: kvm_proc.c,v 1.54 2003/08/07 16:44:39 agc Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 #if defined(LIBC_SCCS) && !defined(lint)
74 #if 0
75 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
76 #else
77 __RCSID("$NetBSD: kvm_proc.c,v 1.54 2003/08/07 16:44:39 agc Exp $");
78 #endif
79 #endif /* LIBC_SCCS and not lint */
80
81 /*
82 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
83 * users of this code, so we've factored it out into a separate module.
84 * Thus, we keep this grunge out of the other kvm applications (i.e.,
85 * most other applications are interested only in open/close/read/nlist).
86 */
87
88 #include <sys/param.h>
89 #include <sys/user.h>
90 #include <sys/lwp.h>
91 #include <sys/proc.h>
92 #include <sys/exec.h>
93 #include <sys/stat.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <stdlib.h>
97 #include <stddef.h>
98 #include <string.h>
99 #include <unistd.h>
100 #include <nlist.h>
101 #include <kvm.h>
102
103 #include <uvm/uvm_extern.h>
104 #include <uvm/uvm_amap.h>
105
106 #include <sys/sysctl.h>
107
108 #include <limits.h>
109 #include <db.h>
110 #include <paths.h>
111
112 #include "kvm_private.h"
113
114 /*
115 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
116 */
117 struct miniproc {
118 struct vmspace *p_vmspace;
119 char p_stat;
120 struct proc *p_paddr;
121 pid_t p_pid;
122 };
123
124 /*
125 * Convert from struct proc and kinfo_proc{,2} to miniproc.
126 */
127 #define PTOMINI(kp, p) \
128 do { \
129 (p)->p_stat = (kp)->p_stat; \
130 (p)->p_pid = (kp)->p_pid; \
131 (p)->p_paddr = NULL; \
132 (p)->p_vmspace = (kp)->p_vmspace; \
133 } while (/*CONSTCOND*/0);
134
135 #define KPTOMINI(kp, p) \
136 do { \
137 (p)->p_stat = (kp)->kp_proc.p_stat; \
138 (p)->p_pid = (kp)->kp_proc.p_pid; \
139 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
140 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
141 } while (/*CONSTCOND*/0);
142
143 #define KP2TOMINI(kp, p) \
144 do { \
145 (p)->p_stat = (kp)->p_stat; \
146 (p)->p_pid = (kp)->p_pid; \
147 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
148 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
149 } while (/*CONSTCOND*/0);
150
151
152 #define PTRTOINT64(foo) ((u_int64_t)(const uintptr_t)(const void *)(foo))
153
154 #define KREAD(kd, addr, obj) \
155 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
156
157 /* XXX: What uses these two functions? */
158 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
159 u_long *));
160 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
161 size_t));
162
163 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
164 u_long *));
165 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
166 char *, size_t));
167
168 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
169 int));
170 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
171 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
172 void (*)(struct ps_strings *, u_long *, int *)));
173 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
174 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
175 struct kinfo_proc *, int));
176 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
177 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
178 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
179
180
181 static char *
182 _kvm_ureadm(kd, p, va, cnt)
183 kvm_t *kd;
184 const struct miniproc *p;
185 u_long va;
186 u_long *cnt;
187 {
188 int true = 1;
189 u_long addr, head;
190 u_long offset;
191 struct vm_map_entry vme;
192 struct vm_amap amap;
193 struct vm_anon *anonp, anon;
194 struct vm_page pg;
195 u_long slot;
196
197 if (kd->swapspc == NULL) {
198 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
199 if (kd->swapspc == NULL)
200 return (NULL);
201 }
202
203 /*
204 * Look through the address map for the memory object
205 * that corresponds to the given virtual address.
206 * The header just has the entire valid range.
207 */
208 head = (u_long)&p->p_vmspace->vm_map.header;
209 addr = head;
210 while (true) {
211 if (KREAD(kd, addr, &vme))
212 return (NULL);
213
214 if (va >= vme.start && va < vme.end &&
215 vme.aref.ar_amap != NULL)
216 break;
217
218 addr = (u_long)vme.next;
219 if (addr == head)
220 return (NULL);
221 }
222
223 /*
224 * we found the map entry, now to find the object...
225 */
226 if (vme.aref.ar_amap == NULL)
227 return (NULL);
228
229 addr = (u_long)vme.aref.ar_amap;
230 if (KREAD(kd, addr, &amap))
231 return (NULL);
232
233 offset = va - vme.start;
234 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
235 /* sanity-check slot number */
236 if (slot > amap.am_nslot)
237 return (NULL);
238
239 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
240 if (KREAD(kd, addr, &anonp))
241 return (NULL);
242
243 addr = (u_long)anonp;
244 if (KREAD(kd, addr, &anon))
245 return (NULL);
246
247 addr = (u_long)anon.u.an_page;
248 if (addr) {
249 if (KREAD(kd, addr, &pg))
250 return (NULL);
251
252 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
253 (off_t)pg.phys_addr) != kd->nbpg)
254 return (NULL);
255 } else {
256 if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
257 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
258 return (NULL);
259 }
260
261 /* Found the page. */
262 offset %= kd->nbpg;
263 *cnt = kd->nbpg - offset;
264 return (&kd->swapspc[(size_t)offset]);
265 }
266
267 char *
268 _kvm_uread(kd, p, va, cnt)
269 kvm_t *kd;
270 const struct proc *p;
271 u_long va;
272 u_long *cnt;
273 {
274 struct miniproc mp;
275
276 PTOMINI(p, &mp);
277 return (_kvm_ureadm(kd, &mp, va, cnt));
278 }
279
280 /*
281 * Read proc's from memory file into buffer bp, which has space to hold
282 * at most maxcnt procs.
283 */
284 static int
285 kvm_proclist(kd, what, arg, p, bp, maxcnt)
286 kvm_t *kd;
287 int what, arg;
288 struct proc *p;
289 struct kinfo_proc *bp;
290 int maxcnt;
291 {
292 int cnt = 0;
293 int nlwps;
294 struct kinfo_lwp *kl;
295 struct eproc eproc;
296 struct pgrp pgrp;
297 struct session sess;
298 struct tty tty;
299 struct proc proc;
300
301 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
302 if (KREAD(kd, (u_long)p, &proc)) {
303 _kvm_err(kd, kd->program, "can't read proc at %p", p);
304 return (-1);
305 }
306 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
307 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
308 &eproc.e_ucred)) {
309 _kvm_err(kd, kd->program,
310 "can't read proc credentials at %p", p);
311 return (-1);
312 }
313
314 switch (what) {
315
316 case KERN_PROC_PID:
317 if (proc.p_pid != (pid_t)arg)
318 continue;
319 break;
320
321 case KERN_PROC_UID:
322 if (eproc.e_ucred.cr_uid != (uid_t)arg)
323 continue;
324 break;
325
326 case KERN_PROC_RUID:
327 if (eproc.e_pcred.p_ruid != (uid_t)arg)
328 continue;
329 break;
330 }
331 /*
332 * We're going to add another proc to the set. If this
333 * will overflow the buffer, assume the reason is because
334 * nprocs (or the proc list) is corrupt and declare an error.
335 */
336 if (cnt >= maxcnt) {
337 _kvm_err(kd, kd->program, "nprocs corrupt");
338 return (-1);
339 }
340 /*
341 * gather eproc
342 */
343 eproc.e_paddr = p;
344 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
345 _kvm_err(kd, kd->program, "can't read pgrp at %p",
346 proc.p_pgrp);
347 return (-1);
348 }
349 eproc.e_sess = pgrp.pg_session;
350 eproc.e_pgid = pgrp.pg_id;
351 eproc.e_jobc = pgrp.pg_jobc;
352 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
353 _kvm_err(kd, kd->program, "can't read session at %p",
354 pgrp.pg_session);
355 return (-1);
356 }
357 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
358 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
359 _kvm_err(kd, kd->program,
360 "can't read tty at %p", sess.s_ttyp);
361 return (-1);
362 }
363 eproc.e_tdev = tty.t_dev;
364 eproc.e_tsess = tty.t_session;
365 if (tty.t_pgrp != NULL) {
366 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
367 _kvm_err(kd, kd->program,
368 "can't read tpgrp at %p",
369 tty.t_pgrp);
370 return (-1);
371 }
372 eproc.e_tpgid = pgrp.pg_id;
373 } else
374 eproc.e_tpgid = -1;
375 } else
376 eproc.e_tdev = NODEV;
377 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
378 eproc.e_sid = sess.s_sid;
379 if (sess.s_leader == p)
380 eproc.e_flag |= EPROC_SLEADER;
381 /*
382 * Fill in the old-style proc.p_wmesg by copying the wmesg
383 * from the first avaliable LWP.
384 */
385 kl = kvm_getlwps(kd, proc.p_pid,
386 (u_long)PTRTOINT64(eproc.e_paddr),
387 sizeof(struct kinfo_lwp), &nlwps);
388 if (kl) {
389 if (nlwps > 0) {
390 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
391 }
392 }
393 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
394 sizeof(eproc.e_vm));
395
396 eproc.e_xsize = eproc.e_xrssize = 0;
397 eproc.e_xccount = eproc.e_xswrss = 0;
398
399 switch (what) {
400
401 case KERN_PROC_PGRP:
402 if (eproc.e_pgid != (pid_t)arg)
403 continue;
404 break;
405
406 case KERN_PROC_TTY:
407 if ((proc.p_flag & P_CONTROLT) == 0 ||
408 eproc.e_tdev != (dev_t)arg)
409 continue;
410 break;
411 }
412 memcpy(&bp->kp_proc, &proc, sizeof(proc));
413 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
414 ++bp;
415 ++cnt;
416 }
417 return (cnt);
418 }
419
420 /*
421 * Build proc info array by reading in proc list from a crash dump.
422 * Return number of procs read. maxcnt is the max we will read.
423 */
424 static int
425 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
426 kvm_t *kd;
427 int what, arg;
428 u_long a_allproc;
429 u_long a_zombproc;
430 int maxcnt;
431 {
432 struct kinfo_proc *bp = kd->procbase;
433 int acnt, zcnt;
434 struct proc *p;
435
436 if (KREAD(kd, a_allproc, &p)) {
437 _kvm_err(kd, kd->program, "cannot read allproc");
438 return (-1);
439 }
440 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
441 if (acnt < 0)
442 return (acnt);
443
444 if (KREAD(kd, a_zombproc, &p)) {
445 _kvm_err(kd, kd->program, "cannot read zombproc");
446 return (-1);
447 }
448 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
449 maxcnt - acnt);
450 if (zcnt < 0)
451 zcnt = 0;
452
453 return (acnt + zcnt);
454 }
455
456 struct kinfo_proc2 *
457 kvm_getproc2(kd, op, arg, esize, cnt)
458 kvm_t *kd;
459 int op, arg;
460 size_t esize;
461 int *cnt;
462 {
463 size_t size;
464 int mib[6], st, nprocs;
465 struct pstats pstats;
466
467 if (kd->procbase2 != NULL) {
468 free(kd->procbase2);
469 /*
470 * Clear this pointer in case this call fails. Otherwise,
471 * kvm_close() will free it again.
472 */
473 kd->procbase2 = NULL;
474 }
475
476 if (ISSYSCTL(kd)) {
477 size = 0;
478 mib[0] = CTL_KERN;
479 mib[1] = KERN_PROC2;
480 mib[2] = op;
481 mib[3] = arg;
482 mib[4] = (int)esize;
483 mib[5] = 0;
484 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
485 if (st == -1) {
486 _kvm_syserr(kd, kd->program, "kvm_getproc2");
487 return (NULL);
488 }
489
490 mib[5] = (int) (size / esize);
491 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
492 if (kd->procbase2 == NULL)
493 return (NULL);
494 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
495 if (st == -1) {
496 _kvm_syserr(kd, kd->program, "kvm_getproc2");
497 return (NULL);
498 }
499 nprocs = (int) (size / esize);
500 } else {
501 char *kp2c;
502 struct kinfo_proc *kp;
503 struct kinfo_proc2 kp2, *kp2p;
504 struct kinfo_lwp *kl;
505 int i, nlwps;
506
507 kp = kvm_getprocs(kd, op, arg, &nprocs);
508 if (kp == NULL)
509 return (NULL);
510
511 kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
512 kp2c = (char *)(void *)kd->procbase2;
513 kp2p = &kp2;
514 for (i = 0; i < nprocs; i++, kp++) {
515 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
516 (u_long)PTRTOINT64(kp->kp_eproc.e_paddr),
517 sizeof(struct kinfo_lwp), &nlwps);
518 /* We use kl[0] as the "representative" LWP */
519 memset(kp2p, 0, sizeof(kp2));
520 kp2p->p_forw = kl[0].l_forw;
521 kp2p->p_back = kl[0].l_back;
522 kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
523 kp2p->p_addr = kl[0].l_addr;
524 kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
525 kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
526 kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
527 kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
528 kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
529 kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
530 kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
531 kp2p->p_tsess = 0;
532 kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
533
534 kp2p->p_eflag = 0;
535 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
536 kp2p->p_flag = kp->kp_proc.p_flag;
537
538 kp2p->p_pid = kp->kp_proc.p_pid;
539
540 kp2p->p_ppid = kp->kp_eproc.e_ppid;
541 kp2p->p_sid = kp->kp_eproc.e_sid;
542 kp2p->p__pgid = kp->kp_eproc.e_pgid;
543
544 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
545
546 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
547 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
548 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
549 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
550 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
551 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
552
553 /*CONSTCOND*/
554 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
555 MIN(sizeof(kp2p->p_groups),
556 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
557 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
558
559 kp2p->p_jobc = kp->kp_eproc.e_jobc;
560 kp2p->p_tdev = kp->kp_eproc.e_tdev;
561 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
562 kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
563
564 kp2p->p_estcpu = kp->kp_proc.p_estcpu;
565 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
566 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
567 kp2p->p_cpticks = kp->kp_proc.p_cpticks;
568 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
569 kp2p->p_swtime = kl[0].l_swtime;
570 kp2p->p_slptime = kl[0].l_slptime;
571 #if 0 /* XXX thorpej */
572 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
573 #else
574 kp2p->p_schedflags = 0;
575 #endif
576
577 kp2p->p_uticks = kp->kp_proc.p_uticks;
578 kp2p->p_sticks = kp->kp_proc.p_sticks;
579 kp2p->p_iticks = kp->kp_proc.p_iticks;
580
581 kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
582 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
583
584 kp2p->p_holdcnt = kl[0].l_holdcnt;
585
586 memcpy(&kp2p->p_siglist,
587 &kp->kp_proc.p_sigctx.ps_siglist,
588 sizeof(ki_sigset_t));
589 memcpy(&kp2p->p_sigmask,
590 &kp->kp_proc.p_sigctx.ps_sigmask,
591 sizeof(ki_sigset_t));
592 memcpy(&kp2p->p_sigignore,
593 &kp->kp_proc.p_sigctx.ps_sigignore,
594 sizeof(ki_sigset_t));
595 memcpy(&kp2p->p_sigcatch,
596 &kp->kp_proc.p_sigctx.ps_sigcatch,
597 sizeof(ki_sigset_t));
598
599 kp2p->p_stat = kp->kp_proc.p_stat;
600 kp2p->p_priority = kl[0].l_priority;
601 kp2p->p_usrpri = kl[0].l_usrpri;
602 kp2p->p_nice = kp->kp_proc.p_nice;
603
604 kp2p->p_xstat = kp->kp_proc.p_xstat;
605 kp2p->p_acflag = kp->kp_proc.p_acflag;
606
607 /*CONSTCOND*/
608 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
609 MIN(sizeof(kp2p->p_comm),
610 sizeof(kp->kp_proc.p_comm)));
611
612 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
613 sizeof(kp2p->p_wmesg));
614 kp2p->p_wchan = kl[0].l_wchan;
615 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
616 sizeof(kp2p->p_login));
617
618 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
619 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
620 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
621 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
622
623 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
624
625 kp2p->p_realflag = kp->kp_proc.p_flag;
626 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
627 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
628 kp2p->p_realstat = kp->kp_proc.p_stat;
629
630 if (P_ZOMBIE(&kp->kp_proc) ||
631 kp->kp_proc.p_stats == NULL ||
632 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
633 kp2p->p_uvalid = 0;
634 } else {
635 kp2p->p_uvalid = 1;
636
637 kp2p->p_ustart_sec = (u_int32_t)
638 pstats.p_start.tv_sec;
639 kp2p->p_ustart_usec = (u_int32_t)
640 pstats.p_start.tv_usec;
641
642 kp2p->p_uutime_sec = (u_int32_t)
643 pstats.p_ru.ru_utime.tv_sec;
644 kp2p->p_uutime_usec = (u_int32_t)
645 pstats.p_ru.ru_utime.tv_usec;
646 kp2p->p_ustime_sec = (u_int32_t)
647 pstats.p_ru.ru_stime.tv_sec;
648 kp2p->p_ustime_usec = (u_int32_t)
649 pstats.p_ru.ru_stime.tv_usec;
650
651 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
652 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
653 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
654 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
655 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
656 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
657 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
658 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
659 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
660 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
661 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
662 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
663 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
664 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
665
666 kp2p->p_uctime_sec = (u_int32_t)
667 (pstats.p_cru.ru_utime.tv_sec +
668 pstats.p_cru.ru_stime.tv_sec);
669 kp2p->p_uctime_usec = (u_int32_t)
670 (pstats.p_cru.ru_utime.tv_usec +
671 pstats.p_cru.ru_stime.tv_usec);
672 }
673
674 memcpy(kp2c, &kp2, esize);
675 kp2c += esize;
676 }
677
678 _kvm_freeprocs(kd);
679 }
680 *cnt = nprocs;
681 return (kd->procbase2);
682 }
683
684 struct kinfo_lwp *
685 kvm_getlwps(kd, pid, paddr, esize, cnt)
686 kvm_t *kd;
687 int pid;
688 u_long paddr;
689 size_t esize;
690 int *cnt;
691 {
692 size_t size;
693 int mib[5], nlwps;
694 ssize_t st;
695 struct kinfo_lwp *kl;
696
697 if (kd->lwpbase != NULL) {
698 free(kd->lwpbase);
699 /*
700 * Clear this pointer in case this call fails. Otherwise,
701 * kvm_close() will free it again.
702 */
703 kd->lwpbase = NULL;
704 }
705
706 if (ISSYSCTL(kd)) {
707 size = 0;
708 mib[0] = CTL_KERN;
709 mib[1] = KERN_LWP;
710 mib[2] = pid;
711 mib[3] = (int)esize;
712 mib[4] = 0;
713 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
714 if (st == -1) {
715 _kvm_syserr(kd, kd->program, "kvm_getlwps");
716 return (NULL);
717 }
718
719 mib[4] = (int) (size / esize);
720 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
721 if (kd->lwpbase == NULL)
722 return (NULL);
723 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
724 if (st == -1) {
725 _kvm_syserr(kd, kd->program, "kvm_getlwps");
726 return (NULL);
727 }
728 nlwps = (int) (size / esize);
729 } else {
730 /* grovel through the memory image */
731 struct proc p;
732 struct lwp l;
733 u_long laddr;
734 int i;
735
736 st = kvm_read(kd, paddr, &p, sizeof(p));
737 if (st == -1) {
738 _kvm_syserr(kd, kd->program, "kvm_getlwps");
739 return (NULL);
740 }
741
742 nlwps = p.p_nlwps;
743 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
744 nlwps * sizeof(struct kinfo_lwp));
745 if (kd->lwpbase == NULL)
746 return (NULL);
747 laddr = (u_long)PTRTOINT64(p.p_lwps.lh_first);
748 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
749 st = kvm_read(kd, laddr, &l, sizeof(l));
750 if (st == -1) {
751 _kvm_syserr(kd, kd->program, "kvm_getlwps");
752 return (NULL);
753 }
754 kl = &kd->lwpbase[i];
755 kl->l_laddr = laddr;
756 kl->l_forw = PTRTOINT64(l.l_forw);
757 kl->l_back = PTRTOINT64(l.l_back);
758 kl->l_addr = PTRTOINT64(l.l_addr);
759 kl->l_lid = l.l_lid;
760 kl->l_flag = l.l_flag;
761 kl->l_swtime = l.l_swtime;
762 kl->l_slptime = l.l_slptime;
763 kl->l_schedflags = 0; /* XXX */
764 kl->l_holdcnt = l.l_holdcnt;
765 kl->l_priority = l.l_priority;
766 kl->l_usrpri = l.l_usrpri;
767 kl->l_stat = l.l_stat;
768 kl->l_wchan = PTRTOINT64(l.l_wchan);
769 if (l.l_wmesg)
770 (void)kvm_read(kd, (u_long)l.l_wmesg,
771 kl->l_wmesg, (size_t)WMESGLEN);
772 kl->l_cpuid = KI_NOCPU;
773 laddr = (u_long)PTRTOINT64(l.l_sibling.le_next);
774 }
775 }
776
777 *cnt = nlwps;
778 return (kd->lwpbase);
779 }
780
781 struct kinfo_proc *
782 kvm_getprocs(kd, op, arg, cnt)
783 kvm_t *kd;
784 int op, arg;
785 int *cnt;
786 {
787 size_t size;
788 int mib[4], st, nprocs;
789
790 if (kd->procbase != NULL) {
791 free(kd->procbase);
792 /*
793 * Clear this pointer in case this call fails. Otherwise,
794 * kvm_close() will free it again.
795 */
796 kd->procbase = NULL;
797 }
798 if (ISKMEM(kd)) {
799 size = 0;
800 mib[0] = CTL_KERN;
801 mib[1] = KERN_PROC;
802 mib[2] = op;
803 mib[3] = arg;
804 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
805 if (st == -1) {
806 _kvm_syserr(kd, kd->program, "kvm_getprocs");
807 return (NULL);
808 }
809 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
810 if (kd->procbase == NULL)
811 return (NULL);
812 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
813 if (st == -1) {
814 _kvm_syserr(kd, kd->program, "kvm_getprocs");
815 return (NULL);
816 }
817 if (size % sizeof(struct kinfo_proc) != 0) {
818 _kvm_err(kd, kd->program,
819 "proc size mismatch (%lu total, %lu chunks)",
820 (u_long)size, (u_long)sizeof(struct kinfo_proc));
821 return (NULL);
822 }
823 nprocs = (int) (size / sizeof(struct kinfo_proc));
824 } else if (ISSYSCTL(kd)) {
825 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
826 "can't use kvm_getprocs");
827 return (NULL);
828 } else {
829 struct nlist nl[4], *p;
830
831 nl[0].n_name = "_nprocs";
832 nl[1].n_name = "_allproc";
833 nl[2].n_name = "_zombproc";
834 nl[3].n_name = NULL;
835
836 if (kvm_nlist(kd, nl) != 0) {
837 for (p = nl; p->n_type != 0; ++p)
838 continue;
839 _kvm_err(kd, kd->program,
840 "%s: no such symbol", p->n_name);
841 return (NULL);
842 }
843 if (KREAD(kd, nl[0].n_value, &nprocs)) {
844 _kvm_err(kd, kd->program, "can't read nprocs");
845 return (NULL);
846 }
847 size = nprocs * sizeof(struct kinfo_proc);
848 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
849 if (kd->procbase == NULL)
850 return (NULL);
851
852 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
853 nl[2].n_value, nprocs);
854 if (nprocs < 0)
855 return (NULL);
856 #ifdef notdef
857 size = nprocs * sizeof(struct kinfo_proc);
858 (void)realloc(kd->procbase, size);
859 #endif
860 }
861 *cnt = nprocs;
862 return (kd->procbase);
863 }
864
865 void
866 _kvm_freeprocs(kd)
867 kvm_t *kd;
868 {
869
870 if (kd->procbase) {
871 free(kd->procbase);
872 kd->procbase = NULL;
873 }
874 }
875
876 void *
877 _kvm_realloc(kd, p, n)
878 kvm_t *kd;
879 void *p;
880 size_t n;
881 {
882 void *np = realloc(p, n);
883
884 if (np == NULL)
885 _kvm_err(kd, kd->program, "out of memory");
886 return (np);
887 }
888
889 /*
890 * Read in an argument vector from the user address space of process p.
891 * addr if the user-space base address of narg null-terminated contiguous
892 * strings. This is used to read in both the command arguments and
893 * environment strings. Read at most maxcnt characters of strings.
894 */
895 static char **
896 kvm_argv(kd, p, addr, narg, maxcnt)
897 kvm_t *kd;
898 const struct miniproc *p;
899 u_long addr;
900 int narg;
901 int maxcnt;
902 {
903 char *np, *cp, *ep, *ap;
904 u_long oaddr = (u_long)~0L;
905 u_long len;
906 size_t cc;
907 char **argv;
908
909 /*
910 * Check that there aren't an unreasonable number of agruments,
911 * and that the address is in user space.
912 */
913 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
914 return (NULL);
915
916 if (kd->argv == NULL) {
917 /*
918 * Try to avoid reallocs.
919 */
920 kd->argc = MAX(narg + 1, 32);
921 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
922 sizeof(*kd->argv));
923 if (kd->argv == NULL)
924 return (NULL);
925 } else if (narg + 1 > kd->argc) {
926 kd->argc = MAX(2 * kd->argc, narg + 1);
927 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
928 sizeof(*kd->argv));
929 if (kd->argv == NULL)
930 return (NULL);
931 }
932 if (kd->argspc == NULL) {
933 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
934 if (kd->argspc == NULL)
935 return (NULL);
936 kd->arglen = kd->nbpg;
937 }
938 if (kd->argbuf == NULL) {
939 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
940 if (kd->argbuf == NULL)
941 return (NULL);
942 }
943 cc = sizeof(char *) * narg;
944 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
945 return (NULL);
946 ap = np = kd->argspc;
947 argv = kd->argv;
948 len = 0;
949 /*
950 * Loop over pages, filling in the argument vector.
951 */
952 while (argv < kd->argv + narg && *argv != NULL) {
953 addr = (u_long)*argv & ~(kd->nbpg - 1);
954 if (addr != oaddr) {
955 if (kvm_ureadm(kd, p, addr, kd->argbuf,
956 (size_t)kd->nbpg) != kd->nbpg)
957 return (NULL);
958 oaddr = addr;
959 }
960 addr = (u_long)*argv & (kd->nbpg - 1);
961 cp = kd->argbuf + (size_t)addr;
962 cc = kd->nbpg - (size_t)addr;
963 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
964 cc = (size_t)(maxcnt - len);
965 ep = memchr(cp, '\0', cc);
966 if (ep != NULL)
967 cc = ep - cp + 1;
968 if (len + cc > kd->arglen) {
969 ptrdiff_t off;
970 char **pp;
971 char *op = kd->argspc;
972
973 kd->arglen *= 2;
974 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
975 (size_t)kd->arglen);
976 if (kd->argspc == NULL)
977 return (NULL);
978 /*
979 * Adjust argv pointers in case realloc moved
980 * the string space.
981 */
982 off = kd->argspc - op;
983 for (pp = kd->argv; pp < argv; pp++)
984 *pp += off;
985 ap += off;
986 np += off;
987 }
988 memcpy(np, cp, cc);
989 np += cc;
990 len += cc;
991 if (ep != NULL) {
992 *argv++ = ap;
993 ap = np;
994 } else
995 *argv += cc;
996 if (maxcnt > 0 && len >= maxcnt) {
997 /*
998 * We're stopping prematurely. Terminate the
999 * current string.
1000 */
1001 if (ep == NULL) {
1002 *np = '\0';
1003 *argv++ = ap;
1004 }
1005 break;
1006 }
1007 }
1008 /* Make sure argv is terminated. */
1009 *argv = NULL;
1010 return (kd->argv);
1011 }
1012
1013 static void
1014 ps_str_a(p, addr, n)
1015 struct ps_strings *p;
1016 u_long *addr;
1017 int *n;
1018 {
1019
1020 *addr = (u_long)p->ps_argvstr;
1021 *n = p->ps_nargvstr;
1022 }
1023
1024 static void
1025 ps_str_e(p, addr, n)
1026 struct ps_strings *p;
1027 u_long *addr;
1028 int *n;
1029 {
1030
1031 *addr = (u_long)p->ps_envstr;
1032 *n = p->ps_nenvstr;
1033 }
1034
1035 /*
1036 * Determine if the proc indicated by p is still active.
1037 * This test is not 100% foolproof in theory, but chances of
1038 * being wrong are very low.
1039 */
1040 static int
1041 proc_verify(kd, kernp, p)
1042 kvm_t *kd;
1043 u_long kernp;
1044 const struct miniproc *p;
1045 {
1046 struct proc kernproc;
1047
1048 /*
1049 * Just read in the whole proc. It's not that big relative
1050 * to the cost of the read system call.
1051 */
1052 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1053 sizeof(kernproc))
1054 return (0);
1055 return (p->p_pid == kernproc.p_pid &&
1056 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1057 }
1058
1059 static char **
1060 kvm_doargv(kd, p, nchr, info)
1061 kvm_t *kd;
1062 const struct miniproc *p;
1063 int nchr;
1064 void (*info)(struct ps_strings *, u_long *, int *);
1065 {
1066 char **ap;
1067 u_long addr;
1068 int cnt;
1069 struct ps_strings arginfo;
1070
1071 /*
1072 * Pointers are stored at the top of the user stack.
1073 */
1074 if (p->p_stat == SZOMB)
1075 return (NULL);
1076 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1077 (void *)&arginfo, sizeof(arginfo));
1078 if (cnt != sizeof(arginfo))
1079 return (NULL);
1080
1081 (*info)(&arginfo, &addr, &cnt);
1082 if (cnt == 0)
1083 return (NULL);
1084 ap = kvm_argv(kd, p, addr, cnt, nchr);
1085 /*
1086 * For live kernels, make sure this process didn't go away.
1087 */
1088 if (ap != NULL && ISALIVE(kd) &&
1089 !proc_verify(kd, (u_long)p->p_paddr, p))
1090 ap = NULL;
1091 return (ap);
1092 }
1093
1094 /*
1095 * Get the command args. This code is now machine independent.
1096 */
1097 char **
1098 kvm_getargv(kd, kp, nchr)
1099 kvm_t *kd;
1100 const struct kinfo_proc *kp;
1101 int nchr;
1102 {
1103 struct miniproc p;
1104
1105 KPTOMINI(kp, &p);
1106 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1107 }
1108
1109 char **
1110 kvm_getenvv(kd, kp, nchr)
1111 kvm_t *kd;
1112 const struct kinfo_proc *kp;
1113 int nchr;
1114 {
1115 struct miniproc p;
1116
1117 KPTOMINI(kp, &p);
1118 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1119 }
1120
1121 static char **
1122 kvm_doargv2(kd, pid, type, nchr)
1123 kvm_t *kd;
1124 pid_t pid;
1125 int type;
1126 int nchr;
1127 {
1128 size_t bufs;
1129 int narg, mib[4];
1130 size_t newarglen;
1131 char **ap, *bp, *endp;
1132
1133 /*
1134 * Check that there aren't an unreasonable number of agruments.
1135 */
1136 if (nchr > ARG_MAX)
1137 return (NULL);
1138
1139 if (nchr == 0)
1140 nchr = ARG_MAX;
1141
1142 /* Get number of strings in argv */
1143 mib[0] = CTL_KERN;
1144 mib[1] = KERN_PROC_ARGS;
1145 mib[2] = pid;
1146 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1147 bufs = sizeof(narg);
1148 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1149 return (NULL);
1150
1151 if (kd->argv == NULL) {
1152 /*
1153 * Try to avoid reallocs.
1154 */
1155 kd->argc = MAX(narg + 1, 32);
1156 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1157 sizeof(*kd->argv));
1158 if (kd->argv == NULL)
1159 return (NULL);
1160 } else if (narg + 1 > kd->argc) {
1161 kd->argc = MAX(2 * kd->argc, narg + 1);
1162 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1163 sizeof(*kd->argv));
1164 if (kd->argv == NULL)
1165 return (NULL);
1166 }
1167
1168 newarglen = MIN(nchr, ARG_MAX);
1169 if (kd->arglen < newarglen) {
1170 if (kd->arglen == 0)
1171 kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1172 else
1173 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1174 newarglen);
1175 if (kd->argspc == NULL)
1176 return (NULL);
1177 if (newarglen > INT_MAX)
1178 return NULL;
1179 kd->arglen = (int)newarglen;
1180 }
1181 memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */
1182
1183 mib[0] = CTL_KERN;
1184 mib[1] = KERN_PROC_ARGS;
1185 mib[2] = pid;
1186 mib[3] = type;
1187 bufs = kd->arglen;
1188 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1189 return (NULL);
1190
1191 bp = kd->argspc;
1192 bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */
1193 ap = kd->argv;
1194 endp = bp + MIN(nchr, bufs);
1195
1196 while (bp < endp) {
1197 *ap++ = bp;
1198 /*
1199 * XXX: don't need following anymore, or stick check
1200 * for max argc in above while loop?
1201 */
1202 if (ap >= kd->argv + kd->argc) {
1203 kd->argc *= 2;
1204 kd->argv = _kvm_realloc(kd, kd->argv,
1205 kd->argc * sizeof(*kd->argv));
1206 ap = kd->argv;
1207 }
1208 bp += strlen(bp) + 1;
1209 }
1210 *ap = NULL;
1211
1212 return (kd->argv);
1213 }
1214
1215 char **
1216 kvm_getargv2(kd, kp, nchr)
1217 kvm_t *kd;
1218 const struct kinfo_proc2 *kp;
1219 int nchr;
1220 {
1221
1222 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1223 }
1224
1225 char **
1226 kvm_getenvv2(kd, kp, nchr)
1227 kvm_t *kd;
1228 const struct kinfo_proc2 *kp;
1229 int nchr;
1230 {
1231
1232 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1233 }
1234
1235 /*
1236 * Read from user space. The user context is given by p.
1237 */
1238 static ssize_t
1239 kvm_ureadm(kd, p, uva, buf, len)
1240 kvm_t *kd;
1241 const struct miniproc *p;
1242 u_long uva;
1243 char *buf;
1244 size_t len;
1245 {
1246 char *cp;
1247
1248 cp = buf;
1249 while (len > 0) {
1250 size_t cc;
1251 char *dp;
1252 u_long cnt;
1253
1254 dp = _kvm_ureadm(kd, p, uva, &cnt);
1255 if (dp == NULL) {
1256 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1257 return (0);
1258 }
1259 cc = (size_t)MIN(cnt, len);
1260 memcpy(cp, dp, cc);
1261 cp += cc;
1262 uva += cc;
1263 len -= cc;
1264 }
1265 return (ssize_t)(cp - buf);
1266 }
1267
1268 ssize_t
1269 kvm_uread(kd, p, uva, buf, len)
1270 kvm_t *kd;
1271 const struct proc *p;
1272 u_long uva;
1273 char *buf;
1274 size_t len;
1275 {
1276 struct miniproc mp;
1277
1278 PTOMINI(p, &mp);
1279 return (kvm_ureadm(kd, &mp, uva, buf, len));
1280 }
1281