Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.59
      1 /*	$NetBSD: kvm_proc.c,v 1.59 2005/05/11 17:41:52 jmc Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1989, 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software developed by the Computer Systems
     44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45  * BG 91-66 and contributed to Berkeley.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 #if defined(LIBC_SCCS) && !defined(lint)
     74 #if 0
     75 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     76 #else
     77 __RCSID("$NetBSD: kvm_proc.c,v 1.59 2005/05/11 17:41:52 jmc Exp $");
     78 #endif
     79 #endif /* LIBC_SCCS and not lint */
     80 
     81 /*
     82  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     83  * users of this code, so we've factored it out into a separate module.
     84  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     85  * most other applications are interested only in open/close/read/nlist).
     86  */
     87 
     88 #include <sys/param.h>
     89 #include <sys/user.h>
     90 #include <sys/lwp.h>
     91 #include <sys/proc.h>
     92 #include <sys/exec.h>
     93 #include <sys/stat.h>
     94 #include <sys/ioctl.h>
     95 #include <sys/tty.h>
     96 #include <stdlib.h>
     97 #include <stddef.h>
     98 #include <string.h>
     99 #include <unistd.h>
    100 #include <nlist.h>
    101 #include <kvm.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 #include <uvm/uvm_amap.h>
    105 
    106 #include <sys/sysctl.h>
    107 
    108 #include <limits.h>
    109 #include <db.h>
    110 #include <paths.h>
    111 
    112 #include "kvm_private.h"
    113 
    114 /*
    115  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    116  */
    117 struct miniproc {
    118 	struct	vmspace *p_vmspace;
    119 	char	p_stat;
    120 	struct	proc *p_paddr;
    121 	pid_t	p_pid;
    122 };
    123 
    124 /*
    125  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    126  */
    127 #define PTOMINI(kp, p) \
    128 	do { \
    129 		(p)->p_stat = (kp)->p_stat; \
    130 		(p)->p_pid = (kp)->p_pid; \
    131 		(p)->p_paddr = NULL; \
    132 		(p)->p_vmspace = (kp)->p_vmspace; \
    133 	} while (/*CONSTCOND*/0);
    134 
    135 #define KPTOMINI(kp, p) \
    136 	do { \
    137 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    138 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    139 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    140 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    141 	} while (/*CONSTCOND*/0);
    142 
    143 #define KP2TOMINI(kp, p) \
    144 	do { \
    145 		(p)->p_stat = (kp)->p_stat; \
    146 		(p)->p_pid = (kp)->p_pid; \
    147 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    148 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    149 	} while (/*CONSTCOND*/0);
    150 
    151 
    152 #define KREAD(kd, addr, obj) \
    153 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    154 
    155 /* XXX: What uses these two functions? */
    156 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
    157 		    u_long *));
    158 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    159 		    size_t));
    160 
    161 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    162 		    u_long *));
    163 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    164 		    char *, size_t));
    165 
    166 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
    167 		    int));
    168 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
    169 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
    170 		    void (*)(struct ps_strings *, u_long *, int *)));
    171 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
    172 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    173 		    struct kinfo_proc *, int));
    174 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
    175 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    176 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    177 
    178 
    179 static char *
    180 _kvm_ureadm(kd, p, va, cnt)
    181 	kvm_t *kd;
    182 	const struct miniproc *p;
    183 	u_long va;
    184 	u_long *cnt;
    185 {
    186 	int true = 1;
    187 	u_long addr, head;
    188 	u_long offset;
    189 	struct vm_map_entry vme;
    190 	struct vm_amap amap;
    191 	struct vm_anon *anonp, anon;
    192 	struct vm_page pg;
    193 	u_long slot;
    194 
    195 	if (kd->swapspc == NULL) {
    196 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    197 		if (kd->swapspc == NULL)
    198 			return (NULL);
    199 	}
    200 
    201 	/*
    202 	 * Look through the address map for the memory object
    203 	 * that corresponds to the given virtual address.
    204 	 * The header just has the entire valid range.
    205 	 */
    206 	head = (u_long)&p->p_vmspace->vm_map.header;
    207 	addr = head;
    208 	while (true) {
    209 		if (KREAD(kd, addr, &vme))
    210 			return (NULL);
    211 
    212 		if (va >= vme.start && va < vme.end &&
    213 		    vme.aref.ar_amap != NULL)
    214 			break;
    215 
    216 		addr = (u_long)vme.next;
    217 		if (addr == head)
    218 			return (NULL);
    219 	}
    220 
    221 	/*
    222 	 * we found the map entry, now to find the object...
    223 	 */
    224 	if (vme.aref.ar_amap == NULL)
    225 		return (NULL);
    226 
    227 	addr = (u_long)vme.aref.ar_amap;
    228 	if (KREAD(kd, addr, &amap))
    229 		return (NULL);
    230 
    231 	offset = va - vme.start;
    232 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    233 	/* sanity-check slot number */
    234 	if (slot > amap.am_nslot)
    235 		return (NULL);
    236 
    237 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    238 	if (KREAD(kd, addr, &anonp))
    239 		return (NULL);
    240 
    241 	addr = (u_long)anonp;
    242 	if (KREAD(kd, addr, &anon))
    243 		return (NULL);
    244 
    245 	addr = (u_long)anon.an_page;
    246 	if (addr) {
    247 		if (KREAD(kd, addr, &pg))
    248 			return (NULL);
    249 
    250 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    251 		    (off_t)pg.phys_addr) != kd->nbpg)
    252 			return (NULL);
    253 	} else {
    254 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    255 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    256 			return (NULL);
    257 	}
    258 
    259 	/* Found the page. */
    260 	offset %= kd->nbpg;
    261 	*cnt = kd->nbpg - offset;
    262 	return (&kd->swapspc[(size_t)offset]);
    263 }
    264 
    265 char *
    266 _kvm_uread(kd, p, va, cnt)
    267 	kvm_t *kd;
    268 	const struct proc *p;
    269 	u_long va;
    270 	u_long *cnt;
    271 {
    272 	struct miniproc mp;
    273 
    274 	PTOMINI(p, &mp);
    275 	return (_kvm_ureadm(kd, &mp, va, cnt));
    276 }
    277 
    278 /*
    279  * Read proc's from memory file into buffer bp, which has space to hold
    280  * at most maxcnt procs.
    281  */
    282 static int
    283 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    284 	kvm_t *kd;
    285 	int what, arg;
    286 	struct proc *p;
    287 	struct kinfo_proc *bp;
    288 	int maxcnt;
    289 {
    290 	int cnt = 0;
    291 	int nlwps;
    292 	struct kinfo_lwp *kl;
    293 	struct eproc eproc;
    294 	struct pgrp pgrp;
    295 	struct session sess;
    296 	struct tty tty;
    297 	struct proc proc;
    298 
    299 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    300 		if (KREAD(kd, (u_long)p, &proc)) {
    301 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    302 			return (-1);
    303 		}
    304 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    305 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    306 			    &eproc.e_ucred)) {
    307 				_kvm_err(kd, kd->program,
    308 				    "can't read proc credentials at %p", p);
    309 				return (-1);
    310 			}
    311 
    312 		switch (what) {
    313 
    314 		case KERN_PROC_PID:
    315 			if (proc.p_pid != (pid_t)arg)
    316 				continue;
    317 			break;
    318 
    319 		case KERN_PROC_UID:
    320 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    321 				continue;
    322 			break;
    323 
    324 		case KERN_PROC_RUID:
    325 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    326 				continue;
    327 			break;
    328 		}
    329 		/*
    330 		 * We're going to add another proc to the set.  If this
    331 		 * will overflow the buffer, assume the reason is because
    332 		 * nprocs (or the proc list) is corrupt and declare an error.
    333 		 */
    334 		if (cnt >= maxcnt) {
    335 			_kvm_err(kd, kd->program, "nprocs corrupt");
    336 			return (-1);
    337 		}
    338 		/*
    339 		 * gather eproc
    340 		 */
    341 		eproc.e_paddr = p;
    342 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    343 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    344 			    proc.p_pgrp);
    345 			return (-1);
    346 		}
    347 		eproc.e_sess = pgrp.pg_session;
    348 		eproc.e_pgid = pgrp.pg_id;
    349 		eproc.e_jobc = pgrp.pg_jobc;
    350 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    351 			_kvm_err(kd, kd->program, "can't read session at %p",
    352 			    pgrp.pg_session);
    353 			return (-1);
    354 		}
    355 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    356 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    357 				_kvm_err(kd, kd->program,
    358 				    "can't read tty at %p", sess.s_ttyp);
    359 				return (-1);
    360 			}
    361 			eproc.e_tdev = tty.t_dev;
    362 			eproc.e_tsess = tty.t_session;
    363 			if (tty.t_pgrp != NULL) {
    364 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    365 					_kvm_err(kd, kd->program,
    366 					    "can't read tpgrp at %p",
    367 					    tty.t_pgrp);
    368 					return (-1);
    369 				}
    370 				eproc.e_tpgid = pgrp.pg_id;
    371 			} else
    372 				eproc.e_tpgid = -1;
    373 		} else
    374 			eproc.e_tdev = NODEV;
    375 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    376 		eproc.e_sid = sess.s_sid;
    377 		if (sess.s_leader == p)
    378 			eproc.e_flag |= EPROC_SLEADER;
    379 		/*
    380 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
    381 		 * from the first available LWP.
    382 		 */
    383 		kl = kvm_getlwps(kd, proc.p_pid,
    384 		    (u_long)PTRTOUINT64(eproc.e_paddr),
    385 		    sizeof(struct kinfo_lwp), &nlwps);
    386 		if (kl) {
    387 			if (nlwps > 0) {
    388 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
    389 			}
    390 		}
    391 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    392 		    sizeof(eproc.e_vm));
    393 
    394 		eproc.e_xsize = eproc.e_xrssize = 0;
    395 		eproc.e_xccount = eproc.e_xswrss = 0;
    396 
    397 		switch (what) {
    398 
    399 		case KERN_PROC_PGRP:
    400 			if (eproc.e_pgid != (pid_t)arg)
    401 				continue;
    402 			break;
    403 
    404 		case KERN_PROC_TTY:
    405 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    406 			    eproc.e_tdev != (dev_t)arg)
    407 				continue;
    408 			break;
    409 		}
    410 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    411 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    412 		++bp;
    413 		++cnt;
    414 	}
    415 	return (cnt);
    416 }
    417 
    418 /*
    419  * Build proc info array by reading in proc list from a crash dump.
    420  * Return number of procs read.  maxcnt is the max we will read.
    421  */
    422 static int
    423 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    424 	kvm_t *kd;
    425 	int what, arg;
    426 	u_long a_allproc;
    427 	u_long a_zombproc;
    428 	int maxcnt;
    429 {
    430 	struct kinfo_proc *bp = kd->procbase;
    431 	int acnt, zcnt;
    432 	struct proc *p;
    433 
    434 	if (KREAD(kd, a_allproc, &p)) {
    435 		_kvm_err(kd, kd->program, "cannot read allproc");
    436 		return (-1);
    437 	}
    438 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    439 	if (acnt < 0)
    440 		return (acnt);
    441 
    442 	if (KREAD(kd, a_zombproc, &p)) {
    443 		_kvm_err(kd, kd->program, "cannot read zombproc");
    444 		return (-1);
    445 	}
    446 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    447 	    maxcnt - acnt);
    448 	if (zcnt < 0)
    449 		zcnt = 0;
    450 
    451 	return (acnt + zcnt);
    452 }
    453 
    454 struct kinfo_proc2 *
    455 kvm_getproc2(kd, op, arg, esize, cnt)
    456 	kvm_t *kd;
    457 	int op, arg;
    458 	size_t esize;
    459 	int *cnt;
    460 {
    461 	size_t size;
    462 	int mib[6], st, nprocs;
    463 	struct pstats pstats;
    464 
    465 	if (kd->procbase2 != NULL) {
    466 		free(kd->procbase2);
    467 		/*
    468 		 * Clear this pointer in case this call fails.  Otherwise,
    469 		 * kvm_close() will free it again.
    470 		 */
    471 		kd->procbase2 = NULL;
    472 	}
    473 
    474 	if (ISSYSCTL(kd)) {
    475 		size = 0;
    476 		mib[0] = CTL_KERN;
    477 		mib[1] = KERN_PROC2;
    478 		mib[2] = op;
    479 		mib[3] = arg;
    480 		mib[4] = (int)esize;
    481 		mib[5] = 0;
    482 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
    483 		if (st == -1) {
    484 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    485 			return (NULL);
    486 		}
    487 
    488 		mib[5] = (int) (size / esize);
    489 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
    490 		if (kd->procbase2 == NULL)
    491 			return (NULL);
    492 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
    493 		if (st == -1) {
    494 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    495 			return (NULL);
    496 		}
    497 		nprocs = (int) (size / esize);
    498 	} else {
    499 		char *kp2c;
    500 		struct kinfo_proc *kp;
    501 		struct kinfo_proc2 kp2, *kp2p;
    502 		struct kinfo_lwp *kl;
    503 		int i, nlwps;
    504 
    505 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    506 		if (kp == NULL)
    507 			return (NULL);
    508 
    509 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
    510 		kp2c = (char *)(void *)kd->procbase2;
    511 		kp2p = &kp2;
    512 		for (i = 0; i < nprocs; i++, kp++) {
    513 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
    514 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
    515 			    sizeof(struct kinfo_lwp), &nlwps);
    516 			/* We use kl[0] as the "representative" LWP */
    517 			memset(kp2p, 0, sizeof(kp2));
    518 			kp2p->p_forw = kl[0].l_forw;
    519 			kp2p->p_back = kl[0].l_back;
    520 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
    521 			kp2p->p_addr = kl[0].l_addr;
    522 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
    523 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
    524 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
    525 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
    526 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
    527 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
    528 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
    529 			kp2p->p_tsess = 0;
    530 			kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru);
    531 
    532 			kp2p->p_eflag = 0;
    533 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    534 			kp2p->p_flag = kp->kp_proc.p_flag;
    535 
    536 			kp2p->p_pid = kp->kp_proc.p_pid;
    537 
    538 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    539 			kp2p->p_sid = kp->kp_eproc.e_sid;
    540 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    541 
    542 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
    543 
    544 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    545 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    546 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
    547 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    548 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    549 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
    550 
    551 			/*CONSTCOND*/
    552 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    553 			    MIN(sizeof(kp2p->p_groups),
    554 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    555 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    556 
    557 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    558 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    559 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    560 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
    561 
    562 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
    563 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
    564 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
    565 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
    566 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    567 			kp2p->p_swtime = kl[0].l_swtime;
    568 			kp2p->p_slptime = kl[0].l_slptime;
    569 #if 0 /* XXX thorpej */
    570 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    571 #else
    572 			kp2p->p_schedflags = 0;
    573 #endif
    574 
    575 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    576 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    577 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    578 
    579 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
    580 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    581 
    582 			kp2p->p_holdcnt = kl[0].l_holdcnt;
    583 
    584 			memcpy(&kp2p->p_siglist,
    585 			    &kp->kp_proc.p_sigctx.ps_siglist,
    586 			    sizeof(ki_sigset_t));
    587 			memcpy(&kp2p->p_sigmask,
    588 			    &kp->kp_proc.p_sigctx.ps_sigmask,
    589 			    sizeof(ki_sigset_t));
    590 			memcpy(&kp2p->p_sigignore,
    591 			    &kp->kp_proc.p_sigctx.ps_sigignore,
    592 			    sizeof(ki_sigset_t));
    593 			memcpy(&kp2p->p_sigcatch,
    594 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
    595 			    sizeof(ki_sigset_t));
    596 
    597 			kp2p->p_stat = kp->kp_proc.p_stat;
    598 			kp2p->p_priority = kl[0].l_priority;
    599 			kp2p->p_usrpri = kl[0].l_usrpri;
    600 			kp2p->p_nice = kp->kp_proc.p_nice;
    601 
    602 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    603 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    604 
    605 			/*CONSTCOND*/
    606 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    607 			    MIN(sizeof(kp2p->p_comm),
    608 			    sizeof(kp->kp_proc.p_comm)));
    609 
    610 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
    611 			    sizeof(kp2p->p_wmesg));
    612 			kp2p->p_wchan = kl[0].l_wchan;
    613 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
    614 			    sizeof(kp2p->p_login));
    615 
    616 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    617 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    618 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    619 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    620 
    621 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    622 
    623 			kp2p->p_realflag = kp->kp_proc.p_flag;
    624 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
    625 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
    626 			kp2p->p_realstat = kp->kp_proc.p_stat;
    627 
    628 			if (P_ZOMBIE(&kp->kp_proc) ||
    629 			    kp->kp_proc.p_stats == NULL ||
    630 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
    631 				kp2p->p_uvalid = 0;
    632 			} else {
    633 				kp2p->p_uvalid = 1;
    634 
    635 				kp2p->p_ustart_sec = (u_int32_t)
    636 				    pstats.p_start.tv_sec;
    637 				kp2p->p_ustart_usec = (u_int32_t)
    638 				    pstats.p_start.tv_usec;
    639 
    640 				kp2p->p_uutime_sec = (u_int32_t)
    641 				    pstats.p_ru.ru_utime.tv_sec;
    642 				kp2p->p_uutime_usec = (u_int32_t)
    643 				    pstats.p_ru.ru_utime.tv_usec;
    644 				kp2p->p_ustime_sec = (u_int32_t)
    645 				    pstats.p_ru.ru_stime.tv_sec;
    646 				kp2p->p_ustime_usec = (u_int32_t)
    647 				    pstats.p_ru.ru_stime.tv_usec;
    648 
    649 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
    650 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
    651 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
    652 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
    653 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
    654 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
    655 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
    656 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
    657 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
    658 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
    659 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
    660 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
    661 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
    662 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
    663 
    664 				kp2p->p_uctime_sec = (u_int32_t)
    665 				    (pstats.p_cru.ru_utime.tv_sec +
    666 				    pstats.p_cru.ru_stime.tv_sec);
    667 				kp2p->p_uctime_usec = (u_int32_t)
    668 				    (pstats.p_cru.ru_utime.tv_usec +
    669 				    pstats.p_cru.ru_stime.tv_usec);
    670 			}
    671 
    672 			memcpy(kp2c, &kp2, esize);
    673 			kp2c += esize;
    674 		}
    675 
    676 		_kvm_freeprocs(kd);
    677 	}
    678 	*cnt = nprocs;
    679 	return (kd->procbase2);
    680 }
    681 
    682 struct kinfo_lwp *
    683 kvm_getlwps(kd, pid, paddr, esize, cnt)
    684 	kvm_t *kd;
    685 	int pid;
    686 	u_long paddr;
    687 	size_t esize;
    688 	int *cnt;
    689 {
    690 	size_t size;
    691 	int mib[5], nlwps;
    692 	ssize_t st;
    693 	struct kinfo_lwp *kl;
    694 
    695 	if (kd->lwpbase != NULL) {
    696 		free(kd->lwpbase);
    697 		/*
    698 		 * Clear this pointer in case this call fails.  Otherwise,
    699 		 * kvm_close() will free it again.
    700 		 */
    701 		kd->lwpbase = NULL;
    702 	}
    703 
    704 	if (ISSYSCTL(kd)) {
    705 		size = 0;
    706 		mib[0] = CTL_KERN;
    707 		mib[1] = KERN_LWP;
    708 		mib[2] = pid;
    709 		mib[3] = (int)esize;
    710 		mib[4] = 0;
    711 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
    712 		if (st == -1) {
    713 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    714 			return (NULL);
    715 		}
    716 
    717 		mib[4] = (int) (size / esize);
    718 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
    719 		if (kd->lwpbase == NULL)
    720 			return (NULL);
    721 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
    722 		if (st == -1) {
    723 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    724 			return (NULL);
    725 		}
    726 		nlwps = (int) (size / esize);
    727 	} else {
    728 		/* grovel through the memory image */
    729 		struct proc p;
    730 		struct lwp l;
    731 		u_long laddr;
    732 		int i;
    733 
    734 		st = kvm_read(kd, paddr, &p, sizeof(p));
    735 		if (st == -1) {
    736 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    737 			return (NULL);
    738 		}
    739 
    740 		nlwps = p.p_nlwps;
    741 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
    742 		    nlwps * sizeof(struct kinfo_lwp));
    743 		if (kd->lwpbase == NULL)
    744 			return (NULL);
    745 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
    746 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
    747 			st = kvm_read(kd, laddr, &l, sizeof(l));
    748 			if (st == -1) {
    749 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    750 				return (NULL);
    751 			}
    752 			kl = &kd->lwpbase[i];
    753 			kl->l_laddr = laddr;
    754 			kl->l_forw = PTRTOUINT64(l.l_forw);
    755 			kl->l_back = PTRTOUINT64(l.l_back);
    756 			kl->l_addr = PTRTOUINT64(l.l_addr);
    757 			kl->l_lid = l.l_lid;
    758 			kl->l_flag = l.l_flag;
    759 			kl->l_swtime = l.l_swtime;
    760 			kl->l_slptime = l.l_slptime;
    761 			kl->l_schedflags = 0; /* XXX */
    762 			kl->l_holdcnt = l.l_holdcnt;
    763 			kl->l_priority = l.l_priority;
    764 			kl->l_usrpri = l.l_usrpri;
    765 			kl->l_stat = l.l_stat;
    766 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
    767 			if (l.l_wmesg)
    768 				(void)kvm_read(kd, (u_long)l.l_wmesg,
    769 				    kl->l_wmesg, (size_t)WMESGLEN);
    770 			kl->l_cpuid = KI_NOCPU;
    771 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
    772 		}
    773 	}
    774 
    775 	*cnt = nlwps;
    776 	return (kd->lwpbase);
    777 }
    778 
    779 struct kinfo_proc *
    780 kvm_getprocs(kd, op, arg, cnt)
    781 	kvm_t *kd;
    782 	int op, arg;
    783 	int *cnt;
    784 {
    785 	size_t size;
    786 	int mib[4], st, nprocs;
    787 
    788 	if (kd->procbase != NULL) {
    789 		free(kd->procbase);
    790 		/*
    791 		 * Clear this pointer in case this call fails.  Otherwise,
    792 		 * kvm_close() will free it again.
    793 		 */
    794 		kd->procbase = NULL;
    795 	}
    796 	if (ISKMEM(kd)) {
    797 		size = 0;
    798 		mib[0] = CTL_KERN;
    799 		mib[1] = KERN_PROC;
    800 		mib[2] = op;
    801 		mib[3] = arg;
    802 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
    803 		if (st == -1) {
    804 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    805 			return (NULL);
    806 		}
    807 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    808 		if (kd->procbase == NULL)
    809 			return (NULL);
    810 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
    811 		if (st == -1) {
    812 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    813 			return (NULL);
    814 		}
    815 		if (size % sizeof(struct kinfo_proc) != 0) {
    816 			_kvm_err(kd, kd->program,
    817 			    "proc size mismatch (%lu total, %lu chunks)",
    818 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    819 			return (NULL);
    820 		}
    821 		nprocs = (int) (size / sizeof(struct kinfo_proc));
    822 	} else if (ISSYSCTL(kd)) {
    823 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
    824 		    "can't use kvm_getprocs");
    825 		return (NULL);
    826 	} else {
    827 		struct nlist nl[4], *p;
    828 
    829 		(void)memset(nl, 0, sizeof(nl));
    830 		nl[0].n_name = "_nprocs";
    831 		nl[1].n_name = "_allproc";
    832 		nl[2].n_name = "_zombproc";
    833 		nl[3].n_name = NULL;
    834 
    835 		if (kvm_nlist(kd, nl) != 0) {
    836 			for (p = nl; p->n_type != 0; ++p)
    837 				continue;
    838 			_kvm_err(kd, kd->program,
    839 			    "%s: no such symbol", p->n_name);
    840 			return (NULL);
    841 		}
    842 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    843 			_kvm_err(kd, kd->program, "can't read nprocs");
    844 			return (NULL);
    845 		}
    846 		size = nprocs * sizeof(struct kinfo_proc);
    847 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    848 		if (kd->procbase == NULL)
    849 			return (NULL);
    850 
    851 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    852 		    nl[2].n_value, nprocs);
    853 		if (nprocs < 0)
    854 			return (NULL);
    855 #ifdef notdef
    856 		size = nprocs * sizeof(struct kinfo_proc);
    857 		(void)realloc(kd->procbase, size);
    858 #endif
    859 	}
    860 	*cnt = nprocs;
    861 	return (kd->procbase);
    862 }
    863 
    864 void
    865 _kvm_freeprocs(kd)
    866 	kvm_t *kd;
    867 {
    868 
    869 	if (kd->procbase) {
    870 		free(kd->procbase);
    871 		kd->procbase = NULL;
    872 	}
    873 }
    874 
    875 void *
    876 _kvm_realloc(kd, p, n)
    877 	kvm_t *kd;
    878 	void *p;
    879 	size_t n;
    880 {
    881 	void *np = realloc(p, n);
    882 
    883 	if (np == NULL)
    884 		_kvm_err(kd, kd->program, "out of memory");
    885 	return (np);
    886 }
    887 
    888 /*
    889  * Read in an argument vector from the user address space of process p.
    890  * addr if the user-space base address of narg null-terminated contiguous
    891  * strings.  This is used to read in both the command arguments and
    892  * environment strings.  Read at most maxcnt characters of strings.
    893  */
    894 static char **
    895 kvm_argv(kd, p, addr, narg, maxcnt)
    896 	kvm_t *kd;
    897 	const struct miniproc *p;
    898 	u_long addr;
    899 	int narg;
    900 	int maxcnt;
    901 {
    902 	char *np, *cp, *ep, *ap;
    903 	u_long oaddr = (u_long)~0L;
    904 	u_long len;
    905 	size_t cc;
    906 	char **argv;
    907 
    908 	/*
    909 	 * Check that there aren't an unreasonable number of arguments,
    910 	 * and that the address is in user space.
    911 	 */
    912 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    913 		return (NULL);
    914 
    915 	if (kd->argv == NULL) {
    916 		/*
    917 		 * Try to avoid reallocs.
    918 		 */
    919 		kd->argc = MAX(narg + 1, 32);
    920 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    921 		    sizeof(*kd->argv));
    922 		if (kd->argv == NULL)
    923 			return (NULL);
    924 	} else if (narg + 1 > kd->argc) {
    925 		kd->argc = MAX(2 * kd->argc, narg + 1);
    926 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    927 		    sizeof(*kd->argv));
    928 		if (kd->argv == NULL)
    929 			return (NULL);
    930 	}
    931 	if (kd->argspc == NULL) {
    932 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    933 		if (kd->argspc == NULL)
    934 			return (NULL);
    935 		kd->arglen = kd->nbpg;
    936 	}
    937 	if (kd->argbuf == NULL) {
    938 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
    939 		if (kd->argbuf == NULL)
    940 			return (NULL);
    941 	}
    942 	cc = sizeof(char *) * narg;
    943 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    944 		return (NULL);
    945 	ap = np = kd->argspc;
    946 	argv = kd->argv;
    947 	len = 0;
    948 	/*
    949 	 * Loop over pages, filling in the argument vector.
    950 	 */
    951 	while (argv < kd->argv + narg && *argv != NULL) {
    952 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    953 		if (addr != oaddr) {
    954 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    955 			    (size_t)kd->nbpg) != kd->nbpg)
    956 				return (NULL);
    957 			oaddr = addr;
    958 		}
    959 		addr = (u_long)*argv & (kd->nbpg - 1);
    960 		cp = kd->argbuf + (size_t)addr;
    961 		cc = kd->nbpg - (size_t)addr;
    962 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    963 			cc = (size_t)(maxcnt - len);
    964 		ep = memchr(cp, '\0', cc);
    965 		if (ep != NULL)
    966 			cc = ep - cp + 1;
    967 		if (len + cc > kd->arglen) {
    968 			ptrdiff_t off;
    969 			char **pp;
    970 			char *op = kd->argspc;
    971 
    972 			kd->arglen *= 2;
    973 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    974 			    (size_t)kd->arglen);
    975 			if (kd->argspc == NULL)
    976 				return (NULL);
    977 			/*
    978 			 * Adjust argv pointers in case realloc moved
    979 			 * the string space.
    980 			 */
    981 			off = kd->argspc - op;
    982 			for (pp = kd->argv; pp < argv; pp++)
    983 				*pp += off;
    984 			ap += off;
    985 			np += off;
    986 		}
    987 		memcpy(np, cp, cc);
    988 		np += cc;
    989 		len += cc;
    990 		if (ep != NULL) {
    991 			*argv++ = ap;
    992 			ap = np;
    993 		} else
    994 			*argv += cc;
    995 		if (maxcnt > 0 && len >= maxcnt) {
    996 			/*
    997 			 * We're stopping prematurely.  Terminate the
    998 			 * current string.
    999 			 */
   1000 			if (ep == NULL) {
   1001 				*np = '\0';
   1002 				*argv++ = ap;
   1003 			}
   1004 			break;
   1005 		}
   1006 	}
   1007 	/* Make sure argv is terminated. */
   1008 	*argv = NULL;
   1009 	return (kd->argv);
   1010 }
   1011 
   1012 static void
   1013 ps_str_a(p, addr, n)
   1014 	struct ps_strings *p;
   1015 	u_long *addr;
   1016 	int *n;
   1017 {
   1018 
   1019 	*addr = (u_long)p->ps_argvstr;
   1020 	*n = p->ps_nargvstr;
   1021 }
   1022 
   1023 static void
   1024 ps_str_e(p, addr, n)
   1025 	struct ps_strings *p;
   1026 	u_long *addr;
   1027 	int *n;
   1028 {
   1029 
   1030 	*addr = (u_long)p->ps_envstr;
   1031 	*n = p->ps_nenvstr;
   1032 }
   1033 
   1034 /*
   1035  * Determine if the proc indicated by p is still active.
   1036  * This test is not 100% foolproof in theory, but chances of
   1037  * being wrong are very low.
   1038  */
   1039 static int
   1040 proc_verify(kd, kernp, p)
   1041 	kvm_t *kd;
   1042 	u_long kernp;
   1043 	const struct miniproc *p;
   1044 {
   1045 	struct proc kernproc;
   1046 
   1047 	/*
   1048 	 * Just read in the whole proc.  It's not that big relative
   1049 	 * to the cost of the read system call.
   1050 	 */
   1051 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
   1052 	    sizeof(kernproc))
   1053 		return (0);
   1054 	return (p->p_pid == kernproc.p_pid &&
   1055 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
   1056 }
   1057 
   1058 static char **
   1059 kvm_doargv(kd, p, nchr, info)
   1060 	kvm_t *kd;
   1061 	const struct miniproc *p;
   1062 	int nchr;
   1063 	void (*info)(struct ps_strings *, u_long *, int *);
   1064 {
   1065 	char **ap;
   1066 	u_long addr;
   1067 	int cnt;
   1068 	struct ps_strings arginfo;
   1069 
   1070 	/*
   1071 	 * Pointers are stored at the top of the user stack.
   1072 	 */
   1073 	if (p->p_stat == SZOMB)
   1074 		return (NULL);
   1075 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
   1076 	    (void *)&arginfo, sizeof(arginfo));
   1077 	if (cnt != sizeof(arginfo))
   1078 		return (NULL);
   1079 
   1080 	(*info)(&arginfo, &addr, &cnt);
   1081 	if (cnt == 0)
   1082 		return (NULL);
   1083 	ap = kvm_argv(kd, p, addr, cnt, nchr);
   1084 	/*
   1085 	 * For live kernels, make sure this process didn't go away.
   1086 	 */
   1087 	if (ap != NULL && ISALIVE(kd) &&
   1088 	    !proc_verify(kd, (u_long)p->p_paddr, p))
   1089 		ap = NULL;
   1090 	return (ap);
   1091 }
   1092 
   1093 /*
   1094  * Get the command args.  This code is now machine independent.
   1095  */
   1096 char **
   1097 kvm_getargv(kd, kp, nchr)
   1098 	kvm_t *kd;
   1099 	const struct kinfo_proc *kp;
   1100 	int nchr;
   1101 {
   1102 	struct miniproc p;
   1103 
   1104 	KPTOMINI(kp, &p);
   1105 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
   1106 }
   1107 
   1108 char **
   1109 kvm_getenvv(kd, kp, nchr)
   1110 	kvm_t *kd;
   1111 	const struct kinfo_proc *kp;
   1112 	int nchr;
   1113 {
   1114 	struct miniproc p;
   1115 
   1116 	KPTOMINI(kp, &p);
   1117 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1118 }
   1119 
   1120 static char **
   1121 kvm_doargv2(kd, pid, type, nchr)
   1122 	kvm_t *kd;
   1123 	pid_t pid;
   1124 	int type;
   1125 	int nchr;
   1126 {
   1127 	size_t bufs;
   1128 	int narg, mib[4];
   1129 	size_t newarglen;
   1130 	char **ap, *bp, *endp;
   1131 
   1132 	/*
   1133 	 * Check that there aren't an unreasonable number of arguments.
   1134 	 */
   1135 	if (nchr > ARG_MAX)
   1136 		return (NULL);
   1137 
   1138 	if (nchr == 0)
   1139 		nchr = ARG_MAX;
   1140 
   1141 	/* Get number of strings in argv */
   1142 	mib[0] = CTL_KERN;
   1143 	mib[1] = KERN_PROC_ARGS;
   1144 	mib[2] = pid;
   1145 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1146 	bufs = sizeof(narg);
   1147 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
   1148 		return (NULL);
   1149 
   1150 	if (kd->argv == NULL) {
   1151 		/*
   1152 		 * Try to avoid reallocs.
   1153 		 */
   1154 		kd->argc = MAX(narg + 1, 32);
   1155 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
   1156 		    sizeof(*kd->argv));
   1157 		if (kd->argv == NULL)
   1158 			return (NULL);
   1159 	} else if (narg + 1 > kd->argc) {
   1160 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1161 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
   1162 		    sizeof(*kd->argv));
   1163 		if (kd->argv == NULL)
   1164 			return (NULL);
   1165 	}
   1166 
   1167 	newarglen = MIN(nchr, ARG_MAX);
   1168 	if (kd->arglen < newarglen) {
   1169 		if (kd->arglen == 0)
   1170 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
   1171 		else
   1172 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
   1173 			    newarglen);
   1174 		if (kd->argspc == NULL)
   1175 			return (NULL);
   1176 		if (newarglen > INT_MAX)
   1177 			return NULL;
   1178 		kd->arglen = (int)newarglen;
   1179 	}
   1180 	memset(kd->argspc, 0, (size_t)kd->arglen);	/* XXX necessary? */
   1181 
   1182 	mib[0] = CTL_KERN;
   1183 	mib[1] = KERN_PROC_ARGS;
   1184 	mib[2] = pid;
   1185 	mib[3] = type;
   1186 	bufs = kd->arglen;
   1187 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
   1188 		return (NULL);
   1189 
   1190 	bp = kd->argspc;
   1191 	bp[kd->arglen-1] = '\0';	/* make sure the string ends with nul */
   1192 	ap = kd->argv;
   1193 	endp = bp + MIN(nchr, bufs);
   1194 
   1195 	while (bp < endp) {
   1196 		*ap++ = bp;
   1197 		/*
   1198 		 * XXX: don't need following anymore, or stick check
   1199 		 * for max argc in above while loop?
   1200 		 */
   1201 		if (ap >= kd->argv + kd->argc) {
   1202 			kd->argc *= 2;
   1203 			kd->argv = _kvm_realloc(kd, kd->argv,
   1204 			    kd->argc * sizeof(*kd->argv));
   1205 			ap = kd->argv;
   1206 		}
   1207 		bp += strlen(bp) + 1;
   1208 	}
   1209 	*ap = NULL;
   1210 
   1211 	return (kd->argv);
   1212 }
   1213 
   1214 char **
   1215 kvm_getargv2(kd, kp, nchr)
   1216 	kvm_t *kd;
   1217 	const struct kinfo_proc2 *kp;
   1218 	int nchr;
   1219 {
   1220 
   1221 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1222 }
   1223 
   1224 char **
   1225 kvm_getenvv2(kd, kp, nchr)
   1226 	kvm_t *kd;
   1227 	const struct kinfo_proc2 *kp;
   1228 	int nchr;
   1229 {
   1230 
   1231 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1232 }
   1233 
   1234 /*
   1235  * Read from user space.  The user context is given by p.
   1236  */
   1237 static ssize_t
   1238 kvm_ureadm(kd, p, uva, buf, len)
   1239 	kvm_t *kd;
   1240 	const struct miniproc *p;
   1241 	u_long uva;
   1242 	char *buf;
   1243 	size_t len;
   1244 {
   1245 	char *cp;
   1246 
   1247 	cp = buf;
   1248 	while (len > 0) {
   1249 		size_t cc;
   1250 		char *dp;
   1251 		u_long cnt;
   1252 
   1253 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1254 		if (dp == NULL) {
   1255 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1256 			return (0);
   1257 		}
   1258 		cc = (size_t)MIN(cnt, len);
   1259 		memcpy(cp, dp, cc);
   1260 		cp += cc;
   1261 		uva += cc;
   1262 		len -= cc;
   1263 	}
   1264 	return (ssize_t)(cp - buf);
   1265 }
   1266 
   1267 ssize_t
   1268 kvm_uread(kd, p, uva, buf, len)
   1269 	kvm_t *kd;
   1270 	const struct proc *p;
   1271 	u_long uva;
   1272 	char *buf;
   1273 	size_t len;
   1274 {
   1275 	struct miniproc mp;
   1276 
   1277 	PTOMINI(p, &mp);
   1278 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1279 }
   1280