kvm_proc.c revision 1.59 1 /* $NetBSD: kvm_proc.c,v 1.59 2005/05/11 17:41:52 jmc Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 #if defined(LIBC_SCCS) && !defined(lint)
74 #if 0
75 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
76 #else
77 __RCSID("$NetBSD: kvm_proc.c,v 1.59 2005/05/11 17:41:52 jmc Exp $");
78 #endif
79 #endif /* LIBC_SCCS and not lint */
80
81 /*
82 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
83 * users of this code, so we've factored it out into a separate module.
84 * Thus, we keep this grunge out of the other kvm applications (i.e.,
85 * most other applications are interested only in open/close/read/nlist).
86 */
87
88 #include <sys/param.h>
89 #include <sys/user.h>
90 #include <sys/lwp.h>
91 #include <sys/proc.h>
92 #include <sys/exec.h>
93 #include <sys/stat.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <stdlib.h>
97 #include <stddef.h>
98 #include <string.h>
99 #include <unistd.h>
100 #include <nlist.h>
101 #include <kvm.h>
102
103 #include <uvm/uvm_extern.h>
104 #include <uvm/uvm_amap.h>
105
106 #include <sys/sysctl.h>
107
108 #include <limits.h>
109 #include <db.h>
110 #include <paths.h>
111
112 #include "kvm_private.h"
113
114 /*
115 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
116 */
117 struct miniproc {
118 struct vmspace *p_vmspace;
119 char p_stat;
120 struct proc *p_paddr;
121 pid_t p_pid;
122 };
123
124 /*
125 * Convert from struct proc and kinfo_proc{,2} to miniproc.
126 */
127 #define PTOMINI(kp, p) \
128 do { \
129 (p)->p_stat = (kp)->p_stat; \
130 (p)->p_pid = (kp)->p_pid; \
131 (p)->p_paddr = NULL; \
132 (p)->p_vmspace = (kp)->p_vmspace; \
133 } while (/*CONSTCOND*/0);
134
135 #define KPTOMINI(kp, p) \
136 do { \
137 (p)->p_stat = (kp)->kp_proc.p_stat; \
138 (p)->p_pid = (kp)->kp_proc.p_pid; \
139 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
140 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
141 } while (/*CONSTCOND*/0);
142
143 #define KP2TOMINI(kp, p) \
144 do { \
145 (p)->p_stat = (kp)->p_stat; \
146 (p)->p_pid = (kp)->p_pid; \
147 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
148 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
149 } while (/*CONSTCOND*/0);
150
151
152 #define KREAD(kd, addr, obj) \
153 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
154
155 /* XXX: What uses these two functions? */
156 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
157 u_long *));
158 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
159 size_t));
160
161 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
162 u_long *));
163 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
164 char *, size_t));
165
166 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
167 int));
168 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
169 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
170 void (*)(struct ps_strings *, u_long *, int *)));
171 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
172 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
173 struct kinfo_proc *, int));
174 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
175 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
176 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
177
178
179 static char *
180 _kvm_ureadm(kd, p, va, cnt)
181 kvm_t *kd;
182 const struct miniproc *p;
183 u_long va;
184 u_long *cnt;
185 {
186 int true = 1;
187 u_long addr, head;
188 u_long offset;
189 struct vm_map_entry vme;
190 struct vm_amap amap;
191 struct vm_anon *anonp, anon;
192 struct vm_page pg;
193 u_long slot;
194
195 if (kd->swapspc == NULL) {
196 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
197 if (kd->swapspc == NULL)
198 return (NULL);
199 }
200
201 /*
202 * Look through the address map for the memory object
203 * that corresponds to the given virtual address.
204 * The header just has the entire valid range.
205 */
206 head = (u_long)&p->p_vmspace->vm_map.header;
207 addr = head;
208 while (true) {
209 if (KREAD(kd, addr, &vme))
210 return (NULL);
211
212 if (va >= vme.start && va < vme.end &&
213 vme.aref.ar_amap != NULL)
214 break;
215
216 addr = (u_long)vme.next;
217 if (addr == head)
218 return (NULL);
219 }
220
221 /*
222 * we found the map entry, now to find the object...
223 */
224 if (vme.aref.ar_amap == NULL)
225 return (NULL);
226
227 addr = (u_long)vme.aref.ar_amap;
228 if (KREAD(kd, addr, &amap))
229 return (NULL);
230
231 offset = va - vme.start;
232 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
233 /* sanity-check slot number */
234 if (slot > amap.am_nslot)
235 return (NULL);
236
237 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
238 if (KREAD(kd, addr, &anonp))
239 return (NULL);
240
241 addr = (u_long)anonp;
242 if (KREAD(kd, addr, &anon))
243 return (NULL);
244
245 addr = (u_long)anon.an_page;
246 if (addr) {
247 if (KREAD(kd, addr, &pg))
248 return (NULL);
249
250 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
251 (off_t)pg.phys_addr) != kd->nbpg)
252 return (NULL);
253 } else {
254 if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
255 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
256 return (NULL);
257 }
258
259 /* Found the page. */
260 offset %= kd->nbpg;
261 *cnt = kd->nbpg - offset;
262 return (&kd->swapspc[(size_t)offset]);
263 }
264
265 char *
266 _kvm_uread(kd, p, va, cnt)
267 kvm_t *kd;
268 const struct proc *p;
269 u_long va;
270 u_long *cnt;
271 {
272 struct miniproc mp;
273
274 PTOMINI(p, &mp);
275 return (_kvm_ureadm(kd, &mp, va, cnt));
276 }
277
278 /*
279 * Read proc's from memory file into buffer bp, which has space to hold
280 * at most maxcnt procs.
281 */
282 static int
283 kvm_proclist(kd, what, arg, p, bp, maxcnt)
284 kvm_t *kd;
285 int what, arg;
286 struct proc *p;
287 struct kinfo_proc *bp;
288 int maxcnt;
289 {
290 int cnt = 0;
291 int nlwps;
292 struct kinfo_lwp *kl;
293 struct eproc eproc;
294 struct pgrp pgrp;
295 struct session sess;
296 struct tty tty;
297 struct proc proc;
298
299 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
300 if (KREAD(kd, (u_long)p, &proc)) {
301 _kvm_err(kd, kd->program, "can't read proc at %p", p);
302 return (-1);
303 }
304 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
305 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
306 &eproc.e_ucred)) {
307 _kvm_err(kd, kd->program,
308 "can't read proc credentials at %p", p);
309 return (-1);
310 }
311
312 switch (what) {
313
314 case KERN_PROC_PID:
315 if (proc.p_pid != (pid_t)arg)
316 continue;
317 break;
318
319 case KERN_PROC_UID:
320 if (eproc.e_ucred.cr_uid != (uid_t)arg)
321 continue;
322 break;
323
324 case KERN_PROC_RUID:
325 if (eproc.e_pcred.p_ruid != (uid_t)arg)
326 continue;
327 break;
328 }
329 /*
330 * We're going to add another proc to the set. If this
331 * will overflow the buffer, assume the reason is because
332 * nprocs (or the proc list) is corrupt and declare an error.
333 */
334 if (cnt >= maxcnt) {
335 _kvm_err(kd, kd->program, "nprocs corrupt");
336 return (-1);
337 }
338 /*
339 * gather eproc
340 */
341 eproc.e_paddr = p;
342 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
343 _kvm_err(kd, kd->program, "can't read pgrp at %p",
344 proc.p_pgrp);
345 return (-1);
346 }
347 eproc.e_sess = pgrp.pg_session;
348 eproc.e_pgid = pgrp.pg_id;
349 eproc.e_jobc = pgrp.pg_jobc;
350 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
351 _kvm_err(kd, kd->program, "can't read session at %p",
352 pgrp.pg_session);
353 return (-1);
354 }
355 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
356 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
357 _kvm_err(kd, kd->program,
358 "can't read tty at %p", sess.s_ttyp);
359 return (-1);
360 }
361 eproc.e_tdev = tty.t_dev;
362 eproc.e_tsess = tty.t_session;
363 if (tty.t_pgrp != NULL) {
364 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
365 _kvm_err(kd, kd->program,
366 "can't read tpgrp at %p",
367 tty.t_pgrp);
368 return (-1);
369 }
370 eproc.e_tpgid = pgrp.pg_id;
371 } else
372 eproc.e_tpgid = -1;
373 } else
374 eproc.e_tdev = NODEV;
375 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
376 eproc.e_sid = sess.s_sid;
377 if (sess.s_leader == p)
378 eproc.e_flag |= EPROC_SLEADER;
379 /*
380 * Fill in the old-style proc.p_wmesg by copying the wmesg
381 * from the first available LWP.
382 */
383 kl = kvm_getlwps(kd, proc.p_pid,
384 (u_long)PTRTOUINT64(eproc.e_paddr),
385 sizeof(struct kinfo_lwp), &nlwps);
386 if (kl) {
387 if (nlwps > 0) {
388 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
389 }
390 }
391 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
392 sizeof(eproc.e_vm));
393
394 eproc.e_xsize = eproc.e_xrssize = 0;
395 eproc.e_xccount = eproc.e_xswrss = 0;
396
397 switch (what) {
398
399 case KERN_PROC_PGRP:
400 if (eproc.e_pgid != (pid_t)arg)
401 continue;
402 break;
403
404 case KERN_PROC_TTY:
405 if ((proc.p_flag & P_CONTROLT) == 0 ||
406 eproc.e_tdev != (dev_t)arg)
407 continue;
408 break;
409 }
410 memcpy(&bp->kp_proc, &proc, sizeof(proc));
411 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
412 ++bp;
413 ++cnt;
414 }
415 return (cnt);
416 }
417
418 /*
419 * Build proc info array by reading in proc list from a crash dump.
420 * Return number of procs read. maxcnt is the max we will read.
421 */
422 static int
423 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
424 kvm_t *kd;
425 int what, arg;
426 u_long a_allproc;
427 u_long a_zombproc;
428 int maxcnt;
429 {
430 struct kinfo_proc *bp = kd->procbase;
431 int acnt, zcnt;
432 struct proc *p;
433
434 if (KREAD(kd, a_allproc, &p)) {
435 _kvm_err(kd, kd->program, "cannot read allproc");
436 return (-1);
437 }
438 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
439 if (acnt < 0)
440 return (acnt);
441
442 if (KREAD(kd, a_zombproc, &p)) {
443 _kvm_err(kd, kd->program, "cannot read zombproc");
444 return (-1);
445 }
446 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
447 maxcnt - acnt);
448 if (zcnt < 0)
449 zcnt = 0;
450
451 return (acnt + zcnt);
452 }
453
454 struct kinfo_proc2 *
455 kvm_getproc2(kd, op, arg, esize, cnt)
456 kvm_t *kd;
457 int op, arg;
458 size_t esize;
459 int *cnt;
460 {
461 size_t size;
462 int mib[6], st, nprocs;
463 struct pstats pstats;
464
465 if (kd->procbase2 != NULL) {
466 free(kd->procbase2);
467 /*
468 * Clear this pointer in case this call fails. Otherwise,
469 * kvm_close() will free it again.
470 */
471 kd->procbase2 = NULL;
472 }
473
474 if (ISSYSCTL(kd)) {
475 size = 0;
476 mib[0] = CTL_KERN;
477 mib[1] = KERN_PROC2;
478 mib[2] = op;
479 mib[3] = arg;
480 mib[4] = (int)esize;
481 mib[5] = 0;
482 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
483 if (st == -1) {
484 _kvm_syserr(kd, kd->program, "kvm_getproc2");
485 return (NULL);
486 }
487
488 mib[5] = (int) (size / esize);
489 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
490 if (kd->procbase2 == NULL)
491 return (NULL);
492 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
493 if (st == -1) {
494 _kvm_syserr(kd, kd->program, "kvm_getproc2");
495 return (NULL);
496 }
497 nprocs = (int) (size / esize);
498 } else {
499 char *kp2c;
500 struct kinfo_proc *kp;
501 struct kinfo_proc2 kp2, *kp2p;
502 struct kinfo_lwp *kl;
503 int i, nlwps;
504
505 kp = kvm_getprocs(kd, op, arg, &nprocs);
506 if (kp == NULL)
507 return (NULL);
508
509 kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
510 kp2c = (char *)(void *)kd->procbase2;
511 kp2p = &kp2;
512 for (i = 0; i < nprocs; i++, kp++) {
513 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
514 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
515 sizeof(struct kinfo_lwp), &nlwps);
516 /* We use kl[0] as the "representative" LWP */
517 memset(kp2p, 0, sizeof(kp2));
518 kp2p->p_forw = kl[0].l_forw;
519 kp2p->p_back = kl[0].l_back;
520 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
521 kp2p->p_addr = kl[0].l_addr;
522 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
523 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
524 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
525 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
526 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
527 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
528 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
529 kp2p->p_tsess = 0;
530 kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru);
531
532 kp2p->p_eflag = 0;
533 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
534 kp2p->p_flag = kp->kp_proc.p_flag;
535
536 kp2p->p_pid = kp->kp_proc.p_pid;
537
538 kp2p->p_ppid = kp->kp_eproc.e_ppid;
539 kp2p->p_sid = kp->kp_eproc.e_sid;
540 kp2p->p__pgid = kp->kp_eproc.e_pgid;
541
542 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
543
544 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
545 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
546 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
547 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
548 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
549 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
550
551 /*CONSTCOND*/
552 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
553 MIN(sizeof(kp2p->p_groups),
554 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
555 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
556
557 kp2p->p_jobc = kp->kp_eproc.e_jobc;
558 kp2p->p_tdev = kp->kp_eproc.e_tdev;
559 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
560 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
561
562 kp2p->p_estcpu = kp->kp_proc.p_estcpu;
563 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
564 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
565 kp2p->p_cpticks = kp->kp_proc.p_cpticks;
566 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
567 kp2p->p_swtime = kl[0].l_swtime;
568 kp2p->p_slptime = kl[0].l_slptime;
569 #if 0 /* XXX thorpej */
570 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
571 #else
572 kp2p->p_schedflags = 0;
573 #endif
574
575 kp2p->p_uticks = kp->kp_proc.p_uticks;
576 kp2p->p_sticks = kp->kp_proc.p_sticks;
577 kp2p->p_iticks = kp->kp_proc.p_iticks;
578
579 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
580 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
581
582 kp2p->p_holdcnt = kl[0].l_holdcnt;
583
584 memcpy(&kp2p->p_siglist,
585 &kp->kp_proc.p_sigctx.ps_siglist,
586 sizeof(ki_sigset_t));
587 memcpy(&kp2p->p_sigmask,
588 &kp->kp_proc.p_sigctx.ps_sigmask,
589 sizeof(ki_sigset_t));
590 memcpy(&kp2p->p_sigignore,
591 &kp->kp_proc.p_sigctx.ps_sigignore,
592 sizeof(ki_sigset_t));
593 memcpy(&kp2p->p_sigcatch,
594 &kp->kp_proc.p_sigctx.ps_sigcatch,
595 sizeof(ki_sigset_t));
596
597 kp2p->p_stat = kp->kp_proc.p_stat;
598 kp2p->p_priority = kl[0].l_priority;
599 kp2p->p_usrpri = kl[0].l_usrpri;
600 kp2p->p_nice = kp->kp_proc.p_nice;
601
602 kp2p->p_xstat = kp->kp_proc.p_xstat;
603 kp2p->p_acflag = kp->kp_proc.p_acflag;
604
605 /*CONSTCOND*/
606 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
607 MIN(sizeof(kp2p->p_comm),
608 sizeof(kp->kp_proc.p_comm)));
609
610 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
611 sizeof(kp2p->p_wmesg));
612 kp2p->p_wchan = kl[0].l_wchan;
613 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
614 sizeof(kp2p->p_login));
615
616 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
617 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
618 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
619 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
620
621 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
622
623 kp2p->p_realflag = kp->kp_proc.p_flag;
624 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
625 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
626 kp2p->p_realstat = kp->kp_proc.p_stat;
627
628 if (P_ZOMBIE(&kp->kp_proc) ||
629 kp->kp_proc.p_stats == NULL ||
630 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
631 kp2p->p_uvalid = 0;
632 } else {
633 kp2p->p_uvalid = 1;
634
635 kp2p->p_ustart_sec = (u_int32_t)
636 pstats.p_start.tv_sec;
637 kp2p->p_ustart_usec = (u_int32_t)
638 pstats.p_start.tv_usec;
639
640 kp2p->p_uutime_sec = (u_int32_t)
641 pstats.p_ru.ru_utime.tv_sec;
642 kp2p->p_uutime_usec = (u_int32_t)
643 pstats.p_ru.ru_utime.tv_usec;
644 kp2p->p_ustime_sec = (u_int32_t)
645 pstats.p_ru.ru_stime.tv_sec;
646 kp2p->p_ustime_usec = (u_int32_t)
647 pstats.p_ru.ru_stime.tv_usec;
648
649 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
650 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
651 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
652 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
653 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
654 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
655 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
656 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
657 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
658 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
659 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
660 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
661 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
662 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
663
664 kp2p->p_uctime_sec = (u_int32_t)
665 (pstats.p_cru.ru_utime.tv_sec +
666 pstats.p_cru.ru_stime.tv_sec);
667 kp2p->p_uctime_usec = (u_int32_t)
668 (pstats.p_cru.ru_utime.tv_usec +
669 pstats.p_cru.ru_stime.tv_usec);
670 }
671
672 memcpy(kp2c, &kp2, esize);
673 kp2c += esize;
674 }
675
676 _kvm_freeprocs(kd);
677 }
678 *cnt = nprocs;
679 return (kd->procbase2);
680 }
681
682 struct kinfo_lwp *
683 kvm_getlwps(kd, pid, paddr, esize, cnt)
684 kvm_t *kd;
685 int pid;
686 u_long paddr;
687 size_t esize;
688 int *cnt;
689 {
690 size_t size;
691 int mib[5], nlwps;
692 ssize_t st;
693 struct kinfo_lwp *kl;
694
695 if (kd->lwpbase != NULL) {
696 free(kd->lwpbase);
697 /*
698 * Clear this pointer in case this call fails. Otherwise,
699 * kvm_close() will free it again.
700 */
701 kd->lwpbase = NULL;
702 }
703
704 if (ISSYSCTL(kd)) {
705 size = 0;
706 mib[0] = CTL_KERN;
707 mib[1] = KERN_LWP;
708 mib[2] = pid;
709 mib[3] = (int)esize;
710 mib[4] = 0;
711 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
712 if (st == -1) {
713 _kvm_syserr(kd, kd->program, "kvm_getlwps");
714 return (NULL);
715 }
716
717 mib[4] = (int) (size / esize);
718 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
719 if (kd->lwpbase == NULL)
720 return (NULL);
721 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
722 if (st == -1) {
723 _kvm_syserr(kd, kd->program, "kvm_getlwps");
724 return (NULL);
725 }
726 nlwps = (int) (size / esize);
727 } else {
728 /* grovel through the memory image */
729 struct proc p;
730 struct lwp l;
731 u_long laddr;
732 int i;
733
734 st = kvm_read(kd, paddr, &p, sizeof(p));
735 if (st == -1) {
736 _kvm_syserr(kd, kd->program, "kvm_getlwps");
737 return (NULL);
738 }
739
740 nlwps = p.p_nlwps;
741 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
742 nlwps * sizeof(struct kinfo_lwp));
743 if (kd->lwpbase == NULL)
744 return (NULL);
745 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
746 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
747 st = kvm_read(kd, laddr, &l, sizeof(l));
748 if (st == -1) {
749 _kvm_syserr(kd, kd->program, "kvm_getlwps");
750 return (NULL);
751 }
752 kl = &kd->lwpbase[i];
753 kl->l_laddr = laddr;
754 kl->l_forw = PTRTOUINT64(l.l_forw);
755 kl->l_back = PTRTOUINT64(l.l_back);
756 kl->l_addr = PTRTOUINT64(l.l_addr);
757 kl->l_lid = l.l_lid;
758 kl->l_flag = l.l_flag;
759 kl->l_swtime = l.l_swtime;
760 kl->l_slptime = l.l_slptime;
761 kl->l_schedflags = 0; /* XXX */
762 kl->l_holdcnt = l.l_holdcnt;
763 kl->l_priority = l.l_priority;
764 kl->l_usrpri = l.l_usrpri;
765 kl->l_stat = l.l_stat;
766 kl->l_wchan = PTRTOUINT64(l.l_wchan);
767 if (l.l_wmesg)
768 (void)kvm_read(kd, (u_long)l.l_wmesg,
769 kl->l_wmesg, (size_t)WMESGLEN);
770 kl->l_cpuid = KI_NOCPU;
771 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
772 }
773 }
774
775 *cnt = nlwps;
776 return (kd->lwpbase);
777 }
778
779 struct kinfo_proc *
780 kvm_getprocs(kd, op, arg, cnt)
781 kvm_t *kd;
782 int op, arg;
783 int *cnt;
784 {
785 size_t size;
786 int mib[4], st, nprocs;
787
788 if (kd->procbase != NULL) {
789 free(kd->procbase);
790 /*
791 * Clear this pointer in case this call fails. Otherwise,
792 * kvm_close() will free it again.
793 */
794 kd->procbase = NULL;
795 }
796 if (ISKMEM(kd)) {
797 size = 0;
798 mib[0] = CTL_KERN;
799 mib[1] = KERN_PROC;
800 mib[2] = op;
801 mib[3] = arg;
802 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
803 if (st == -1) {
804 _kvm_syserr(kd, kd->program, "kvm_getprocs");
805 return (NULL);
806 }
807 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
808 if (kd->procbase == NULL)
809 return (NULL);
810 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
811 if (st == -1) {
812 _kvm_syserr(kd, kd->program, "kvm_getprocs");
813 return (NULL);
814 }
815 if (size % sizeof(struct kinfo_proc) != 0) {
816 _kvm_err(kd, kd->program,
817 "proc size mismatch (%lu total, %lu chunks)",
818 (u_long)size, (u_long)sizeof(struct kinfo_proc));
819 return (NULL);
820 }
821 nprocs = (int) (size / sizeof(struct kinfo_proc));
822 } else if (ISSYSCTL(kd)) {
823 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
824 "can't use kvm_getprocs");
825 return (NULL);
826 } else {
827 struct nlist nl[4], *p;
828
829 (void)memset(nl, 0, sizeof(nl));
830 nl[0].n_name = "_nprocs";
831 nl[1].n_name = "_allproc";
832 nl[2].n_name = "_zombproc";
833 nl[3].n_name = NULL;
834
835 if (kvm_nlist(kd, nl) != 0) {
836 for (p = nl; p->n_type != 0; ++p)
837 continue;
838 _kvm_err(kd, kd->program,
839 "%s: no such symbol", p->n_name);
840 return (NULL);
841 }
842 if (KREAD(kd, nl[0].n_value, &nprocs)) {
843 _kvm_err(kd, kd->program, "can't read nprocs");
844 return (NULL);
845 }
846 size = nprocs * sizeof(struct kinfo_proc);
847 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
848 if (kd->procbase == NULL)
849 return (NULL);
850
851 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
852 nl[2].n_value, nprocs);
853 if (nprocs < 0)
854 return (NULL);
855 #ifdef notdef
856 size = nprocs * sizeof(struct kinfo_proc);
857 (void)realloc(kd->procbase, size);
858 #endif
859 }
860 *cnt = nprocs;
861 return (kd->procbase);
862 }
863
864 void
865 _kvm_freeprocs(kd)
866 kvm_t *kd;
867 {
868
869 if (kd->procbase) {
870 free(kd->procbase);
871 kd->procbase = NULL;
872 }
873 }
874
875 void *
876 _kvm_realloc(kd, p, n)
877 kvm_t *kd;
878 void *p;
879 size_t n;
880 {
881 void *np = realloc(p, n);
882
883 if (np == NULL)
884 _kvm_err(kd, kd->program, "out of memory");
885 return (np);
886 }
887
888 /*
889 * Read in an argument vector from the user address space of process p.
890 * addr if the user-space base address of narg null-terminated contiguous
891 * strings. This is used to read in both the command arguments and
892 * environment strings. Read at most maxcnt characters of strings.
893 */
894 static char **
895 kvm_argv(kd, p, addr, narg, maxcnt)
896 kvm_t *kd;
897 const struct miniproc *p;
898 u_long addr;
899 int narg;
900 int maxcnt;
901 {
902 char *np, *cp, *ep, *ap;
903 u_long oaddr = (u_long)~0L;
904 u_long len;
905 size_t cc;
906 char **argv;
907
908 /*
909 * Check that there aren't an unreasonable number of arguments,
910 * and that the address is in user space.
911 */
912 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
913 return (NULL);
914
915 if (kd->argv == NULL) {
916 /*
917 * Try to avoid reallocs.
918 */
919 kd->argc = MAX(narg + 1, 32);
920 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
921 sizeof(*kd->argv));
922 if (kd->argv == NULL)
923 return (NULL);
924 } else if (narg + 1 > kd->argc) {
925 kd->argc = MAX(2 * kd->argc, narg + 1);
926 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
927 sizeof(*kd->argv));
928 if (kd->argv == NULL)
929 return (NULL);
930 }
931 if (kd->argspc == NULL) {
932 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
933 if (kd->argspc == NULL)
934 return (NULL);
935 kd->arglen = kd->nbpg;
936 }
937 if (kd->argbuf == NULL) {
938 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
939 if (kd->argbuf == NULL)
940 return (NULL);
941 }
942 cc = sizeof(char *) * narg;
943 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
944 return (NULL);
945 ap = np = kd->argspc;
946 argv = kd->argv;
947 len = 0;
948 /*
949 * Loop over pages, filling in the argument vector.
950 */
951 while (argv < kd->argv + narg && *argv != NULL) {
952 addr = (u_long)*argv & ~(kd->nbpg - 1);
953 if (addr != oaddr) {
954 if (kvm_ureadm(kd, p, addr, kd->argbuf,
955 (size_t)kd->nbpg) != kd->nbpg)
956 return (NULL);
957 oaddr = addr;
958 }
959 addr = (u_long)*argv & (kd->nbpg - 1);
960 cp = kd->argbuf + (size_t)addr;
961 cc = kd->nbpg - (size_t)addr;
962 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
963 cc = (size_t)(maxcnt - len);
964 ep = memchr(cp, '\0', cc);
965 if (ep != NULL)
966 cc = ep - cp + 1;
967 if (len + cc > kd->arglen) {
968 ptrdiff_t off;
969 char **pp;
970 char *op = kd->argspc;
971
972 kd->arglen *= 2;
973 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
974 (size_t)kd->arglen);
975 if (kd->argspc == NULL)
976 return (NULL);
977 /*
978 * Adjust argv pointers in case realloc moved
979 * the string space.
980 */
981 off = kd->argspc - op;
982 for (pp = kd->argv; pp < argv; pp++)
983 *pp += off;
984 ap += off;
985 np += off;
986 }
987 memcpy(np, cp, cc);
988 np += cc;
989 len += cc;
990 if (ep != NULL) {
991 *argv++ = ap;
992 ap = np;
993 } else
994 *argv += cc;
995 if (maxcnt > 0 && len >= maxcnt) {
996 /*
997 * We're stopping prematurely. Terminate the
998 * current string.
999 */
1000 if (ep == NULL) {
1001 *np = '\0';
1002 *argv++ = ap;
1003 }
1004 break;
1005 }
1006 }
1007 /* Make sure argv is terminated. */
1008 *argv = NULL;
1009 return (kd->argv);
1010 }
1011
1012 static void
1013 ps_str_a(p, addr, n)
1014 struct ps_strings *p;
1015 u_long *addr;
1016 int *n;
1017 {
1018
1019 *addr = (u_long)p->ps_argvstr;
1020 *n = p->ps_nargvstr;
1021 }
1022
1023 static void
1024 ps_str_e(p, addr, n)
1025 struct ps_strings *p;
1026 u_long *addr;
1027 int *n;
1028 {
1029
1030 *addr = (u_long)p->ps_envstr;
1031 *n = p->ps_nenvstr;
1032 }
1033
1034 /*
1035 * Determine if the proc indicated by p is still active.
1036 * This test is not 100% foolproof in theory, but chances of
1037 * being wrong are very low.
1038 */
1039 static int
1040 proc_verify(kd, kernp, p)
1041 kvm_t *kd;
1042 u_long kernp;
1043 const struct miniproc *p;
1044 {
1045 struct proc kernproc;
1046
1047 /*
1048 * Just read in the whole proc. It's not that big relative
1049 * to the cost of the read system call.
1050 */
1051 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1052 sizeof(kernproc))
1053 return (0);
1054 return (p->p_pid == kernproc.p_pid &&
1055 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1056 }
1057
1058 static char **
1059 kvm_doargv(kd, p, nchr, info)
1060 kvm_t *kd;
1061 const struct miniproc *p;
1062 int nchr;
1063 void (*info)(struct ps_strings *, u_long *, int *);
1064 {
1065 char **ap;
1066 u_long addr;
1067 int cnt;
1068 struct ps_strings arginfo;
1069
1070 /*
1071 * Pointers are stored at the top of the user stack.
1072 */
1073 if (p->p_stat == SZOMB)
1074 return (NULL);
1075 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1076 (void *)&arginfo, sizeof(arginfo));
1077 if (cnt != sizeof(arginfo))
1078 return (NULL);
1079
1080 (*info)(&arginfo, &addr, &cnt);
1081 if (cnt == 0)
1082 return (NULL);
1083 ap = kvm_argv(kd, p, addr, cnt, nchr);
1084 /*
1085 * For live kernels, make sure this process didn't go away.
1086 */
1087 if (ap != NULL && ISALIVE(kd) &&
1088 !proc_verify(kd, (u_long)p->p_paddr, p))
1089 ap = NULL;
1090 return (ap);
1091 }
1092
1093 /*
1094 * Get the command args. This code is now machine independent.
1095 */
1096 char **
1097 kvm_getargv(kd, kp, nchr)
1098 kvm_t *kd;
1099 const struct kinfo_proc *kp;
1100 int nchr;
1101 {
1102 struct miniproc p;
1103
1104 KPTOMINI(kp, &p);
1105 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1106 }
1107
1108 char **
1109 kvm_getenvv(kd, kp, nchr)
1110 kvm_t *kd;
1111 const struct kinfo_proc *kp;
1112 int nchr;
1113 {
1114 struct miniproc p;
1115
1116 KPTOMINI(kp, &p);
1117 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1118 }
1119
1120 static char **
1121 kvm_doargv2(kd, pid, type, nchr)
1122 kvm_t *kd;
1123 pid_t pid;
1124 int type;
1125 int nchr;
1126 {
1127 size_t bufs;
1128 int narg, mib[4];
1129 size_t newarglen;
1130 char **ap, *bp, *endp;
1131
1132 /*
1133 * Check that there aren't an unreasonable number of arguments.
1134 */
1135 if (nchr > ARG_MAX)
1136 return (NULL);
1137
1138 if (nchr == 0)
1139 nchr = ARG_MAX;
1140
1141 /* Get number of strings in argv */
1142 mib[0] = CTL_KERN;
1143 mib[1] = KERN_PROC_ARGS;
1144 mib[2] = pid;
1145 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1146 bufs = sizeof(narg);
1147 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1148 return (NULL);
1149
1150 if (kd->argv == NULL) {
1151 /*
1152 * Try to avoid reallocs.
1153 */
1154 kd->argc = MAX(narg + 1, 32);
1155 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1156 sizeof(*kd->argv));
1157 if (kd->argv == NULL)
1158 return (NULL);
1159 } else if (narg + 1 > kd->argc) {
1160 kd->argc = MAX(2 * kd->argc, narg + 1);
1161 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1162 sizeof(*kd->argv));
1163 if (kd->argv == NULL)
1164 return (NULL);
1165 }
1166
1167 newarglen = MIN(nchr, ARG_MAX);
1168 if (kd->arglen < newarglen) {
1169 if (kd->arglen == 0)
1170 kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1171 else
1172 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1173 newarglen);
1174 if (kd->argspc == NULL)
1175 return (NULL);
1176 if (newarglen > INT_MAX)
1177 return NULL;
1178 kd->arglen = (int)newarglen;
1179 }
1180 memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */
1181
1182 mib[0] = CTL_KERN;
1183 mib[1] = KERN_PROC_ARGS;
1184 mib[2] = pid;
1185 mib[3] = type;
1186 bufs = kd->arglen;
1187 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1188 return (NULL);
1189
1190 bp = kd->argspc;
1191 bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */
1192 ap = kd->argv;
1193 endp = bp + MIN(nchr, bufs);
1194
1195 while (bp < endp) {
1196 *ap++ = bp;
1197 /*
1198 * XXX: don't need following anymore, or stick check
1199 * for max argc in above while loop?
1200 */
1201 if (ap >= kd->argv + kd->argc) {
1202 kd->argc *= 2;
1203 kd->argv = _kvm_realloc(kd, kd->argv,
1204 kd->argc * sizeof(*kd->argv));
1205 ap = kd->argv;
1206 }
1207 bp += strlen(bp) + 1;
1208 }
1209 *ap = NULL;
1210
1211 return (kd->argv);
1212 }
1213
1214 char **
1215 kvm_getargv2(kd, kp, nchr)
1216 kvm_t *kd;
1217 const struct kinfo_proc2 *kp;
1218 int nchr;
1219 {
1220
1221 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1222 }
1223
1224 char **
1225 kvm_getenvv2(kd, kp, nchr)
1226 kvm_t *kd;
1227 const struct kinfo_proc2 *kp;
1228 int nchr;
1229 {
1230
1231 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1232 }
1233
1234 /*
1235 * Read from user space. The user context is given by p.
1236 */
1237 static ssize_t
1238 kvm_ureadm(kd, p, uva, buf, len)
1239 kvm_t *kd;
1240 const struct miniproc *p;
1241 u_long uva;
1242 char *buf;
1243 size_t len;
1244 {
1245 char *cp;
1246
1247 cp = buf;
1248 while (len > 0) {
1249 size_t cc;
1250 char *dp;
1251 u_long cnt;
1252
1253 dp = _kvm_ureadm(kd, p, uva, &cnt);
1254 if (dp == NULL) {
1255 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1256 return (0);
1257 }
1258 cc = (size_t)MIN(cnt, len);
1259 memcpy(cp, dp, cc);
1260 cp += cc;
1261 uva += cc;
1262 len -= cc;
1263 }
1264 return (ssize_t)(cp - buf);
1265 }
1266
1267 ssize_t
1268 kvm_uread(kd, p, uva, buf, len)
1269 kvm_t *kd;
1270 const struct proc *p;
1271 u_long uva;
1272 char *buf;
1273 size_t len;
1274 {
1275 struct miniproc mp;
1276
1277 PTOMINI(p, &mp);
1278 return (kvm_ureadm(kd, &mp, uva, buf, len));
1279 }
1280