Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.6
      1 /*-
      2  * Copyright (c) 1994 Charles Hannum.
      3  * Copyright (c) 1989, 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * This code is derived from software developed by the Computer Systems
      7  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
      8  * BG 91-66 and contributed to Berkeley.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  */
     38 
     39 #if defined(LIBC_SCCS) && !defined(lint)
     40 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     41 #endif /* LIBC_SCCS and not lint */
     42 
     43 /*
     44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     45  * users of this code, so we've factored it out into a separate module.
     46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     47  * most other applications are interested only in open/close/read/nlist).
     48  */
     49 
     50 #include <sys/param.h>
     51 #include <sys/user.h>
     52 #include <sys/proc.h>
     53 #include <sys/exec.h>
     54 #include <sys/stat.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/tty.h>
     57 #include <unistd.h>
     58 #include <nlist.h>
     59 #include <kvm.h>
     60 
     61 #include <vm/vm.h>
     62 #include <vm/vm_param.h>
     63 #include <vm/swap_pager.h>
     64 
     65 #include <sys/sysctl.h>
     66 
     67 #include <limits.h>
     68 #include <db.h>
     69 #include <paths.h>
     70 
     71 #include "kvm_private.h"
     72 
     73 #define KREAD(kd, addr, obj) \
     74 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
     75 
     76 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
     77 
     78 static char *
     79 kvm_readswap(kd, p, va, cnt)
     80 	kvm_t *kd;
     81 	const struct proc *p;
     82 	u_long va;
     83 	u_long *cnt;
     84 {
     85 	register u_long addr, head;
     86 	register u_long offset;
     87 	struct vm_map_entry vme;
     88 	struct vm_object vmo;
     89 
     90 	if (kd->swapspc == 0) {
     91 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
     92 		if (kd->swapspc == 0)
     93 			return (0);
     94 	}
     95 	head = (u_long)&p->p_vmspace->vm_map.header;
     96 	/*
     97 	 * Look through the address map for the memory object
     98 	 * that corresponds to the given virtual address.
     99 	 * The header just has the entire valid range.
    100 	 */
    101 	addr = head;
    102 	while (1) {
    103 		if (KREAD(kd, addr, &vme))
    104 			return (0);
    105 
    106 		if (va >= vme.start && va < vme.end &&
    107 		    vme.object.vm_object != 0)
    108 			break;
    109 
    110 		addr = (u_long)vme.next;
    111 		if (addr == head)
    112 			return (0);
    113 	}
    114 
    115 	/*
    116 	 * We found the right object -- follow shadow links.
    117 	 */
    118 	offset = va - vme.start + vme.offset;
    119 	addr = (u_long)vme.object.vm_object;
    120 	while (1) {
    121 		if (KREAD(kd, addr, &vmo))
    122 			return (0);
    123 
    124 		/* If there is a pager here, see if it has the page. */
    125 		if (vmo.pager != 0 &&
    126 		    _kvm_readfrompager(kd, &vmo, offset))
    127 			break;
    128 
    129 		/* Move down the shadow chain. */
    130 		addr = (u_long)vmo.shadow;
    131 		if (addr == 0)
    132 			return (0);
    133 		offset += vmo.shadow_offset;
    134 	}
    135 
    136 	/* Found the page. */
    137 	offset %= kd->nbpg;
    138 	*cnt = kd->nbpg - offset;
    139 	return (&kd->swapspc[offset]);
    140 }
    141 
    142 int
    143 _kvm_readfrompager(kd, vmop, offset)
    144 	kvm_t *kd;
    145 	struct vm_object *vmop;
    146 	u_long offset;
    147 {
    148 	u_long addr;
    149 	struct pager_struct pager;
    150 	struct swpager swap;
    151 	int ix;
    152 	struct swblock swb;
    153 	register off_t seekpoint;
    154 
    155 	/* Read in the pager info and make sure it's a swap device. */
    156 	addr = (u_long)vmop->pager;
    157 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    158 		return (0);
    159 
    160 	/* Read in the swap_pager private data. */
    161 	addr = (u_long)pager.pg_data;
    162 	if (KREAD(kd, addr, &swap))
    163 		return (0);
    164 
    165 	/*
    166 	 * Calculate the paging offset, and make sure it's within the
    167 	 * bounds of the pager.
    168 	 */
    169 	offset += vmop->paging_offset;
    170 	ix = offset / dbtob(swap.sw_bsize);
    171 #if 0
    172 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    173 		return (0);
    174 #else
    175 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    176 		int i;
    177 		printf("BUG BUG BUG BUG:\n");
    178 		printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
    179 		    vmop, offset - vmop->paging_offset, vmop->paging_offset,
    180 		    vmop->pager, pager.pg_data);
    181 		printf("osize %x bsize %x blocks %x nblocks %x\n",
    182 		    swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    183 		    swap.sw_nblocks);
    184 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
    185 			addr = (u_long)&swap.sw_blocks[ix];
    186 			if (KREAD(kd, addr, &swb))
    187 				return (0);
    188 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
    189 			    swb.swb_block, swb.swb_mask);
    190 		}
    191 		return (0);
    192 	}
    193 #endif
    194 
    195 	/* Read in the swap records. */
    196 	addr = (u_long)&swap.sw_blocks[ix];
    197 	if (KREAD(kd, addr, &swb))
    198 		return (0);
    199 
    200 	/* Calculate offset within pager. */
    201 	offset %= dbtob(swap.sw_bsize);
    202 
    203 	/* Check that the page is actually present. */
    204 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    205 		return (0);
    206 
    207 	/* Calculate the physical address and read the page. */
    208 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    209 	if (lseek(kd->swfd, seekpoint, 0) == -1)
    210 		return (0);
    211 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    212 		return (0);
    213 
    214 	return (1);
    215 }
    216 
    217 /*
    218  * Read proc's from memory file into buffer bp, which has space to hold
    219  * at most maxcnt procs.
    220  */
    221 static int
    222 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    223 	kvm_t *kd;
    224 	int what, arg;
    225 	struct proc *p;
    226 	struct kinfo_proc *bp;
    227 	int maxcnt;
    228 {
    229 	register int cnt = 0;
    230 	struct eproc eproc;
    231 	struct pgrp pgrp;
    232 	struct session sess;
    233 	struct tty tty;
    234 	struct proc proc;
    235 
    236 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    237 		if (KREAD(kd, (u_long)p, &proc)) {
    238 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    239 			return (-1);
    240 		}
    241 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    242 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    243 			      &eproc.e_ucred);
    244 
    245 		switch(what) {
    246 
    247 		case KERN_PROC_PID:
    248 			if (proc.p_pid != (pid_t)arg)
    249 				continue;
    250 			break;
    251 
    252 		case KERN_PROC_UID:
    253 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    254 				continue;
    255 			break;
    256 
    257 		case KERN_PROC_RUID:
    258 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    259 				continue;
    260 			break;
    261 		}
    262 		/*
    263 		 * We're going to add another proc to the set.  If this
    264 		 * will overflow the buffer, assume the reason is because
    265 		 * nprocs (or the proc list) is corrupt and declare an error.
    266 		 */
    267 		if (cnt >= maxcnt) {
    268 			_kvm_err(kd, kd->program, "nprocs corrupt");
    269 			return (-1);
    270 		}
    271 		/*
    272 		 * gather eproc
    273 		 */
    274 		eproc.e_paddr = p;
    275 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    276 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    277 				 proc.p_pgrp);
    278 			return (-1);
    279 		}
    280 		eproc.e_sess = pgrp.pg_session;
    281 		eproc.e_pgid = pgrp.pg_id;
    282 		eproc.e_jobc = pgrp.pg_jobc;
    283 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    284 			_kvm_err(kd, kd->program, "can't read session at %x",
    285 				pgrp.pg_session);
    286 			return (-1);
    287 		}
    288 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    289 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    290 				_kvm_err(kd, kd->program,
    291 					 "can't read tty at %x", sess.s_ttyp);
    292 				return (-1);
    293 			}
    294 			eproc.e_tdev = tty.t_dev;
    295 			eproc.e_tsess = tty.t_session;
    296 			if (tty.t_pgrp != NULL) {
    297 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    298 					_kvm_err(kd, kd->program,
    299 						 "can't read tpgrp at &x",
    300 						tty.t_pgrp);
    301 					return (-1);
    302 				}
    303 				eproc.e_tpgid = pgrp.pg_id;
    304 			} else
    305 				eproc.e_tpgid = -1;
    306 		} else
    307 			eproc.e_tdev = NODEV;
    308 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    309 		if (sess.s_leader == p)
    310 			eproc.e_flag |= EPROC_SLEADER;
    311 		if (proc.p_wmesg)
    312 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    313 			    eproc.e_wmesg, WMESGLEN);
    314 
    315 #ifdef sparc
    316 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
    317 		    (char *)&eproc.e_vm.vm_rssize,
    318 		    sizeof(eproc.e_vm.vm_rssize));
    319 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
    320 		    (char *)&eproc.e_vm.vm_tsize,
    321 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
    322 #else
    323 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    324 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    325 #endif
    326 		eproc.e_xsize = eproc.e_xrssize = 0;
    327 		eproc.e_xccount = eproc.e_xswrss = 0;
    328 
    329 		switch (what) {
    330 
    331 		case KERN_PROC_PGRP:
    332 			if (eproc.e_pgid != (pid_t)arg)
    333 				continue;
    334 			break;
    335 
    336 		case KERN_PROC_TTY:
    337 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    338 			     eproc.e_tdev != (dev_t)arg)
    339 				continue;
    340 			break;
    341 		}
    342 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
    343 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
    344 		++bp;
    345 		++cnt;
    346 	}
    347 	return (cnt);
    348 }
    349 
    350 /*
    351  * Build proc info array by reading in proc list from a crash dump.
    352  * Return number of procs read.  maxcnt is the max we will read.
    353  */
    354 static int
    355 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    356 	kvm_t *kd;
    357 	int what, arg;
    358 	u_long a_allproc;
    359 	u_long a_zombproc;
    360 	int maxcnt;
    361 {
    362 	register struct kinfo_proc *bp = kd->procbase;
    363 	register int acnt, zcnt;
    364 	struct proc *p;
    365 
    366 	if (KREAD(kd, a_allproc, &p)) {
    367 		_kvm_err(kd, kd->program, "cannot read allproc");
    368 		return (-1);
    369 	}
    370 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    371 	if (acnt < 0)
    372 		return (acnt);
    373 
    374 	if (KREAD(kd, a_zombproc, &p)) {
    375 		_kvm_err(kd, kd->program, "cannot read zombproc");
    376 		return (-1);
    377 	}
    378 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    379 	if (zcnt < 0)
    380 		zcnt = 0;
    381 
    382 	return (acnt + zcnt);
    383 }
    384 
    385 struct kinfo_proc *
    386 kvm_getprocs(kd, op, arg, cnt)
    387 	kvm_t *kd;
    388 	int op, arg;
    389 	int *cnt;
    390 {
    391 	int mib[4], size, st, nprocs;
    392 
    393 	if (kd->procbase != 0) {
    394 		free((void *)kd->procbase);
    395 		/*
    396 		 * Clear this pointer in case this call fails.  Otherwise,
    397 		 * kvm_close() will free it again.
    398 		 */
    399 		kd->procbase = 0;
    400 	}
    401 	if (ISALIVE(kd)) {
    402 		size = 0;
    403 		mib[0] = CTL_KERN;
    404 		mib[1] = KERN_PROC;
    405 		mib[2] = op;
    406 		mib[3] = arg;
    407 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    408 		if (st == -1) {
    409 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    410 			return (0);
    411 		}
    412 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    413 		if (kd->procbase == 0)
    414 			return (0);
    415 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    416 		if (st == -1) {
    417 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    418 			return (0);
    419 		}
    420 		if (size % sizeof(struct kinfo_proc) != 0) {
    421 			_kvm_err(kd, kd->program,
    422 				"proc size mismatch (%d total, %d chunks)",
    423 				size, sizeof(struct kinfo_proc));
    424 			return (0);
    425 		}
    426 		nprocs = size / sizeof(struct kinfo_proc);
    427 	} else {
    428 		struct nlist nl[4], *p;
    429 
    430 		nl[0].n_name = "_nprocs";
    431 		nl[1].n_name = "_allproc";
    432 		nl[2].n_name = "_zombproc";
    433 		nl[3].n_name = 0;
    434 
    435 		if (kvm_nlist(kd, nl) != 0) {
    436 			for (p = nl; p->n_type != 0; ++p)
    437 				;
    438 			_kvm_err(kd, kd->program,
    439 				 "%s: no such symbol", p->n_name);
    440 			return (0);
    441 		}
    442 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    443 			_kvm_err(kd, kd->program, "can't read nprocs");
    444 			return (0);
    445 		}
    446 		size = nprocs * sizeof(struct kinfo_proc);
    447 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    448 		if (kd->procbase == 0)
    449 			return (0);
    450 
    451 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    452 				      nl[2].n_value, nprocs);
    453 #ifdef notdef
    454 		size = nprocs * sizeof(struct kinfo_proc);
    455 		(void)realloc(kd->procbase, size);
    456 #endif
    457 	}
    458 	*cnt = nprocs;
    459 	return (kd->procbase);
    460 }
    461 
    462 void
    463 _kvm_freeprocs(kd)
    464 	kvm_t *kd;
    465 {
    466 	if (kd->procbase) {
    467 		free(kd->procbase);
    468 		kd->procbase = 0;
    469 	}
    470 }
    471 
    472 void *
    473 _kvm_realloc(kd, p, n)
    474 	kvm_t *kd;
    475 	void *p;
    476 	size_t n;
    477 {
    478 	void *np = (void *)realloc(p, n);
    479 
    480 	if (np == 0)
    481 		_kvm_err(kd, kd->program, "out of memory");
    482 	return (np);
    483 }
    484 
    485 #ifndef MAX
    486 #define MAX(a, b) ((a) > (b) ? (a) : (b))
    487 #endif
    488 
    489 /*
    490  * Read in an argument vector from the user address space of process p.
    491  * addr if the user-space base address of narg null-terminated contiguous
    492  * strings.  This is used to read in both the command arguments and
    493  * environment strings.  Read at most maxcnt characters of strings.
    494  */
    495 static char **
    496 kvm_argv(kd, p, addr, narg, maxcnt)
    497 	kvm_t *kd;
    498 	struct proc *p;
    499 	register u_long addr;
    500 	register int narg;
    501 	register int maxcnt;
    502 {
    503 	register char *cp;
    504 	register int len, cc;
    505 	register char **argv;
    506 
    507 	/*
    508 	 * Check that there aren't an unreasonable number of agruments,
    509 	 * and that the address is in user space.
    510 	 */
    511 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
    512 		return (0);
    513 
    514 	if (kd->argv == 0) {
    515 		/*
    516 		 * Try to avoid reallocs.
    517 		 */
    518 		kd->argc = MAX(narg + 1, 32);
    519 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    520 						sizeof(*kd->argv));
    521 		if (kd->argv == 0)
    522 			return (0);
    523 	} else if (narg + 1 > kd->argc) {
    524 		kd->argc = MAX(2 * kd->argc, narg + 1);
    525 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    526 						sizeof(*kd->argv));
    527 		if (kd->argv == 0)
    528 			return (0);
    529 	}
    530 	if (kd->argspc == 0) {
    531 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
    532 		if (kd->argspc == 0)
    533 			return (0);
    534 		kd->arglen = kd->nbpg;
    535 	}
    536 	cp = kd->argspc;
    537 	argv = kd->argv;
    538 	*argv = cp;
    539 	len = 0;
    540 	/*
    541 	 * Loop over pages, filling in the argument vector.
    542 	 */
    543 	while (addr < VM_MAXUSER_ADDRESS) {
    544 		cc = kd->nbpg - (addr & (kd->nbpg - 1));
    545 		if (maxcnt > 0 && cc > maxcnt - len)
    546 			cc = maxcnt - len;;
    547 		if (len + cc > kd->arglen) {
    548 			register int off;
    549 			register char **pp;
    550 			register char *op = kd->argspc;
    551 
    552 			kd->arglen *= 2;
    553 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    554 							  kd->arglen);
    555 			if (kd->argspc == 0)
    556 				return (0);
    557 			cp = &kd->argspc[len];
    558 			/*
    559 			 * Adjust argv pointers in case realloc moved
    560 			 * the string space.
    561 			 */
    562 			off = kd->argspc - op;
    563 			for (pp = kd->argv; pp < argv; ++pp)
    564 				*pp += off;
    565 		}
    566 		if (kvm_uread(kd, p, addr, cp, cc) != cc)
    567 			/* XXX */
    568 			return (0);
    569 		len += cc;
    570 		addr += cc;
    571 
    572 		if (maxcnt == 0 && len > 16 * kd->nbpg)
    573 			/* sanity */
    574 			return (0);
    575 
    576 		while (--cc >= 0) {
    577 			if (*cp++ == 0) {
    578 				if (--narg <= 0) {
    579 					*++argv = 0;
    580 					return (kd->argv);
    581 				} else
    582 					*++argv = cp;
    583 			}
    584 		}
    585 		if (maxcnt > 0 && len >= maxcnt) {
    586 			/*
    587 			 * We're stopping prematurely.  Terminate the
    588 			 * argv and current string.
    589 			 */
    590 			*++argv = 0;
    591 			*cp = 0;
    592 			return (kd->argv);
    593 		}
    594 	}
    595 }
    596 
    597 static void
    598 ps_str_a(p, addr, n)
    599 	struct ps_strings *p;
    600 	u_long *addr;
    601 	int *n;
    602 {
    603 	*addr = (u_long)p->ps_argvstr;
    604 	*n = p->ps_nargvstr;
    605 }
    606 
    607 static void
    608 ps_str_e(p, addr, n)
    609 	struct ps_strings *p;
    610 	u_long *addr;
    611 	int *n;
    612 {
    613 	*addr = (u_long)p->ps_envstr;
    614 	*n = p->ps_nenvstr;
    615 }
    616 
    617 /*
    618  * Determine if the proc indicated by p is still active.
    619  * This test is not 100% foolproof in theory, but chances of
    620  * being wrong are very low.
    621  */
    622 static int
    623 proc_verify(kd, kernp, p)
    624 	kvm_t *kd;
    625 	u_long kernp;
    626 	const struct proc *p;
    627 {
    628 	struct proc kernproc;
    629 
    630 	/*
    631 	 * Just read in the whole proc.  It's not that big relative
    632 	 * to the cost of the read system call.
    633 	 */
    634 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    635 	    sizeof(kernproc))
    636 		return (0);
    637 	return (p->p_pid == kernproc.p_pid &&
    638 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    639 }
    640 
    641 static char **
    642 kvm_doargv(kd, kp, nchr, info)
    643 	kvm_t *kd;
    644 	const struct kinfo_proc *kp;
    645 	int nchr;
    646 	int (*info)(struct ps_strings*, u_long *, int *);
    647 {
    648 	register const struct proc *p = &kp->kp_proc;
    649 	register char **ap;
    650 	u_long addr;
    651 	int cnt;
    652 	struct ps_strings arginfo;
    653 
    654 	/*
    655 	 * Pointers are stored at the top of the user stack.
    656 	 */
    657 	if (p->p_stat == SZOMB ||
    658 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
    659 		      sizeof(arginfo)) != sizeof(arginfo))
    660 		return (0);
    661 
    662 	(*info)(&arginfo, &addr, &cnt);
    663 	if (cnt == 0)
    664 		return (0);
    665 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    666 	/*
    667 	 * For live kernels, make sure this process didn't go away.
    668 	 */
    669 	if (ap != 0 && ISALIVE(kd) &&
    670 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    671 		ap = 0;
    672 	return (ap);
    673 }
    674 
    675 /*
    676  * Get the command args.  This code is now machine independent.
    677  */
    678 char **
    679 kvm_getargv(kd, kp, nchr)
    680 	kvm_t *kd;
    681 	const struct kinfo_proc *kp;
    682 	int nchr;
    683 {
    684 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    685 }
    686 
    687 char **
    688 kvm_getenvv(kd, kp, nchr)
    689 	kvm_t *kd;
    690 	const struct kinfo_proc *kp;
    691 	int nchr;
    692 {
    693 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    694 }
    695 
    696 /*
    697  * Read from user space.  The user context is given by p.
    698  */
    699 ssize_t
    700 kvm_uread(kd, p, uva, buf, len)
    701 	kvm_t *kd;
    702 	register struct proc *p;
    703 	register u_long uva;
    704 	register char *buf;
    705 	register size_t len;
    706 {
    707 	register char *cp;
    708 
    709 	cp = buf;
    710 	while (len > 0) {
    711 		u_long pa;
    712 		register int cc;
    713 
    714 		cc = _kvm_uvatop(kd, p, uva, &pa);
    715 		if (cc > 0) {
    716 			if (cc > len)
    717 				cc = len;
    718 			errno = 0;
    719 			if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
    720 				_kvm_err(kd, 0, "invalid address (%x)", uva);
    721 				break;
    722 			}
    723 			cc = read(kd->pmfd, cp, cc);
    724 			if (cc < 0) {
    725 				_kvm_syserr(kd, 0, _PATH_MEM);
    726 				break;
    727 			} else if (cc < len) {
    728 				_kvm_err(kd, kd->program, "short read");
    729 				break;
    730 			}
    731 		} else if (ISALIVE(kd)) {
    732 			/* try swap */
    733 			register char *dp;
    734 			int cnt;
    735 
    736 			dp = kvm_readswap(kd, p, uva, &cnt);
    737 			if (dp == 0) {
    738 				_kvm_err(kd, 0, "invalid address (%x)", uva);
    739 				return (0);
    740 			}
    741 			cc = MIN(cnt, len);
    742 			bcopy(dp, cp, cc);
    743 		} else
    744 			break;
    745 		cp += cc;
    746 		uva += cc;
    747 		len -= cc;
    748 	}
    749 	return (ssize_t)(cp - buf);
    750 }
    751