kvm_proc.c revision 1.6 1 /*-
2 * Copyright (c) 1994 Charles Hannum.
3 * Copyright (c) 1989, 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software developed by the Computer Systems
7 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
8 * BG 91-66 and contributed to Berkeley.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #if defined(LIBC_SCCS) && !defined(lint)
40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
41 #endif /* LIBC_SCCS and not lint */
42
43 /*
44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
45 * users of this code, so we've factored it out into a separate module.
46 * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 * most other applications are interested only in open/close/read/nlist).
48 */
49
50 #include <sys/param.h>
51 #include <sys/user.h>
52 #include <sys/proc.h>
53 #include <sys/exec.h>
54 #include <sys/stat.h>
55 #include <sys/ioctl.h>
56 #include <sys/tty.h>
57 #include <unistd.h>
58 #include <nlist.h>
59 #include <kvm.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/swap_pager.h>
64
65 #include <sys/sysctl.h>
66
67 #include <limits.h>
68 #include <db.h>
69 #include <paths.h>
70
71 #include "kvm_private.h"
72
73 #define KREAD(kd, addr, obj) \
74 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
75
76 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
77
78 static char *
79 kvm_readswap(kd, p, va, cnt)
80 kvm_t *kd;
81 const struct proc *p;
82 u_long va;
83 u_long *cnt;
84 {
85 register u_long addr, head;
86 register u_long offset;
87 struct vm_map_entry vme;
88 struct vm_object vmo;
89
90 if (kd->swapspc == 0) {
91 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
92 if (kd->swapspc == 0)
93 return (0);
94 }
95 head = (u_long)&p->p_vmspace->vm_map.header;
96 /*
97 * Look through the address map for the memory object
98 * that corresponds to the given virtual address.
99 * The header just has the entire valid range.
100 */
101 addr = head;
102 while (1) {
103 if (KREAD(kd, addr, &vme))
104 return (0);
105
106 if (va >= vme.start && va < vme.end &&
107 vme.object.vm_object != 0)
108 break;
109
110 addr = (u_long)vme.next;
111 if (addr == head)
112 return (0);
113 }
114
115 /*
116 * We found the right object -- follow shadow links.
117 */
118 offset = va - vme.start + vme.offset;
119 addr = (u_long)vme.object.vm_object;
120 while (1) {
121 if (KREAD(kd, addr, &vmo))
122 return (0);
123
124 /* If there is a pager here, see if it has the page. */
125 if (vmo.pager != 0 &&
126 _kvm_readfrompager(kd, &vmo, offset))
127 break;
128
129 /* Move down the shadow chain. */
130 addr = (u_long)vmo.shadow;
131 if (addr == 0)
132 return (0);
133 offset += vmo.shadow_offset;
134 }
135
136 /* Found the page. */
137 offset %= kd->nbpg;
138 *cnt = kd->nbpg - offset;
139 return (&kd->swapspc[offset]);
140 }
141
142 int
143 _kvm_readfrompager(kd, vmop, offset)
144 kvm_t *kd;
145 struct vm_object *vmop;
146 u_long offset;
147 {
148 u_long addr;
149 struct pager_struct pager;
150 struct swpager swap;
151 int ix;
152 struct swblock swb;
153 register off_t seekpoint;
154
155 /* Read in the pager info and make sure it's a swap device. */
156 addr = (u_long)vmop->pager;
157 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
158 return (0);
159
160 /* Read in the swap_pager private data. */
161 addr = (u_long)pager.pg_data;
162 if (KREAD(kd, addr, &swap))
163 return (0);
164
165 /*
166 * Calculate the paging offset, and make sure it's within the
167 * bounds of the pager.
168 */
169 offset += vmop->paging_offset;
170 ix = offset / dbtob(swap.sw_bsize);
171 #if 0
172 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
173 return (0);
174 #else
175 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
176 int i;
177 printf("BUG BUG BUG BUG:\n");
178 printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
179 vmop, offset - vmop->paging_offset, vmop->paging_offset,
180 vmop->pager, pager.pg_data);
181 printf("osize %x bsize %x blocks %x nblocks %x\n",
182 swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
183 swap.sw_nblocks);
184 for (ix = 0; ix < swap.sw_nblocks; ix++) {
185 addr = (u_long)&swap.sw_blocks[ix];
186 if (KREAD(kd, addr, &swb))
187 return (0);
188 printf("sw_blocks[%d]: block %x mask %x\n", ix,
189 swb.swb_block, swb.swb_mask);
190 }
191 return (0);
192 }
193 #endif
194
195 /* Read in the swap records. */
196 addr = (u_long)&swap.sw_blocks[ix];
197 if (KREAD(kd, addr, &swb))
198 return (0);
199
200 /* Calculate offset within pager. */
201 offset %= dbtob(swap.sw_bsize);
202
203 /* Check that the page is actually present. */
204 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
205 return (0);
206
207 /* Calculate the physical address and read the page. */
208 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
209 if (lseek(kd->swfd, seekpoint, 0) == -1)
210 return (0);
211 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
212 return (0);
213
214 return (1);
215 }
216
217 /*
218 * Read proc's from memory file into buffer bp, which has space to hold
219 * at most maxcnt procs.
220 */
221 static int
222 kvm_proclist(kd, what, arg, p, bp, maxcnt)
223 kvm_t *kd;
224 int what, arg;
225 struct proc *p;
226 struct kinfo_proc *bp;
227 int maxcnt;
228 {
229 register int cnt = 0;
230 struct eproc eproc;
231 struct pgrp pgrp;
232 struct session sess;
233 struct tty tty;
234 struct proc proc;
235
236 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
237 if (KREAD(kd, (u_long)p, &proc)) {
238 _kvm_err(kd, kd->program, "can't read proc at %x", p);
239 return (-1);
240 }
241 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
242 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
243 &eproc.e_ucred);
244
245 switch(what) {
246
247 case KERN_PROC_PID:
248 if (proc.p_pid != (pid_t)arg)
249 continue;
250 break;
251
252 case KERN_PROC_UID:
253 if (eproc.e_ucred.cr_uid != (uid_t)arg)
254 continue;
255 break;
256
257 case KERN_PROC_RUID:
258 if (eproc.e_pcred.p_ruid != (uid_t)arg)
259 continue;
260 break;
261 }
262 /*
263 * We're going to add another proc to the set. If this
264 * will overflow the buffer, assume the reason is because
265 * nprocs (or the proc list) is corrupt and declare an error.
266 */
267 if (cnt >= maxcnt) {
268 _kvm_err(kd, kd->program, "nprocs corrupt");
269 return (-1);
270 }
271 /*
272 * gather eproc
273 */
274 eproc.e_paddr = p;
275 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
276 _kvm_err(kd, kd->program, "can't read pgrp at %x",
277 proc.p_pgrp);
278 return (-1);
279 }
280 eproc.e_sess = pgrp.pg_session;
281 eproc.e_pgid = pgrp.pg_id;
282 eproc.e_jobc = pgrp.pg_jobc;
283 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
284 _kvm_err(kd, kd->program, "can't read session at %x",
285 pgrp.pg_session);
286 return (-1);
287 }
288 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
289 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
290 _kvm_err(kd, kd->program,
291 "can't read tty at %x", sess.s_ttyp);
292 return (-1);
293 }
294 eproc.e_tdev = tty.t_dev;
295 eproc.e_tsess = tty.t_session;
296 if (tty.t_pgrp != NULL) {
297 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
298 _kvm_err(kd, kd->program,
299 "can't read tpgrp at &x",
300 tty.t_pgrp);
301 return (-1);
302 }
303 eproc.e_tpgid = pgrp.pg_id;
304 } else
305 eproc.e_tpgid = -1;
306 } else
307 eproc.e_tdev = NODEV;
308 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
309 if (sess.s_leader == p)
310 eproc.e_flag |= EPROC_SLEADER;
311 if (proc.p_wmesg)
312 (void)kvm_read(kd, (u_long)proc.p_wmesg,
313 eproc.e_wmesg, WMESGLEN);
314
315 #ifdef sparc
316 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
317 (char *)&eproc.e_vm.vm_rssize,
318 sizeof(eproc.e_vm.vm_rssize));
319 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
320 (char *)&eproc.e_vm.vm_tsize,
321 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */
322 #else
323 (void)kvm_read(kd, (u_long)proc.p_vmspace,
324 (char *)&eproc.e_vm, sizeof(eproc.e_vm));
325 #endif
326 eproc.e_xsize = eproc.e_xrssize = 0;
327 eproc.e_xccount = eproc.e_xswrss = 0;
328
329 switch (what) {
330
331 case KERN_PROC_PGRP:
332 if (eproc.e_pgid != (pid_t)arg)
333 continue;
334 break;
335
336 case KERN_PROC_TTY:
337 if ((proc.p_flag & P_CONTROLT) == 0 ||
338 eproc.e_tdev != (dev_t)arg)
339 continue;
340 break;
341 }
342 bcopy(&proc, &bp->kp_proc, sizeof(proc));
343 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
344 ++bp;
345 ++cnt;
346 }
347 return (cnt);
348 }
349
350 /*
351 * Build proc info array by reading in proc list from a crash dump.
352 * Return number of procs read. maxcnt is the max we will read.
353 */
354 static int
355 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
356 kvm_t *kd;
357 int what, arg;
358 u_long a_allproc;
359 u_long a_zombproc;
360 int maxcnt;
361 {
362 register struct kinfo_proc *bp = kd->procbase;
363 register int acnt, zcnt;
364 struct proc *p;
365
366 if (KREAD(kd, a_allproc, &p)) {
367 _kvm_err(kd, kd->program, "cannot read allproc");
368 return (-1);
369 }
370 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
371 if (acnt < 0)
372 return (acnt);
373
374 if (KREAD(kd, a_zombproc, &p)) {
375 _kvm_err(kd, kd->program, "cannot read zombproc");
376 return (-1);
377 }
378 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
379 if (zcnt < 0)
380 zcnt = 0;
381
382 return (acnt + zcnt);
383 }
384
385 struct kinfo_proc *
386 kvm_getprocs(kd, op, arg, cnt)
387 kvm_t *kd;
388 int op, arg;
389 int *cnt;
390 {
391 int mib[4], size, st, nprocs;
392
393 if (kd->procbase != 0) {
394 free((void *)kd->procbase);
395 /*
396 * Clear this pointer in case this call fails. Otherwise,
397 * kvm_close() will free it again.
398 */
399 kd->procbase = 0;
400 }
401 if (ISALIVE(kd)) {
402 size = 0;
403 mib[0] = CTL_KERN;
404 mib[1] = KERN_PROC;
405 mib[2] = op;
406 mib[3] = arg;
407 st = sysctl(mib, 4, NULL, &size, NULL, 0);
408 if (st == -1) {
409 _kvm_syserr(kd, kd->program, "kvm_getprocs");
410 return (0);
411 }
412 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
413 if (kd->procbase == 0)
414 return (0);
415 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
416 if (st == -1) {
417 _kvm_syserr(kd, kd->program, "kvm_getprocs");
418 return (0);
419 }
420 if (size % sizeof(struct kinfo_proc) != 0) {
421 _kvm_err(kd, kd->program,
422 "proc size mismatch (%d total, %d chunks)",
423 size, sizeof(struct kinfo_proc));
424 return (0);
425 }
426 nprocs = size / sizeof(struct kinfo_proc);
427 } else {
428 struct nlist nl[4], *p;
429
430 nl[0].n_name = "_nprocs";
431 nl[1].n_name = "_allproc";
432 nl[2].n_name = "_zombproc";
433 nl[3].n_name = 0;
434
435 if (kvm_nlist(kd, nl) != 0) {
436 for (p = nl; p->n_type != 0; ++p)
437 ;
438 _kvm_err(kd, kd->program,
439 "%s: no such symbol", p->n_name);
440 return (0);
441 }
442 if (KREAD(kd, nl[0].n_value, &nprocs)) {
443 _kvm_err(kd, kd->program, "can't read nprocs");
444 return (0);
445 }
446 size = nprocs * sizeof(struct kinfo_proc);
447 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
448 if (kd->procbase == 0)
449 return (0);
450
451 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
452 nl[2].n_value, nprocs);
453 #ifdef notdef
454 size = nprocs * sizeof(struct kinfo_proc);
455 (void)realloc(kd->procbase, size);
456 #endif
457 }
458 *cnt = nprocs;
459 return (kd->procbase);
460 }
461
462 void
463 _kvm_freeprocs(kd)
464 kvm_t *kd;
465 {
466 if (kd->procbase) {
467 free(kd->procbase);
468 kd->procbase = 0;
469 }
470 }
471
472 void *
473 _kvm_realloc(kd, p, n)
474 kvm_t *kd;
475 void *p;
476 size_t n;
477 {
478 void *np = (void *)realloc(p, n);
479
480 if (np == 0)
481 _kvm_err(kd, kd->program, "out of memory");
482 return (np);
483 }
484
485 #ifndef MAX
486 #define MAX(a, b) ((a) > (b) ? (a) : (b))
487 #endif
488
489 /*
490 * Read in an argument vector from the user address space of process p.
491 * addr if the user-space base address of narg null-terminated contiguous
492 * strings. This is used to read in both the command arguments and
493 * environment strings. Read at most maxcnt characters of strings.
494 */
495 static char **
496 kvm_argv(kd, p, addr, narg, maxcnt)
497 kvm_t *kd;
498 struct proc *p;
499 register u_long addr;
500 register int narg;
501 register int maxcnt;
502 {
503 register char *cp;
504 register int len, cc;
505 register char **argv;
506
507 /*
508 * Check that there aren't an unreasonable number of agruments,
509 * and that the address is in user space.
510 */
511 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
512 return (0);
513
514 if (kd->argv == 0) {
515 /*
516 * Try to avoid reallocs.
517 */
518 kd->argc = MAX(narg + 1, 32);
519 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
520 sizeof(*kd->argv));
521 if (kd->argv == 0)
522 return (0);
523 } else if (narg + 1 > kd->argc) {
524 kd->argc = MAX(2 * kd->argc, narg + 1);
525 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
526 sizeof(*kd->argv));
527 if (kd->argv == 0)
528 return (0);
529 }
530 if (kd->argspc == 0) {
531 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
532 if (kd->argspc == 0)
533 return (0);
534 kd->arglen = kd->nbpg;
535 }
536 cp = kd->argspc;
537 argv = kd->argv;
538 *argv = cp;
539 len = 0;
540 /*
541 * Loop over pages, filling in the argument vector.
542 */
543 while (addr < VM_MAXUSER_ADDRESS) {
544 cc = kd->nbpg - (addr & (kd->nbpg - 1));
545 if (maxcnt > 0 && cc > maxcnt - len)
546 cc = maxcnt - len;;
547 if (len + cc > kd->arglen) {
548 register int off;
549 register char **pp;
550 register char *op = kd->argspc;
551
552 kd->arglen *= 2;
553 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
554 kd->arglen);
555 if (kd->argspc == 0)
556 return (0);
557 cp = &kd->argspc[len];
558 /*
559 * Adjust argv pointers in case realloc moved
560 * the string space.
561 */
562 off = kd->argspc - op;
563 for (pp = kd->argv; pp < argv; ++pp)
564 *pp += off;
565 }
566 if (kvm_uread(kd, p, addr, cp, cc) != cc)
567 /* XXX */
568 return (0);
569 len += cc;
570 addr += cc;
571
572 if (maxcnt == 0 && len > 16 * kd->nbpg)
573 /* sanity */
574 return (0);
575
576 while (--cc >= 0) {
577 if (*cp++ == 0) {
578 if (--narg <= 0) {
579 *++argv = 0;
580 return (kd->argv);
581 } else
582 *++argv = cp;
583 }
584 }
585 if (maxcnt > 0 && len >= maxcnt) {
586 /*
587 * We're stopping prematurely. Terminate the
588 * argv and current string.
589 */
590 *++argv = 0;
591 *cp = 0;
592 return (kd->argv);
593 }
594 }
595 }
596
597 static void
598 ps_str_a(p, addr, n)
599 struct ps_strings *p;
600 u_long *addr;
601 int *n;
602 {
603 *addr = (u_long)p->ps_argvstr;
604 *n = p->ps_nargvstr;
605 }
606
607 static void
608 ps_str_e(p, addr, n)
609 struct ps_strings *p;
610 u_long *addr;
611 int *n;
612 {
613 *addr = (u_long)p->ps_envstr;
614 *n = p->ps_nenvstr;
615 }
616
617 /*
618 * Determine if the proc indicated by p is still active.
619 * This test is not 100% foolproof in theory, but chances of
620 * being wrong are very low.
621 */
622 static int
623 proc_verify(kd, kernp, p)
624 kvm_t *kd;
625 u_long kernp;
626 const struct proc *p;
627 {
628 struct proc kernproc;
629
630 /*
631 * Just read in the whole proc. It's not that big relative
632 * to the cost of the read system call.
633 */
634 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
635 sizeof(kernproc))
636 return (0);
637 return (p->p_pid == kernproc.p_pid &&
638 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
639 }
640
641 static char **
642 kvm_doargv(kd, kp, nchr, info)
643 kvm_t *kd;
644 const struct kinfo_proc *kp;
645 int nchr;
646 int (*info)(struct ps_strings*, u_long *, int *);
647 {
648 register const struct proc *p = &kp->kp_proc;
649 register char **ap;
650 u_long addr;
651 int cnt;
652 struct ps_strings arginfo;
653
654 /*
655 * Pointers are stored at the top of the user stack.
656 */
657 if (p->p_stat == SZOMB ||
658 kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
659 sizeof(arginfo)) != sizeof(arginfo))
660 return (0);
661
662 (*info)(&arginfo, &addr, &cnt);
663 if (cnt == 0)
664 return (0);
665 ap = kvm_argv(kd, p, addr, cnt, nchr);
666 /*
667 * For live kernels, make sure this process didn't go away.
668 */
669 if (ap != 0 && ISALIVE(kd) &&
670 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
671 ap = 0;
672 return (ap);
673 }
674
675 /*
676 * Get the command args. This code is now machine independent.
677 */
678 char **
679 kvm_getargv(kd, kp, nchr)
680 kvm_t *kd;
681 const struct kinfo_proc *kp;
682 int nchr;
683 {
684 return (kvm_doargv(kd, kp, nchr, ps_str_a));
685 }
686
687 char **
688 kvm_getenvv(kd, kp, nchr)
689 kvm_t *kd;
690 const struct kinfo_proc *kp;
691 int nchr;
692 {
693 return (kvm_doargv(kd, kp, nchr, ps_str_e));
694 }
695
696 /*
697 * Read from user space. The user context is given by p.
698 */
699 ssize_t
700 kvm_uread(kd, p, uva, buf, len)
701 kvm_t *kd;
702 register struct proc *p;
703 register u_long uva;
704 register char *buf;
705 register size_t len;
706 {
707 register char *cp;
708
709 cp = buf;
710 while (len > 0) {
711 u_long pa;
712 register int cc;
713
714 cc = _kvm_uvatop(kd, p, uva, &pa);
715 if (cc > 0) {
716 if (cc > len)
717 cc = len;
718 errno = 0;
719 if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
720 _kvm_err(kd, 0, "invalid address (%x)", uva);
721 break;
722 }
723 cc = read(kd->pmfd, cp, cc);
724 if (cc < 0) {
725 _kvm_syserr(kd, 0, _PATH_MEM);
726 break;
727 } else if (cc < len) {
728 _kvm_err(kd, kd->program, "short read");
729 break;
730 }
731 } else if (ISALIVE(kd)) {
732 /* try swap */
733 register char *dp;
734 int cnt;
735
736 dp = kvm_readswap(kd, p, uva, &cnt);
737 if (dp == 0) {
738 _kvm_err(kd, 0, "invalid address (%x)", uva);
739 return (0);
740 }
741 cc = MIN(cnt, len);
742 bcopy(dp, cp, cc);
743 } else
744 break;
745 cp += cc;
746 uva += cc;
747 len -= cc;
748 }
749 return (ssize_t)(cp - buf);
750 }
751