kvm_proc.c revision 1.61 1 /* $NetBSD: kvm_proc.c,v 1.61 2006/02/16 20:48:42 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 #if defined(LIBC_SCCS) && !defined(lint)
74 #if 0
75 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
76 #else
77 __RCSID("$NetBSD: kvm_proc.c,v 1.61 2006/02/16 20:48:42 christos Exp $");
78 #endif
79 #endif /* LIBC_SCCS and not lint */
80
81 /*
82 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
83 * users of this code, so we've factored it out into a separate module.
84 * Thus, we keep this grunge out of the other kvm applications (i.e.,
85 * most other applications are interested only in open/close/read/nlist).
86 */
87
88 #include <sys/param.h>
89 #include <sys/user.h>
90 #include <sys/lwp.h>
91 #include <sys/proc.h>
92 #include <sys/exec.h>
93 #include <sys/stat.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <stdlib.h>
97 #include <stddef.h>
98 #include <string.h>
99 #include <unistd.h>
100 #include <nlist.h>
101 #include <kvm.h>
102
103 #include <uvm/uvm_extern.h>
104 #include <uvm/uvm_amap.h>
105
106 #include <sys/sysctl.h>
107
108 #include <limits.h>
109 #include <db.h>
110 #include <paths.h>
111
112 #include "kvm_private.h"
113
114 /*
115 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
116 */
117 struct miniproc {
118 struct vmspace *p_vmspace;
119 char p_stat;
120 struct proc *p_paddr;
121 pid_t p_pid;
122 };
123
124 /*
125 * Convert from struct proc and kinfo_proc{,2} to miniproc.
126 */
127 #define PTOMINI(kp, p) \
128 do { \
129 (p)->p_stat = (kp)->p_stat; \
130 (p)->p_pid = (kp)->p_pid; \
131 (p)->p_paddr = NULL; \
132 (p)->p_vmspace = (kp)->p_vmspace; \
133 } while (/*CONSTCOND*/0);
134
135 #define KPTOMINI(kp, p) \
136 do { \
137 (p)->p_stat = (kp)->kp_proc.p_stat; \
138 (p)->p_pid = (kp)->kp_proc.p_pid; \
139 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
140 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
141 } while (/*CONSTCOND*/0);
142
143 #define KP2TOMINI(kp, p) \
144 do { \
145 (p)->p_stat = (kp)->p_stat; \
146 (p)->p_pid = (kp)->p_pid; \
147 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
148 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
149 } while (/*CONSTCOND*/0);
150
151
152 #define KREAD(kd, addr, obj) \
153 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
154
155 /* XXX: What uses these two functions? */
156 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
157 u_long *));
158 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
159 size_t));
160
161 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
162 u_long *));
163 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
164 char *, size_t));
165
166 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
167 int));
168 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
169 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
170 void (*)(struct ps_strings *, u_long *, int *)));
171 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
172 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
173 struct kinfo_proc *, int));
174 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
175 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
176 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
177
178
179 static char *
180 _kvm_ureadm(kd, p, va, cnt)
181 kvm_t *kd;
182 const struct miniproc *p;
183 u_long va;
184 u_long *cnt;
185 {
186 int true = 1;
187 u_long addr, head;
188 u_long offset;
189 struct vm_map_entry vme;
190 struct vm_amap amap;
191 struct vm_anon *anonp, anon;
192 struct vm_page pg;
193 u_long slot;
194
195 if (kd->swapspc == NULL) {
196 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
197 if (kd->swapspc == NULL)
198 return (NULL);
199 }
200
201 /*
202 * Look through the address map for the memory object
203 * that corresponds to the given virtual address.
204 * The header just has the entire valid range.
205 */
206 head = (u_long)&p->p_vmspace->vm_map.header;
207 addr = head;
208 while (true) {
209 if (KREAD(kd, addr, &vme))
210 return (NULL);
211
212 if (va >= vme.start && va < vme.end &&
213 vme.aref.ar_amap != NULL)
214 break;
215
216 addr = (u_long)vme.next;
217 if (addr == head)
218 return (NULL);
219 }
220
221 /*
222 * we found the map entry, now to find the object...
223 */
224 if (vme.aref.ar_amap == NULL)
225 return (NULL);
226
227 addr = (u_long)vme.aref.ar_amap;
228 if (KREAD(kd, addr, &amap))
229 return (NULL);
230
231 offset = va - vme.start;
232 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
233 /* sanity-check slot number */
234 if (slot > amap.am_nslot)
235 return (NULL);
236
237 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
238 if (KREAD(kd, addr, &anonp))
239 return (NULL);
240
241 addr = (u_long)anonp;
242 if (KREAD(kd, addr, &anon))
243 return (NULL);
244
245 addr = (u_long)anon.an_page;
246 if (addr) {
247 if (KREAD(kd, addr, &pg))
248 return (NULL);
249
250 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
251 (off_t)pg.phys_addr) != kd->nbpg)
252 return (NULL);
253 } else {
254 if (kd->swfd < 0 ||
255 pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
256 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
257 return (NULL);
258 }
259
260 /* Found the page. */
261 offset %= kd->nbpg;
262 *cnt = kd->nbpg - offset;
263 return (&kd->swapspc[(size_t)offset]);
264 }
265
266 char *
267 _kvm_uread(kd, p, va, cnt)
268 kvm_t *kd;
269 const struct proc *p;
270 u_long va;
271 u_long *cnt;
272 {
273 struct miniproc mp;
274
275 PTOMINI(p, &mp);
276 return (_kvm_ureadm(kd, &mp, va, cnt));
277 }
278
279 /*
280 * Read proc's from memory file into buffer bp, which has space to hold
281 * at most maxcnt procs.
282 */
283 static int
284 kvm_proclist(kd, what, arg, p, bp, maxcnt)
285 kvm_t *kd;
286 int what, arg;
287 struct proc *p;
288 struct kinfo_proc *bp;
289 int maxcnt;
290 {
291 int cnt = 0;
292 int nlwps;
293 struct kinfo_lwp *kl;
294 struct eproc eproc;
295 struct pgrp pgrp;
296 struct session sess;
297 struct tty tty;
298 struct proc proc;
299
300 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
301 if (KREAD(kd, (u_long)p, &proc)) {
302 _kvm_err(kd, kd->program, "can't read proc at %p", p);
303 return (-1);
304 }
305 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
306 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
307 &eproc.e_ucred)) {
308 _kvm_err(kd, kd->program,
309 "can't read proc credentials at %p", p);
310 return (-1);
311 }
312
313 switch (what) {
314
315 case KERN_PROC_PID:
316 if (proc.p_pid != (pid_t)arg)
317 continue;
318 break;
319
320 case KERN_PROC_UID:
321 if (eproc.e_ucred.cr_uid != (uid_t)arg)
322 continue;
323 break;
324
325 case KERN_PROC_RUID:
326 if (eproc.e_pcred.p_ruid != (uid_t)arg)
327 continue;
328 break;
329 }
330 /*
331 * We're going to add another proc to the set. If this
332 * will overflow the buffer, assume the reason is because
333 * nprocs (or the proc list) is corrupt and declare an error.
334 */
335 if (cnt >= maxcnt) {
336 _kvm_err(kd, kd->program, "nprocs corrupt");
337 return (-1);
338 }
339 /*
340 * gather eproc
341 */
342 eproc.e_paddr = p;
343 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
344 _kvm_err(kd, kd->program, "can't read pgrp at %p",
345 proc.p_pgrp);
346 return (-1);
347 }
348 eproc.e_sess = pgrp.pg_session;
349 eproc.e_pgid = pgrp.pg_id;
350 eproc.e_jobc = pgrp.pg_jobc;
351 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
352 _kvm_err(kd, kd->program, "can't read session at %p",
353 pgrp.pg_session);
354 return (-1);
355 }
356 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
357 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
358 _kvm_err(kd, kd->program,
359 "can't read tty at %p", sess.s_ttyp);
360 return (-1);
361 }
362 eproc.e_tdev = tty.t_dev;
363 eproc.e_tsess = tty.t_session;
364 if (tty.t_pgrp != NULL) {
365 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
366 _kvm_err(kd, kd->program,
367 "can't read tpgrp at %p",
368 tty.t_pgrp);
369 return (-1);
370 }
371 eproc.e_tpgid = pgrp.pg_id;
372 } else
373 eproc.e_tpgid = -1;
374 } else
375 eproc.e_tdev = NODEV;
376 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
377 eproc.e_sid = sess.s_sid;
378 if (sess.s_leader == p)
379 eproc.e_flag |= EPROC_SLEADER;
380 /*
381 * Fill in the old-style proc.p_wmesg by copying the wmesg
382 * from the first available LWP.
383 */
384 kl = kvm_getlwps(kd, proc.p_pid,
385 (u_long)PTRTOUINT64(eproc.e_paddr),
386 sizeof(struct kinfo_lwp), &nlwps);
387 if (kl) {
388 if (nlwps > 0) {
389 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
390 }
391 }
392 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
393 sizeof(eproc.e_vm));
394
395 eproc.e_xsize = eproc.e_xrssize = 0;
396 eproc.e_xccount = eproc.e_xswrss = 0;
397
398 switch (what) {
399
400 case KERN_PROC_PGRP:
401 if (eproc.e_pgid != (pid_t)arg)
402 continue;
403 break;
404
405 case KERN_PROC_TTY:
406 if ((proc.p_flag & P_CONTROLT) == 0 ||
407 eproc.e_tdev != (dev_t)arg)
408 continue;
409 break;
410 }
411 memcpy(&bp->kp_proc, &proc, sizeof(proc));
412 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
413 ++bp;
414 ++cnt;
415 }
416 return (cnt);
417 }
418
419 /*
420 * Build proc info array by reading in proc list from a crash dump.
421 * Return number of procs read. maxcnt is the max we will read.
422 */
423 static int
424 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
425 kvm_t *kd;
426 int what, arg;
427 u_long a_allproc;
428 u_long a_zombproc;
429 int maxcnt;
430 {
431 struct kinfo_proc *bp = kd->procbase;
432 int acnt, zcnt;
433 struct proc *p;
434
435 if (KREAD(kd, a_allproc, &p)) {
436 _kvm_err(kd, kd->program, "cannot read allproc");
437 return (-1);
438 }
439 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
440 if (acnt < 0)
441 return (acnt);
442
443 if (KREAD(kd, a_zombproc, &p)) {
444 _kvm_err(kd, kd->program, "cannot read zombproc");
445 return (-1);
446 }
447 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
448 maxcnt - acnt);
449 if (zcnt < 0)
450 zcnt = 0;
451
452 return (acnt + zcnt);
453 }
454
455 struct kinfo_proc2 *
456 kvm_getproc2(kd, op, arg, esize, cnt)
457 kvm_t *kd;
458 int op, arg;
459 size_t esize;
460 int *cnt;
461 {
462 size_t size;
463 int mib[6], st, nprocs;
464 struct pstats pstats;
465
466 if (ISSYSCTL(kd)) {
467 size = 0;
468 mib[0] = CTL_KERN;
469 mib[1] = KERN_PROC2;
470 mib[2] = op;
471 mib[3] = arg;
472 mib[4] = (int)esize;
473 mib[5] = 0;
474 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
475 if (st == -1) {
476 _kvm_syserr(kd, kd->program, "kvm_getproc2");
477 return (NULL);
478 }
479
480 mib[5] = (int) (size / esize);
481 KVM_ALLOC(kd, procbase2, size);
482 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
483 if (st == -1) {
484 _kvm_syserr(kd, kd->program, "kvm_getproc2");
485 return (NULL);
486 }
487 nprocs = (int) (size / esize);
488 } else {
489 char *kp2c;
490 struct kinfo_proc *kp;
491 struct kinfo_proc2 kp2, *kp2p;
492 struct kinfo_lwp *kl;
493 int i, nlwps;
494
495 kp = kvm_getprocs(kd, op, arg, &nprocs);
496 if (kp == NULL)
497 return (NULL);
498
499 size = nprocs * esize;
500 KVM_ALLOC(kd, procbase2, size);
501 kp2c = (char *)(void *)kd->procbase2;
502 kp2p = &kp2;
503 for (i = 0; i < nprocs; i++, kp++) {
504 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
505 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
506 sizeof(struct kinfo_lwp), &nlwps);
507 /* We use kl[0] as the "representative" LWP */
508 memset(kp2p, 0, sizeof(kp2));
509 kp2p->p_forw = kl[0].l_forw;
510 kp2p->p_back = kl[0].l_back;
511 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
512 kp2p->p_addr = kl[0].l_addr;
513 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
514 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
515 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
516 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
517 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
518 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
519 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
520 kp2p->p_tsess = 0;
521 kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru);
522
523 kp2p->p_eflag = 0;
524 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
525 kp2p->p_flag = kp->kp_proc.p_flag;
526
527 kp2p->p_pid = kp->kp_proc.p_pid;
528
529 kp2p->p_ppid = kp->kp_eproc.e_ppid;
530 kp2p->p_sid = kp->kp_eproc.e_sid;
531 kp2p->p__pgid = kp->kp_eproc.e_pgid;
532
533 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
534
535 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
536 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
537 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
538 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
539 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
540 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
541
542 /*CONSTCOND*/
543 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
544 MIN(sizeof(kp2p->p_groups),
545 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
546 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
547
548 kp2p->p_jobc = kp->kp_eproc.e_jobc;
549 kp2p->p_tdev = kp->kp_eproc.e_tdev;
550 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
551 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
552
553 kp2p->p_estcpu = kp->kp_proc.p_estcpu;
554 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
555 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
556 kp2p->p_cpticks = kp->kp_proc.p_cpticks;
557 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
558 kp2p->p_swtime = kl[0].l_swtime;
559 kp2p->p_slptime = kl[0].l_slptime;
560 #if 0 /* XXX thorpej */
561 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
562 #else
563 kp2p->p_schedflags = 0;
564 #endif
565
566 kp2p->p_uticks = kp->kp_proc.p_uticks;
567 kp2p->p_sticks = kp->kp_proc.p_sticks;
568 kp2p->p_iticks = kp->kp_proc.p_iticks;
569
570 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
571 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
572
573 kp2p->p_holdcnt = kl[0].l_holdcnt;
574
575 memcpy(&kp2p->p_siglist,
576 &kp->kp_proc.p_sigctx.ps_siglist,
577 sizeof(ki_sigset_t));
578 memcpy(&kp2p->p_sigmask,
579 &kp->kp_proc.p_sigctx.ps_sigmask,
580 sizeof(ki_sigset_t));
581 memcpy(&kp2p->p_sigignore,
582 &kp->kp_proc.p_sigctx.ps_sigignore,
583 sizeof(ki_sigset_t));
584 memcpy(&kp2p->p_sigcatch,
585 &kp->kp_proc.p_sigctx.ps_sigcatch,
586 sizeof(ki_sigset_t));
587
588 kp2p->p_stat = kp->kp_proc.p_stat;
589 kp2p->p_priority = kl[0].l_priority;
590 kp2p->p_usrpri = kl[0].l_usrpri;
591 kp2p->p_nice = kp->kp_proc.p_nice;
592
593 kp2p->p_xstat = kp->kp_proc.p_xstat;
594 kp2p->p_acflag = kp->kp_proc.p_acflag;
595
596 /*CONSTCOND*/
597 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
598 MIN(sizeof(kp2p->p_comm),
599 sizeof(kp->kp_proc.p_comm)));
600
601 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
602 sizeof(kp2p->p_wmesg));
603 kp2p->p_wchan = kl[0].l_wchan;
604 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
605 sizeof(kp2p->p_login));
606
607 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
608 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
609 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
610 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
611
612 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
613
614 kp2p->p_realflag = kp->kp_proc.p_flag;
615 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
616 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
617 kp2p->p_realstat = kp->kp_proc.p_stat;
618
619 if (P_ZOMBIE(&kp->kp_proc) ||
620 kp->kp_proc.p_stats == NULL ||
621 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
622 kp2p->p_uvalid = 0;
623 } else {
624 kp2p->p_uvalid = 1;
625
626 kp2p->p_ustart_sec = (u_int32_t)
627 pstats.p_start.tv_sec;
628 kp2p->p_ustart_usec = (u_int32_t)
629 pstats.p_start.tv_usec;
630
631 kp2p->p_uutime_sec = (u_int32_t)
632 pstats.p_ru.ru_utime.tv_sec;
633 kp2p->p_uutime_usec = (u_int32_t)
634 pstats.p_ru.ru_utime.tv_usec;
635 kp2p->p_ustime_sec = (u_int32_t)
636 pstats.p_ru.ru_stime.tv_sec;
637 kp2p->p_ustime_usec = (u_int32_t)
638 pstats.p_ru.ru_stime.tv_usec;
639
640 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
641 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
642 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
643 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
644 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
645 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
646 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
647 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
648 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
649 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
650 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
651 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
652 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
653 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
654
655 kp2p->p_uctime_sec = (u_int32_t)
656 (pstats.p_cru.ru_utime.tv_sec +
657 pstats.p_cru.ru_stime.tv_sec);
658 kp2p->p_uctime_usec = (u_int32_t)
659 (pstats.p_cru.ru_utime.tv_usec +
660 pstats.p_cru.ru_stime.tv_usec);
661 }
662
663 memcpy(kp2c, &kp2, esize);
664 kp2c += esize;
665 }
666 }
667 *cnt = nprocs;
668 return (kd->procbase2);
669 }
670
671 struct kinfo_lwp *
672 kvm_getlwps(kd, pid, paddr, esize, cnt)
673 kvm_t *kd;
674 int pid;
675 u_long paddr;
676 size_t esize;
677 int *cnt;
678 {
679 size_t size;
680 int mib[5], nlwps;
681 ssize_t st;
682 struct kinfo_lwp *kl;
683
684 if (ISSYSCTL(kd)) {
685 size = 0;
686 mib[0] = CTL_KERN;
687 mib[1] = KERN_LWP;
688 mib[2] = pid;
689 mib[3] = (int)esize;
690 mib[4] = 0;
691 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
692 if (st == -1) {
693 _kvm_syserr(kd, kd->program, "kvm_getlwps");
694 return (NULL);
695 }
696
697 mib[4] = (int) (size / esize);
698 KVM_ALLOC(kd, lwpbase, size);
699 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
700 if (st == -1) {
701 _kvm_syserr(kd, kd->program, "kvm_getlwps");
702 return (NULL);
703 }
704 nlwps = (int) (size / esize);
705 } else {
706 /* grovel through the memory image */
707 struct proc p;
708 struct lwp l;
709 u_long laddr;
710 int i;
711
712 st = kvm_read(kd, paddr, &p, sizeof(p));
713 if (st == -1) {
714 _kvm_syserr(kd, kd->program, "kvm_getlwps");
715 return (NULL);
716 }
717
718 nlwps = p.p_nlwps;
719 size = nlwps * sizeof(*kd->lwpbase);
720 KVM_ALLOC(kd, lwpbase, size);
721 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
722 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
723 st = kvm_read(kd, laddr, &l, sizeof(l));
724 if (st == -1) {
725 _kvm_syserr(kd, kd->program, "kvm_getlwps");
726 return (NULL);
727 }
728 kl = &kd->lwpbase[i];
729 kl->l_laddr = laddr;
730 kl->l_forw = PTRTOUINT64(l.l_forw);
731 kl->l_back = PTRTOUINT64(l.l_back);
732 kl->l_addr = PTRTOUINT64(l.l_addr);
733 kl->l_lid = l.l_lid;
734 kl->l_flag = l.l_flag;
735 kl->l_swtime = l.l_swtime;
736 kl->l_slptime = l.l_slptime;
737 kl->l_schedflags = 0; /* XXX */
738 kl->l_holdcnt = l.l_holdcnt;
739 kl->l_priority = l.l_priority;
740 kl->l_usrpri = l.l_usrpri;
741 kl->l_stat = l.l_stat;
742 kl->l_wchan = PTRTOUINT64(l.l_wchan);
743 if (l.l_wmesg)
744 (void)kvm_read(kd, (u_long)l.l_wmesg,
745 kl->l_wmesg, (size_t)WMESGLEN);
746 kl->l_cpuid = KI_NOCPU;
747 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
748 }
749 }
750
751 *cnt = nlwps;
752 return (kd->lwpbase);
753 }
754
755 struct kinfo_proc *
756 kvm_getprocs(kd, op, arg, cnt)
757 kvm_t *kd;
758 int op, arg;
759 int *cnt;
760 {
761 size_t size;
762 int mib[4], st, nprocs;
763
764 if (ISKMEM(kd)) {
765 size = 0;
766 mib[0] = CTL_KERN;
767 mib[1] = KERN_PROC;
768 mib[2] = op;
769 mib[3] = arg;
770 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
771 if (st == -1) {
772 _kvm_syserr(kd, kd->program, "kvm_getprocs");
773 return (NULL);
774 }
775 KVM_ALLOC(kd, procbase, size);
776 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
777 if (st == -1) {
778 _kvm_syserr(kd, kd->program, "kvm_getprocs");
779 return (NULL);
780 }
781 if (size % sizeof(struct kinfo_proc) != 0) {
782 _kvm_err(kd, kd->program,
783 "proc size mismatch (%lu total, %lu chunks)",
784 (u_long)size, (u_long)sizeof(struct kinfo_proc));
785 return (NULL);
786 }
787 nprocs = (int) (size / sizeof(struct kinfo_proc));
788 } else if (ISSYSCTL(kd)) {
789 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
790 "can't use kvm_getprocs");
791 return (NULL);
792 } else {
793 struct nlist nl[4], *p;
794
795 (void)memset(nl, 0, sizeof(nl));
796 nl[0].n_name = "_nprocs";
797 nl[1].n_name = "_allproc";
798 nl[2].n_name = "_zombproc";
799 nl[3].n_name = NULL;
800
801 if (kvm_nlist(kd, nl) != 0) {
802 for (p = nl; p->n_type != 0; ++p)
803 continue;
804 _kvm_err(kd, kd->program,
805 "%s: no such symbol", p->n_name);
806 return (NULL);
807 }
808 if (KREAD(kd, nl[0].n_value, &nprocs)) {
809 _kvm_err(kd, kd->program, "can't read nprocs");
810 return (NULL);
811 }
812 size = nprocs * sizeof(*kd->procbase);
813 KVM_ALLOC(kd, procbase, size);
814 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
815 nl[2].n_value, nprocs);
816 if (nprocs < 0)
817 return (NULL);
818 #ifdef notdef
819 size = nprocs * sizeof(struct kinfo_proc);
820 (void)realloc(kd->procbase, size);
821 #endif
822 }
823 *cnt = nprocs;
824 return (kd->procbase);
825 }
826
827 void *
828 _kvm_realloc(kd, p, n)
829 kvm_t *kd;
830 void *p;
831 size_t n;
832 {
833 void *np = realloc(p, n);
834
835 if (np == NULL)
836 _kvm_err(kd, kd->program, "out of memory");
837 return (np);
838 }
839
840 /*
841 * Read in an argument vector from the user address space of process p.
842 * addr if the user-space base address of narg null-terminated contiguous
843 * strings. This is used to read in both the command arguments and
844 * environment strings. Read at most maxcnt characters of strings.
845 */
846 static char **
847 kvm_argv(kd, p, addr, narg, maxcnt)
848 kvm_t *kd;
849 const struct miniproc *p;
850 u_long addr;
851 int narg;
852 int maxcnt;
853 {
854 char *np, *cp, *ep, *ap;
855 u_long oaddr = (u_long)~0L;
856 u_long len;
857 size_t cc;
858 char **argv;
859
860 /*
861 * Check that there aren't an unreasonable number of arguments,
862 * and that the address is in user space.
863 */
864 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
865 return (NULL);
866
867 if (kd->argv == NULL) {
868 /*
869 * Try to avoid reallocs.
870 */
871 kd->argc = MAX(narg + 1, 32);
872 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
873 if (kd->argv == NULL)
874 return (NULL);
875 } else if (narg + 1 > kd->argc) {
876 kd->argc = MAX(2 * kd->argc, narg + 1);
877 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
878 sizeof(*kd->argv));
879 if (kd->argv == NULL)
880 return (NULL);
881 }
882 if (kd->argspc == NULL) {
883 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
884 if (kd->argspc == NULL)
885 return (NULL);
886 kd->argspc_len = kd->nbpg;
887 }
888 if (kd->argbuf == NULL) {
889 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
890 if (kd->argbuf == NULL)
891 return (NULL);
892 }
893 cc = sizeof(char *) * narg;
894 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
895 return (NULL);
896 ap = np = kd->argspc;
897 argv = kd->argv;
898 len = 0;
899 /*
900 * Loop over pages, filling in the argument vector.
901 */
902 while (argv < kd->argv + narg && *argv != NULL) {
903 addr = (u_long)*argv & ~(kd->nbpg - 1);
904 if (addr != oaddr) {
905 if (kvm_ureadm(kd, p, addr, kd->argbuf,
906 (size_t)kd->nbpg) != kd->nbpg)
907 return (NULL);
908 oaddr = addr;
909 }
910 addr = (u_long)*argv & (kd->nbpg - 1);
911 cp = kd->argbuf + (size_t)addr;
912 cc = kd->nbpg - (size_t)addr;
913 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
914 cc = (size_t)(maxcnt - len);
915 ep = memchr(cp, '\0', cc);
916 if (ep != NULL)
917 cc = ep - cp + 1;
918 if (len + cc > kd->argspc_len) {
919 ptrdiff_t off;
920 char **pp;
921 char *op = kd->argspc;
922
923 kd->argspc_len *= 2;
924 kd->argspc = _kvm_realloc(kd, kd->argspc,
925 kd->argspc_len);
926 if (kd->argspc == NULL)
927 return (NULL);
928 /*
929 * Adjust argv pointers in case realloc moved
930 * the string space.
931 */
932 off = kd->argspc - op;
933 for (pp = kd->argv; pp < argv; pp++)
934 *pp += off;
935 ap += off;
936 np += off;
937 }
938 memcpy(np, cp, cc);
939 np += cc;
940 len += cc;
941 if (ep != NULL) {
942 *argv++ = ap;
943 ap = np;
944 } else
945 *argv += cc;
946 if (maxcnt > 0 && len >= maxcnt) {
947 /*
948 * We're stopping prematurely. Terminate the
949 * current string.
950 */
951 if (ep == NULL) {
952 *np = '\0';
953 *argv++ = ap;
954 }
955 break;
956 }
957 }
958 /* Make sure argv is terminated. */
959 *argv = NULL;
960 return (kd->argv);
961 }
962
963 static void
964 ps_str_a(p, addr, n)
965 struct ps_strings *p;
966 u_long *addr;
967 int *n;
968 {
969
970 *addr = (u_long)p->ps_argvstr;
971 *n = p->ps_nargvstr;
972 }
973
974 static void
975 ps_str_e(p, addr, n)
976 struct ps_strings *p;
977 u_long *addr;
978 int *n;
979 {
980
981 *addr = (u_long)p->ps_envstr;
982 *n = p->ps_nenvstr;
983 }
984
985 /*
986 * Determine if the proc indicated by p is still active.
987 * This test is not 100% foolproof in theory, but chances of
988 * being wrong are very low.
989 */
990 static int
991 proc_verify(kd, kernp, p)
992 kvm_t *kd;
993 u_long kernp;
994 const struct miniproc *p;
995 {
996 struct proc kernproc;
997
998 /*
999 * Just read in the whole proc. It's not that big relative
1000 * to the cost of the read system call.
1001 */
1002 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1003 sizeof(kernproc))
1004 return (0);
1005 return (p->p_pid == kernproc.p_pid &&
1006 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1007 }
1008
1009 static char **
1010 kvm_doargv(kd, p, nchr, info)
1011 kvm_t *kd;
1012 const struct miniproc *p;
1013 int nchr;
1014 void (*info)(struct ps_strings *, u_long *, int *);
1015 {
1016 char **ap;
1017 u_long addr;
1018 int cnt;
1019 struct ps_strings arginfo;
1020
1021 /*
1022 * Pointers are stored at the top of the user stack.
1023 */
1024 if (p->p_stat == SZOMB)
1025 return (NULL);
1026 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1027 (void *)&arginfo, sizeof(arginfo));
1028 if (cnt != sizeof(arginfo))
1029 return (NULL);
1030
1031 (*info)(&arginfo, &addr, &cnt);
1032 if (cnt == 0)
1033 return (NULL);
1034 ap = kvm_argv(kd, p, addr, cnt, nchr);
1035 /*
1036 * For live kernels, make sure this process didn't go away.
1037 */
1038 if (ap != NULL && ISALIVE(kd) &&
1039 !proc_verify(kd, (u_long)p->p_paddr, p))
1040 ap = NULL;
1041 return (ap);
1042 }
1043
1044 /*
1045 * Get the command args. This code is now machine independent.
1046 */
1047 char **
1048 kvm_getargv(kd, kp, nchr)
1049 kvm_t *kd;
1050 const struct kinfo_proc *kp;
1051 int nchr;
1052 {
1053 struct miniproc p;
1054
1055 KPTOMINI(kp, &p);
1056 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1057 }
1058
1059 char **
1060 kvm_getenvv(kd, kp, nchr)
1061 kvm_t *kd;
1062 const struct kinfo_proc *kp;
1063 int nchr;
1064 {
1065 struct miniproc p;
1066
1067 KPTOMINI(kp, &p);
1068 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1069 }
1070
1071 static char **
1072 kvm_doargv2(kd, pid, type, nchr)
1073 kvm_t *kd;
1074 pid_t pid;
1075 int type;
1076 int nchr;
1077 {
1078 size_t bufs;
1079 int narg, mib[4];
1080 size_t newargspc_len;
1081 char **ap, *bp, *endp;
1082
1083 /*
1084 * Check that there aren't an unreasonable number of arguments.
1085 */
1086 if (nchr > ARG_MAX)
1087 return (NULL);
1088
1089 if (nchr == 0)
1090 nchr = ARG_MAX;
1091
1092 /* Get number of strings in argv */
1093 mib[0] = CTL_KERN;
1094 mib[1] = KERN_PROC_ARGS;
1095 mib[2] = pid;
1096 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1097 bufs = sizeof(narg);
1098 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1099 return (NULL);
1100
1101 if (kd->argv == NULL) {
1102 /*
1103 * Try to avoid reallocs.
1104 */
1105 kd->argc = MAX(narg + 1, 32);
1106 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1107 if (kd->argv == NULL)
1108 return (NULL);
1109 } else if (narg + 1 > kd->argc) {
1110 kd->argc = MAX(2 * kd->argc, narg + 1);
1111 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1112 sizeof(*kd->argv));
1113 if (kd->argv == NULL)
1114 return (NULL);
1115 }
1116
1117 newargspc_len = MIN(nchr, ARG_MAX);
1118 KVM_ALLOC(kd, argspc, newargspc_len);
1119 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1120
1121 mib[0] = CTL_KERN;
1122 mib[1] = KERN_PROC_ARGS;
1123 mib[2] = pid;
1124 mib[3] = type;
1125 bufs = kd->argspc_len;
1126 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1127 return (NULL);
1128
1129 bp = kd->argspc;
1130 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1131 ap = kd->argv;
1132 endp = bp + MIN(nchr, bufs);
1133
1134 while (bp < endp) {
1135 *ap++ = bp;
1136 /*
1137 * XXX: don't need following anymore, or stick check
1138 * for max argc in above while loop?
1139 */
1140 if (ap >= kd->argv + kd->argc) {
1141 kd->argc *= 2;
1142 kd->argv = _kvm_realloc(kd, kd->argv,
1143 kd->argc * sizeof(*kd->argv));
1144 ap = kd->argv;
1145 }
1146 bp += strlen(bp) + 1;
1147 }
1148 *ap = NULL;
1149
1150 return (kd->argv);
1151 }
1152
1153 char **
1154 kvm_getargv2(kd, kp, nchr)
1155 kvm_t *kd;
1156 const struct kinfo_proc2 *kp;
1157 int nchr;
1158 {
1159
1160 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1161 }
1162
1163 char **
1164 kvm_getenvv2(kd, kp, nchr)
1165 kvm_t *kd;
1166 const struct kinfo_proc2 *kp;
1167 int nchr;
1168 {
1169
1170 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1171 }
1172
1173 /*
1174 * Read from user space. The user context is given by p.
1175 */
1176 static ssize_t
1177 kvm_ureadm(kd, p, uva, buf, len)
1178 kvm_t *kd;
1179 const struct miniproc *p;
1180 u_long uva;
1181 char *buf;
1182 size_t len;
1183 {
1184 char *cp;
1185
1186 cp = buf;
1187 while (len > 0) {
1188 size_t cc;
1189 char *dp;
1190 u_long cnt;
1191
1192 dp = _kvm_ureadm(kd, p, uva, &cnt);
1193 if (dp == NULL) {
1194 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1195 return (0);
1196 }
1197 cc = (size_t)MIN(cnt, len);
1198 memcpy(cp, dp, cc);
1199 cp += cc;
1200 uva += cc;
1201 len -= cc;
1202 }
1203 return (ssize_t)(cp - buf);
1204 }
1205
1206 ssize_t
1207 kvm_uread(kd, p, uva, buf, len)
1208 kvm_t *kd;
1209 const struct proc *p;
1210 u_long uva;
1211 char *buf;
1212 size_t len;
1213 {
1214 struct miniproc mp;
1215
1216 PTOMINI(p, &mp);
1217 return (kvm_ureadm(kd, &mp, uva, buf, len));
1218 }
1219