kvm_proc.c revision 1.62 1 /* $NetBSD: kvm_proc.c,v 1.62 2006/05/11 12:00:20 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 #if defined(LIBC_SCCS) && !defined(lint)
74 #if 0
75 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
76 #else
77 __RCSID("$NetBSD: kvm_proc.c,v 1.62 2006/05/11 12:00:20 yamt Exp $");
78 #endif
79 #endif /* LIBC_SCCS and not lint */
80
81 /*
82 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
83 * users of this code, so we've factored it out into a separate module.
84 * Thus, we keep this grunge out of the other kvm applications (i.e.,
85 * most other applications are interested only in open/close/read/nlist).
86 */
87
88 #include <sys/param.h>
89 #include <sys/user.h>
90 #include <sys/lwp.h>
91 #include <sys/proc.h>
92 #include <sys/exec.h>
93 #include <sys/stat.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <sys/resourcevar.h>
97 #include <stdlib.h>
98 #include <stddef.h>
99 #include <string.h>
100 #include <unistd.h>
101 #include <nlist.h>
102 #include <kvm.h>
103
104 #include <uvm/uvm_extern.h>
105 #include <uvm/uvm_amap.h>
106
107 #include <sys/sysctl.h>
108
109 #include <limits.h>
110 #include <db.h>
111 #include <paths.h>
112
113 #include "kvm_private.h"
114
115 /*
116 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
117 */
118 struct miniproc {
119 struct vmspace *p_vmspace;
120 char p_stat;
121 struct proc *p_paddr;
122 pid_t p_pid;
123 };
124
125 /*
126 * Convert from struct proc and kinfo_proc{,2} to miniproc.
127 */
128 #define PTOMINI(kp, p) \
129 do { \
130 (p)->p_stat = (kp)->p_stat; \
131 (p)->p_pid = (kp)->p_pid; \
132 (p)->p_paddr = NULL; \
133 (p)->p_vmspace = (kp)->p_vmspace; \
134 } while (/*CONSTCOND*/0);
135
136 #define KPTOMINI(kp, p) \
137 do { \
138 (p)->p_stat = (kp)->kp_proc.p_stat; \
139 (p)->p_pid = (kp)->kp_proc.p_pid; \
140 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
141 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
142 } while (/*CONSTCOND*/0);
143
144 #define KP2TOMINI(kp, p) \
145 do { \
146 (p)->p_stat = (kp)->p_stat; \
147 (p)->p_pid = (kp)->p_pid; \
148 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
149 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
150 } while (/*CONSTCOND*/0);
151
152
153 #define KREAD(kd, addr, obj) \
154 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
155
156 /* XXX: What uses these two functions? */
157 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
158 u_long *));
159 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
160 size_t));
161
162 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
163 u_long *));
164 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
165 char *, size_t));
166
167 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
168 int));
169 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
170 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
171 void (*)(struct ps_strings *, u_long *, int *)));
172 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
173 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
174 struct kinfo_proc *, int));
175 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
176 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
177 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
178
179
180 static char *
181 _kvm_ureadm(kd, p, va, cnt)
182 kvm_t *kd;
183 const struct miniproc *p;
184 u_long va;
185 u_long *cnt;
186 {
187 int true = 1;
188 u_long addr, head;
189 u_long offset;
190 struct vm_map_entry vme;
191 struct vm_amap amap;
192 struct vm_anon *anonp, anon;
193 struct vm_page pg;
194 u_long slot;
195
196 if (kd->swapspc == NULL) {
197 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
198 if (kd->swapspc == NULL)
199 return (NULL);
200 }
201
202 /*
203 * Look through the address map for the memory object
204 * that corresponds to the given virtual address.
205 * The header just has the entire valid range.
206 */
207 head = (u_long)&p->p_vmspace->vm_map.header;
208 addr = head;
209 while (true) {
210 if (KREAD(kd, addr, &vme))
211 return (NULL);
212
213 if (va >= vme.start && va < vme.end &&
214 vme.aref.ar_amap != NULL)
215 break;
216
217 addr = (u_long)vme.next;
218 if (addr == head)
219 return (NULL);
220 }
221
222 /*
223 * we found the map entry, now to find the object...
224 */
225 if (vme.aref.ar_amap == NULL)
226 return (NULL);
227
228 addr = (u_long)vme.aref.ar_amap;
229 if (KREAD(kd, addr, &amap))
230 return (NULL);
231
232 offset = va - vme.start;
233 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
234 /* sanity-check slot number */
235 if (slot > amap.am_nslot)
236 return (NULL);
237
238 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
239 if (KREAD(kd, addr, &anonp))
240 return (NULL);
241
242 addr = (u_long)anonp;
243 if (KREAD(kd, addr, &anon))
244 return (NULL);
245
246 addr = (u_long)anon.an_page;
247 if (addr) {
248 if (KREAD(kd, addr, &pg))
249 return (NULL);
250
251 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
252 (off_t)pg.phys_addr) != kd->nbpg)
253 return (NULL);
254 } else {
255 if (kd->swfd < 0 ||
256 pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
257 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
258 return (NULL);
259 }
260
261 /* Found the page. */
262 offset %= kd->nbpg;
263 *cnt = kd->nbpg - offset;
264 return (&kd->swapspc[(size_t)offset]);
265 }
266
267 char *
268 _kvm_uread(kd, p, va, cnt)
269 kvm_t *kd;
270 const struct proc *p;
271 u_long va;
272 u_long *cnt;
273 {
274 struct miniproc mp;
275
276 PTOMINI(p, &mp);
277 return (_kvm_ureadm(kd, &mp, va, cnt));
278 }
279
280 /*
281 * Read proc's from memory file into buffer bp, which has space to hold
282 * at most maxcnt procs.
283 */
284 static int
285 kvm_proclist(kd, what, arg, p, bp, maxcnt)
286 kvm_t *kd;
287 int what, arg;
288 struct proc *p;
289 struct kinfo_proc *bp;
290 int maxcnt;
291 {
292 int cnt = 0;
293 int nlwps;
294 struct kinfo_lwp *kl;
295 struct eproc eproc;
296 struct pgrp pgrp;
297 struct session sess;
298 struct tty tty;
299 struct proc proc;
300
301 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
302 if (KREAD(kd, (u_long)p, &proc)) {
303 _kvm_err(kd, kd->program, "can't read proc at %p", p);
304 return (-1);
305 }
306 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
307 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
308 &eproc.e_ucred)) {
309 _kvm_err(kd, kd->program,
310 "can't read proc credentials at %p", p);
311 return (-1);
312 }
313
314 switch (what) {
315
316 case KERN_PROC_PID:
317 if (proc.p_pid != (pid_t)arg)
318 continue;
319 break;
320
321 case KERN_PROC_UID:
322 if (eproc.e_ucred.cr_uid != (uid_t)arg)
323 continue;
324 break;
325
326 case KERN_PROC_RUID:
327 if (eproc.e_pcred.p_ruid != (uid_t)arg)
328 continue;
329 break;
330 }
331 /*
332 * We're going to add another proc to the set. If this
333 * will overflow the buffer, assume the reason is because
334 * nprocs (or the proc list) is corrupt and declare an error.
335 */
336 if (cnt >= maxcnt) {
337 _kvm_err(kd, kd->program, "nprocs corrupt");
338 return (-1);
339 }
340 /*
341 * gather eproc
342 */
343 eproc.e_paddr = p;
344 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
345 _kvm_err(kd, kd->program, "can't read pgrp at %p",
346 proc.p_pgrp);
347 return (-1);
348 }
349 eproc.e_sess = pgrp.pg_session;
350 eproc.e_pgid = pgrp.pg_id;
351 eproc.e_jobc = pgrp.pg_jobc;
352 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
353 _kvm_err(kd, kd->program, "can't read session at %p",
354 pgrp.pg_session);
355 return (-1);
356 }
357 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
358 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
359 _kvm_err(kd, kd->program,
360 "can't read tty at %p", sess.s_ttyp);
361 return (-1);
362 }
363 eproc.e_tdev = tty.t_dev;
364 eproc.e_tsess = tty.t_session;
365 if (tty.t_pgrp != NULL) {
366 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
367 _kvm_err(kd, kd->program,
368 "can't read tpgrp at %p",
369 tty.t_pgrp);
370 return (-1);
371 }
372 eproc.e_tpgid = pgrp.pg_id;
373 } else
374 eproc.e_tpgid = -1;
375 } else
376 eproc.e_tdev = NODEV;
377 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
378 eproc.e_sid = sess.s_sid;
379 if (sess.s_leader == p)
380 eproc.e_flag |= EPROC_SLEADER;
381 /*
382 * Fill in the old-style proc.p_wmesg by copying the wmesg
383 * from the first available LWP.
384 */
385 kl = kvm_getlwps(kd, proc.p_pid,
386 (u_long)PTRTOUINT64(eproc.e_paddr),
387 sizeof(struct kinfo_lwp), &nlwps);
388 if (kl) {
389 if (nlwps > 0) {
390 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
391 }
392 }
393 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
394 sizeof(eproc.e_vm));
395
396 eproc.e_xsize = eproc.e_xrssize = 0;
397 eproc.e_xccount = eproc.e_xswrss = 0;
398
399 switch (what) {
400
401 case KERN_PROC_PGRP:
402 if (eproc.e_pgid != (pid_t)arg)
403 continue;
404 break;
405
406 case KERN_PROC_TTY:
407 if ((proc.p_flag & P_CONTROLT) == 0 ||
408 eproc.e_tdev != (dev_t)arg)
409 continue;
410 break;
411 }
412 memcpy(&bp->kp_proc, &proc, sizeof(proc));
413 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
414 ++bp;
415 ++cnt;
416 }
417 return (cnt);
418 }
419
420 /*
421 * Build proc info array by reading in proc list from a crash dump.
422 * Return number of procs read. maxcnt is the max we will read.
423 */
424 static int
425 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
426 kvm_t *kd;
427 int what, arg;
428 u_long a_allproc;
429 u_long a_zombproc;
430 int maxcnt;
431 {
432 struct kinfo_proc *bp = kd->procbase;
433 int acnt, zcnt;
434 struct proc *p;
435
436 if (KREAD(kd, a_allproc, &p)) {
437 _kvm_err(kd, kd->program, "cannot read allproc");
438 return (-1);
439 }
440 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
441 if (acnt < 0)
442 return (acnt);
443
444 if (KREAD(kd, a_zombproc, &p)) {
445 _kvm_err(kd, kd->program, "cannot read zombproc");
446 return (-1);
447 }
448 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
449 maxcnt - acnt);
450 if (zcnt < 0)
451 zcnt = 0;
452
453 return (acnt + zcnt);
454 }
455
456 struct kinfo_proc2 *
457 kvm_getproc2(kd, op, arg, esize, cnt)
458 kvm_t *kd;
459 int op, arg;
460 size_t esize;
461 int *cnt;
462 {
463 size_t size;
464 int mib[6], st, nprocs;
465 struct pstats pstats;
466
467 if (ISSYSCTL(kd)) {
468 size = 0;
469 mib[0] = CTL_KERN;
470 mib[1] = KERN_PROC2;
471 mib[2] = op;
472 mib[3] = arg;
473 mib[4] = (int)esize;
474 mib[5] = 0;
475 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
476 if (st == -1) {
477 _kvm_syserr(kd, kd->program, "kvm_getproc2");
478 return (NULL);
479 }
480
481 mib[5] = (int) (size / esize);
482 KVM_ALLOC(kd, procbase2, size);
483 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
484 if (st == -1) {
485 _kvm_syserr(kd, kd->program, "kvm_getproc2");
486 return (NULL);
487 }
488 nprocs = (int) (size / esize);
489 } else {
490 char *kp2c;
491 struct kinfo_proc *kp;
492 struct kinfo_proc2 kp2, *kp2p;
493 struct kinfo_lwp *kl;
494 int i, nlwps;
495
496 kp = kvm_getprocs(kd, op, arg, &nprocs);
497 if (kp == NULL)
498 return (NULL);
499
500 size = nprocs * esize;
501 KVM_ALLOC(kd, procbase2, size);
502 kp2c = (char *)(void *)kd->procbase2;
503 kp2p = &kp2;
504 for (i = 0; i < nprocs; i++, kp++) {
505 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
506 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
507 sizeof(struct kinfo_lwp), &nlwps);
508 /* We use kl[0] as the "representative" LWP */
509 memset(kp2p, 0, sizeof(kp2));
510 kp2p->p_forw = kl[0].l_forw;
511 kp2p->p_back = kl[0].l_back;
512 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
513 kp2p->p_addr = kl[0].l_addr;
514 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
515 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
516 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
517 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
518 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
519 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
520 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
521 kp2p->p_tsess = 0;
522 kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru);
523
524 kp2p->p_eflag = 0;
525 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
526 kp2p->p_flag = kp->kp_proc.p_flag;
527
528 kp2p->p_pid = kp->kp_proc.p_pid;
529
530 kp2p->p_ppid = kp->kp_eproc.e_ppid;
531 kp2p->p_sid = kp->kp_eproc.e_sid;
532 kp2p->p__pgid = kp->kp_eproc.e_pgid;
533
534 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
535
536 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
537 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
538 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
539 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
540 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
541 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
542
543 /*CONSTCOND*/
544 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
545 MIN(sizeof(kp2p->p_groups),
546 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
547 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
548
549 kp2p->p_jobc = kp->kp_eproc.e_jobc;
550 kp2p->p_tdev = kp->kp_eproc.e_tdev;
551 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
552 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
553
554 kp2p->p_estcpu = kp->kp_proc.p_estcpu;
555 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
556 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
557 kp2p->p_cpticks = kp->kp_proc.p_cpticks;
558 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
559 kp2p->p_swtime = kl[0].l_swtime;
560 kp2p->p_slptime = kl[0].l_slptime;
561 #if 0 /* XXX thorpej */
562 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
563 #else
564 kp2p->p_schedflags = 0;
565 #endif
566
567 kp2p->p_uticks = kp->kp_proc.p_uticks;
568 kp2p->p_sticks = kp->kp_proc.p_sticks;
569 kp2p->p_iticks = kp->kp_proc.p_iticks;
570
571 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
572 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
573
574 kp2p->p_holdcnt = kl[0].l_holdcnt;
575
576 memcpy(&kp2p->p_siglist,
577 &kp->kp_proc.p_sigctx.ps_siglist,
578 sizeof(ki_sigset_t));
579 memcpy(&kp2p->p_sigmask,
580 &kp->kp_proc.p_sigctx.ps_sigmask,
581 sizeof(ki_sigset_t));
582 memcpy(&kp2p->p_sigignore,
583 &kp->kp_proc.p_sigctx.ps_sigignore,
584 sizeof(ki_sigset_t));
585 memcpy(&kp2p->p_sigcatch,
586 &kp->kp_proc.p_sigctx.ps_sigcatch,
587 sizeof(ki_sigset_t));
588
589 kp2p->p_stat = kp->kp_proc.p_stat;
590 kp2p->p_priority = kl[0].l_priority;
591 kp2p->p_usrpri = kl[0].l_usrpri;
592 kp2p->p_nice = kp->kp_proc.p_nice;
593
594 kp2p->p_xstat = kp->kp_proc.p_xstat;
595 kp2p->p_acflag = kp->kp_proc.p_acflag;
596
597 /*CONSTCOND*/
598 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
599 MIN(sizeof(kp2p->p_comm),
600 sizeof(kp->kp_proc.p_comm)));
601
602 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
603 sizeof(kp2p->p_wmesg));
604 kp2p->p_wchan = kl[0].l_wchan;
605 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
606 sizeof(kp2p->p_login));
607
608 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
609 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
610 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
611 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
612
613 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
614
615 kp2p->p_realflag = kp->kp_proc.p_flag;
616 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
617 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
618 kp2p->p_realstat = kp->kp_proc.p_stat;
619
620 if (P_ZOMBIE(&kp->kp_proc) ||
621 kp->kp_proc.p_stats == NULL ||
622 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
623 kp2p->p_uvalid = 0;
624 } else {
625 kp2p->p_uvalid = 1;
626
627 kp2p->p_ustart_sec = (u_int32_t)
628 pstats.p_start.tv_sec;
629 kp2p->p_ustart_usec = (u_int32_t)
630 pstats.p_start.tv_usec;
631
632 kp2p->p_uutime_sec = (u_int32_t)
633 pstats.p_ru.ru_utime.tv_sec;
634 kp2p->p_uutime_usec = (u_int32_t)
635 pstats.p_ru.ru_utime.tv_usec;
636 kp2p->p_ustime_sec = (u_int32_t)
637 pstats.p_ru.ru_stime.tv_sec;
638 kp2p->p_ustime_usec = (u_int32_t)
639 pstats.p_ru.ru_stime.tv_usec;
640
641 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
642 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
643 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
644 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
645 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
646 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
647 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
648 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
649 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
650 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
651 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
652 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
653 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
654 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
655
656 kp2p->p_uctime_sec = (u_int32_t)
657 (pstats.p_cru.ru_utime.tv_sec +
658 pstats.p_cru.ru_stime.tv_sec);
659 kp2p->p_uctime_usec = (u_int32_t)
660 (pstats.p_cru.ru_utime.tv_usec +
661 pstats.p_cru.ru_stime.tv_usec);
662 }
663
664 memcpy(kp2c, &kp2, esize);
665 kp2c += esize;
666 }
667 }
668 *cnt = nprocs;
669 return (kd->procbase2);
670 }
671
672 struct kinfo_lwp *
673 kvm_getlwps(kd, pid, paddr, esize, cnt)
674 kvm_t *kd;
675 int pid;
676 u_long paddr;
677 size_t esize;
678 int *cnt;
679 {
680 size_t size;
681 int mib[5], nlwps;
682 ssize_t st;
683 struct kinfo_lwp *kl;
684
685 if (ISSYSCTL(kd)) {
686 size = 0;
687 mib[0] = CTL_KERN;
688 mib[1] = KERN_LWP;
689 mib[2] = pid;
690 mib[3] = (int)esize;
691 mib[4] = 0;
692 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
693 if (st == -1) {
694 _kvm_syserr(kd, kd->program, "kvm_getlwps");
695 return (NULL);
696 }
697
698 mib[4] = (int) (size / esize);
699 KVM_ALLOC(kd, lwpbase, size);
700 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
701 if (st == -1) {
702 _kvm_syserr(kd, kd->program, "kvm_getlwps");
703 return (NULL);
704 }
705 nlwps = (int) (size / esize);
706 } else {
707 /* grovel through the memory image */
708 struct proc p;
709 struct lwp l;
710 u_long laddr;
711 int i;
712
713 st = kvm_read(kd, paddr, &p, sizeof(p));
714 if (st == -1) {
715 _kvm_syserr(kd, kd->program, "kvm_getlwps");
716 return (NULL);
717 }
718
719 nlwps = p.p_nlwps;
720 size = nlwps * sizeof(*kd->lwpbase);
721 KVM_ALLOC(kd, lwpbase, size);
722 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
723 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
724 st = kvm_read(kd, laddr, &l, sizeof(l));
725 if (st == -1) {
726 _kvm_syserr(kd, kd->program, "kvm_getlwps");
727 return (NULL);
728 }
729 kl = &kd->lwpbase[i];
730 kl->l_laddr = laddr;
731 kl->l_forw = PTRTOUINT64(l.l_forw);
732 kl->l_back = PTRTOUINT64(l.l_back);
733 kl->l_addr = PTRTOUINT64(l.l_addr);
734 kl->l_lid = l.l_lid;
735 kl->l_flag = l.l_flag;
736 kl->l_swtime = l.l_swtime;
737 kl->l_slptime = l.l_slptime;
738 kl->l_schedflags = 0; /* XXX */
739 kl->l_holdcnt = l.l_holdcnt;
740 kl->l_priority = l.l_priority;
741 kl->l_usrpri = l.l_usrpri;
742 kl->l_stat = l.l_stat;
743 kl->l_wchan = PTRTOUINT64(l.l_wchan);
744 if (l.l_wmesg)
745 (void)kvm_read(kd, (u_long)l.l_wmesg,
746 kl->l_wmesg, (size_t)WMESGLEN);
747 kl->l_cpuid = KI_NOCPU;
748 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
749 }
750 }
751
752 *cnt = nlwps;
753 return (kd->lwpbase);
754 }
755
756 struct kinfo_proc *
757 kvm_getprocs(kd, op, arg, cnt)
758 kvm_t *kd;
759 int op, arg;
760 int *cnt;
761 {
762 size_t size;
763 int mib[4], st, nprocs;
764
765 if (ISKMEM(kd)) {
766 size = 0;
767 mib[0] = CTL_KERN;
768 mib[1] = KERN_PROC;
769 mib[2] = op;
770 mib[3] = arg;
771 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
772 if (st == -1) {
773 _kvm_syserr(kd, kd->program, "kvm_getprocs");
774 return (NULL);
775 }
776 KVM_ALLOC(kd, procbase, size);
777 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
778 if (st == -1) {
779 _kvm_syserr(kd, kd->program, "kvm_getprocs");
780 return (NULL);
781 }
782 if (size % sizeof(struct kinfo_proc) != 0) {
783 _kvm_err(kd, kd->program,
784 "proc size mismatch (%lu total, %lu chunks)",
785 (u_long)size, (u_long)sizeof(struct kinfo_proc));
786 return (NULL);
787 }
788 nprocs = (int) (size / sizeof(struct kinfo_proc));
789 } else if (ISSYSCTL(kd)) {
790 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
791 "can't use kvm_getprocs");
792 return (NULL);
793 } else {
794 struct nlist nl[4], *p;
795
796 (void)memset(nl, 0, sizeof(nl));
797 nl[0].n_name = "_nprocs";
798 nl[1].n_name = "_allproc";
799 nl[2].n_name = "_zombproc";
800 nl[3].n_name = NULL;
801
802 if (kvm_nlist(kd, nl) != 0) {
803 for (p = nl; p->n_type != 0; ++p)
804 continue;
805 _kvm_err(kd, kd->program,
806 "%s: no such symbol", p->n_name);
807 return (NULL);
808 }
809 if (KREAD(kd, nl[0].n_value, &nprocs)) {
810 _kvm_err(kd, kd->program, "can't read nprocs");
811 return (NULL);
812 }
813 size = nprocs * sizeof(*kd->procbase);
814 KVM_ALLOC(kd, procbase, size);
815 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
816 nl[2].n_value, nprocs);
817 if (nprocs < 0)
818 return (NULL);
819 #ifdef notdef
820 size = nprocs * sizeof(struct kinfo_proc);
821 (void)realloc(kd->procbase, size);
822 #endif
823 }
824 *cnt = nprocs;
825 return (kd->procbase);
826 }
827
828 void *
829 _kvm_realloc(kd, p, n)
830 kvm_t *kd;
831 void *p;
832 size_t n;
833 {
834 void *np = realloc(p, n);
835
836 if (np == NULL)
837 _kvm_err(kd, kd->program, "out of memory");
838 return (np);
839 }
840
841 /*
842 * Read in an argument vector from the user address space of process p.
843 * addr if the user-space base address of narg null-terminated contiguous
844 * strings. This is used to read in both the command arguments and
845 * environment strings. Read at most maxcnt characters of strings.
846 */
847 static char **
848 kvm_argv(kd, p, addr, narg, maxcnt)
849 kvm_t *kd;
850 const struct miniproc *p;
851 u_long addr;
852 int narg;
853 int maxcnt;
854 {
855 char *np, *cp, *ep, *ap;
856 u_long oaddr = (u_long)~0L;
857 u_long len;
858 size_t cc;
859 char **argv;
860
861 /*
862 * Check that there aren't an unreasonable number of arguments,
863 * and that the address is in user space.
864 */
865 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
866 return (NULL);
867
868 if (kd->argv == NULL) {
869 /*
870 * Try to avoid reallocs.
871 */
872 kd->argc = MAX(narg + 1, 32);
873 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
874 if (kd->argv == NULL)
875 return (NULL);
876 } else if (narg + 1 > kd->argc) {
877 kd->argc = MAX(2 * kd->argc, narg + 1);
878 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
879 sizeof(*kd->argv));
880 if (kd->argv == NULL)
881 return (NULL);
882 }
883 if (kd->argspc == NULL) {
884 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
885 if (kd->argspc == NULL)
886 return (NULL);
887 kd->argspc_len = kd->nbpg;
888 }
889 if (kd->argbuf == NULL) {
890 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
891 if (kd->argbuf == NULL)
892 return (NULL);
893 }
894 cc = sizeof(char *) * narg;
895 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
896 return (NULL);
897 ap = np = kd->argspc;
898 argv = kd->argv;
899 len = 0;
900 /*
901 * Loop over pages, filling in the argument vector.
902 */
903 while (argv < kd->argv + narg && *argv != NULL) {
904 addr = (u_long)*argv & ~(kd->nbpg - 1);
905 if (addr != oaddr) {
906 if (kvm_ureadm(kd, p, addr, kd->argbuf,
907 (size_t)kd->nbpg) != kd->nbpg)
908 return (NULL);
909 oaddr = addr;
910 }
911 addr = (u_long)*argv & (kd->nbpg - 1);
912 cp = kd->argbuf + (size_t)addr;
913 cc = kd->nbpg - (size_t)addr;
914 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
915 cc = (size_t)(maxcnt - len);
916 ep = memchr(cp, '\0', cc);
917 if (ep != NULL)
918 cc = ep - cp + 1;
919 if (len + cc > kd->argspc_len) {
920 ptrdiff_t off;
921 char **pp;
922 char *op = kd->argspc;
923
924 kd->argspc_len *= 2;
925 kd->argspc = _kvm_realloc(kd, kd->argspc,
926 kd->argspc_len);
927 if (kd->argspc == NULL)
928 return (NULL);
929 /*
930 * Adjust argv pointers in case realloc moved
931 * the string space.
932 */
933 off = kd->argspc - op;
934 for (pp = kd->argv; pp < argv; pp++)
935 *pp += off;
936 ap += off;
937 np += off;
938 }
939 memcpy(np, cp, cc);
940 np += cc;
941 len += cc;
942 if (ep != NULL) {
943 *argv++ = ap;
944 ap = np;
945 } else
946 *argv += cc;
947 if (maxcnt > 0 && len >= maxcnt) {
948 /*
949 * We're stopping prematurely. Terminate the
950 * current string.
951 */
952 if (ep == NULL) {
953 *np = '\0';
954 *argv++ = ap;
955 }
956 break;
957 }
958 }
959 /* Make sure argv is terminated. */
960 *argv = NULL;
961 return (kd->argv);
962 }
963
964 static void
965 ps_str_a(p, addr, n)
966 struct ps_strings *p;
967 u_long *addr;
968 int *n;
969 {
970
971 *addr = (u_long)p->ps_argvstr;
972 *n = p->ps_nargvstr;
973 }
974
975 static void
976 ps_str_e(p, addr, n)
977 struct ps_strings *p;
978 u_long *addr;
979 int *n;
980 {
981
982 *addr = (u_long)p->ps_envstr;
983 *n = p->ps_nenvstr;
984 }
985
986 /*
987 * Determine if the proc indicated by p is still active.
988 * This test is not 100% foolproof in theory, but chances of
989 * being wrong are very low.
990 */
991 static int
992 proc_verify(kd, kernp, p)
993 kvm_t *kd;
994 u_long kernp;
995 const struct miniproc *p;
996 {
997 struct proc kernproc;
998
999 /*
1000 * Just read in the whole proc. It's not that big relative
1001 * to the cost of the read system call.
1002 */
1003 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1004 sizeof(kernproc))
1005 return (0);
1006 return (p->p_pid == kernproc.p_pid &&
1007 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1008 }
1009
1010 static char **
1011 kvm_doargv(kd, p, nchr, info)
1012 kvm_t *kd;
1013 const struct miniproc *p;
1014 int nchr;
1015 void (*info)(struct ps_strings *, u_long *, int *);
1016 {
1017 char **ap;
1018 u_long addr;
1019 int cnt;
1020 struct ps_strings arginfo;
1021
1022 /*
1023 * Pointers are stored at the top of the user stack.
1024 */
1025 if (p->p_stat == SZOMB)
1026 return (NULL);
1027 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1028 (void *)&arginfo, sizeof(arginfo));
1029 if (cnt != sizeof(arginfo))
1030 return (NULL);
1031
1032 (*info)(&arginfo, &addr, &cnt);
1033 if (cnt == 0)
1034 return (NULL);
1035 ap = kvm_argv(kd, p, addr, cnt, nchr);
1036 /*
1037 * For live kernels, make sure this process didn't go away.
1038 */
1039 if (ap != NULL && ISALIVE(kd) &&
1040 !proc_verify(kd, (u_long)p->p_paddr, p))
1041 ap = NULL;
1042 return (ap);
1043 }
1044
1045 /*
1046 * Get the command args. This code is now machine independent.
1047 */
1048 char **
1049 kvm_getargv(kd, kp, nchr)
1050 kvm_t *kd;
1051 const struct kinfo_proc *kp;
1052 int nchr;
1053 {
1054 struct miniproc p;
1055
1056 KPTOMINI(kp, &p);
1057 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1058 }
1059
1060 char **
1061 kvm_getenvv(kd, kp, nchr)
1062 kvm_t *kd;
1063 const struct kinfo_proc *kp;
1064 int nchr;
1065 {
1066 struct miniproc p;
1067
1068 KPTOMINI(kp, &p);
1069 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1070 }
1071
1072 static char **
1073 kvm_doargv2(kd, pid, type, nchr)
1074 kvm_t *kd;
1075 pid_t pid;
1076 int type;
1077 int nchr;
1078 {
1079 size_t bufs;
1080 int narg, mib[4];
1081 size_t newargspc_len;
1082 char **ap, *bp, *endp;
1083
1084 /*
1085 * Check that there aren't an unreasonable number of arguments.
1086 */
1087 if (nchr > ARG_MAX)
1088 return (NULL);
1089
1090 if (nchr == 0)
1091 nchr = ARG_MAX;
1092
1093 /* Get number of strings in argv */
1094 mib[0] = CTL_KERN;
1095 mib[1] = KERN_PROC_ARGS;
1096 mib[2] = pid;
1097 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1098 bufs = sizeof(narg);
1099 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1100 return (NULL);
1101
1102 if (kd->argv == NULL) {
1103 /*
1104 * Try to avoid reallocs.
1105 */
1106 kd->argc = MAX(narg + 1, 32);
1107 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1108 if (kd->argv == NULL)
1109 return (NULL);
1110 } else if (narg + 1 > kd->argc) {
1111 kd->argc = MAX(2 * kd->argc, narg + 1);
1112 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1113 sizeof(*kd->argv));
1114 if (kd->argv == NULL)
1115 return (NULL);
1116 }
1117
1118 newargspc_len = MIN(nchr, ARG_MAX);
1119 KVM_ALLOC(kd, argspc, newargspc_len);
1120 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1121
1122 mib[0] = CTL_KERN;
1123 mib[1] = KERN_PROC_ARGS;
1124 mib[2] = pid;
1125 mib[3] = type;
1126 bufs = kd->argspc_len;
1127 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1128 return (NULL);
1129
1130 bp = kd->argspc;
1131 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1132 ap = kd->argv;
1133 endp = bp + MIN(nchr, bufs);
1134
1135 while (bp < endp) {
1136 *ap++ = bp;
1137 /*
1138 * XXX: don't need following anymore, or stick check
1139 * for max argc in above while loop?
1140 */
1141 if (ap >= kd->argv + kd->argc) {
1142 kd->argc *= 2;
1143 kd->argv = _kvm_realloc(kd, kd->argv,
1144 kd->argc * sizeof(*kd->argv));
1145 ap = kd->argv;
1146 }
1147 bp += strlen(bp) + 1;
1148 }
1149 *ap = NULL;
1150
1151 return (kd->argv);
1152 }
1153
1154 char **
1155 kvm_getargv2(kd, kp, nchr)
1156 kvm_t *kd;
1157 const struct kinfo_proc2 *kp;
1158 int nchr;
1159 {
1160
1161 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1162 }
1163
1164 char **
1165 kvm_getenvv2(kd, kp, nchr)
1166 kvm_t *kd;
1167 const struct kinfo_proc2 *kp;
1168 int nchr;
1169 {
1170
1171 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1172 }
1173
1174 /*
1175 * Read from user space. The user context is given by p.
1176 */
1177 static ssize_t
1178 kvm_ureadm(kd, p, uva, buf, len)
1179 kvm_t *kd;
1180 const struct miniproc *p;
1181 u_long uva;
1182 char *buf;
1183 size_t len;
1184 {
1185 char *cp;
1186
1187 cp = buf;
1188 while (len > 0) {
1189 size_t cc;
1190 char *dp;
1191 u_long cnt;
1192
1193 dp = _kvm_ureadm(kd, p, uva, &cnt);
1194 if (dp == NULL) {
1195 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1196 return (0);
1197 }
1198 cc = (size_t)MIN(cnt, len);
1199 memcpy(cp, dp, cc);
1200 cp += cc;
1201 uva += cc;
1202 len -= cc;
1203 }
1204 return (ssize_t)(cp - buf);
1205 }
1206
1207 ssize_t
1208 kvm_uread(kd, p, uva, buf, len)
1209 kvm_t *kd;
1210 const struct proc *p;
1211 u_long uva;
1212 char *buf;
1213 size_t len;
1214 {
1215 struct miniproc mp;
1216
1217 PTOMINI(p, &mp);
1218 return (kvm_ureadm(kd, &mp, uva, buf, len));
1219 }
1220