Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.62
      1 /*	$NetBSD: kvm_proc.c,v 1.62 2006/05/11 12:00:20 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1989, 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software developed by the Computer Systems
     44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45  * BG 91-66 and contributed to Berkeley.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 #if defined(LIBC_SCCS) && !defined(lint)
     74 #if 0
     75 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     76 #else
     77 __RCSID("$NetBSD: kvm_proc.c,v 1.62 2006/05/11 12:00:20 yamt Exp $");
     78 #endif
     79 #endif /* LIBC_SCCS and not lint */
     80 
     81 /*
     82  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     83  * users of this code, so we've factored it out into a separate module.
     84  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     85  * most other applications are interested only in open/close/read/nlist).
     86  */
     87 
     88 #include <sys/param.h>
     89 #include <sys/user.h>
     90 #include <sys/lwp.h>
     91 #include <sys/proc.h>
     92 #include <sys/exec.h>
     93 #include <sys/stat.h>
     94 #include <sys/ioctl.h>
     95 #include <sys/tty.h>
     96 #include <sys/resourcevar.h>
     97 #include <stdlib.h>
     98 #include <stddef.h>
     99 #include <string.h>
    100 #include <unistd.h>
    101 #include <nlist.h>
    102 #include <kvm.h>
    103 
    104 #include <uvm/uvm_extern.h>
    105 #include <uvm/uvm_amap.h>
    106 
    107 #include <sys/sysctl.h>
    108 
    109 #include <limits.h>
    110 #include <db.h>
    111 #include <paths.h>
    112 
    113 #include "kvm_private.h"
    114 
    115 /*
    116  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    117  */
    118 struct miniproc {
    119 	struct	vmspace *p_vmspace;
    120 	char	p_stat;
    121 	struct	proc *p_paddr;
    122 	pid_t	p_pid;
    123 };
    124 
    125 /*
    126  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    127  */
    128 #define PTOMINI(kp, p) \
    129 	do { \
    130 		(p)->p_stat = (kp)->p_stat; \
    131 		(p)->p_pid = (kp)->p_pid; \
    132 		(p)->p_paddr = NULL; \
    133 		(p)->p_vmspace = (kp)->p_vmspace; \
    134 	} while (/*CONSTCOND*/0);
    135 
    136 #define KPTOMINI(kp, p) \
    137 	do { \
    138 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    139 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    140 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    141 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    142 	} while (/*CONSTCOND*/0);
    143 
    144 #define KP2TOMINI(kp, p) \
    145 	do { \
    146 		(p)->p_stat = (kp)->p_stat; \
    147 		(p)->p_pid = (kp)->p_pid; \
    148 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    149 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    150 	} while (/*CONSTCOND*/0);
    151 
    152 
    153 #define KREAD(kd, addr, obj) \
    154 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    155 
    156 /* XXX: What uses these two functions? */
    157 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
    158 		    u_long *));
    159 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    160 		    size_t));
    161 
    162 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    163 		    u_long *));
    164 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    165 		    char *, size_t));
    166 
    167 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
    168 		    int));
    169 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
    170 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
    171 		    void (*)(struct ps_strings *, u_long *, int *)));
    172 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
    173 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    174 		    struct kinfo_proc *, int));
    175 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
    176 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    177 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    178 
    179 
    180 static char *
    181 _kvm_ureadm(kd, p, va, cnt)
    182 	kvm_t *kd;
    183 	const struct miniproc *p;
    184 	u_long va;
    185 	u_long *cnt;
    186 {
    187 	int true = 1;
    188 	u_long addr, head;
    189 	u_long offset;
    190 	struct vm_map_entry vme;
    191 	struct vm_amap amap;
    192 	struct vm_anon *anonp, anon;
    193 	struct vm_page pg;
    194 	u_long slot;
    195 
    196 	if (kd->swapspc == NULL) {
    197 		kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    198 		if (kd->swapspc == NULL)
    199 			return (NULL);
    200 	}
    201 
    202 	/*
    203 	 * Look through the address map for the memory object
    204 	 * that corresponds to the given virtual address.
    205 	 * The header just has the entire valid range.
    206 	 */
    207 	head = (u_long)&p->p_vmspace->vm_map.header;
    208 	addr = head;
    209 	while (true) {
    210 		if (KREAD(kd, addr, &vme))
    211 			return (NULL);
    212 
    213 		if (va >= vme.start && va < vme.end &&
    214 		    vme.aref.ar_amap != NULL)
    215 			break;
    216 
    217 		addr = (u_long)vme.next;
    218 		if (addr == head)
    219 			return (NULL);
    220 	}
    221 
    222 	/*
    223 	 * we found the map entry, now to find the object...
    224 	 */
    225 	if (vme.aref.ar_amap == NULL)
    226 		return (NULL);
    227 
    228 	addr = (u_long)vme.aref.ar_amap;
    229 	if (KREAD(kd, addr, &amap))
    230 		return (NULL);
    231 
    232 	offset = va - vme.start;
    233 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    234 	/* sanity-check slot number */
    235 	if (slot > amap.am_nslot)
    236 		return (NULL);
    237 
    238 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    239 	if (KREAD(kd, addr, &anonp))
    240 		return (NULL);
    241 
    242 	addr = (u_long)anonp;
    243 	if (KREAD(kd, addr, &anon))
    244 		return (NULL);
    245 
    246 	addr = (u_long)anon.an_page;
    247 	if (addr) {
    248 		if (KREAD(kd, addr, &pg))
    249 			return (NULL);
    250 
    251 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    252 		    (off_t)pg.phys_addr) != kd->nbpg)
    253 			return (NULL);
    254 	} else {
    255 		if (kd->swfd < 0 ||
    256 		    pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    257 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    258 			return (NULL);
    259 	}
    260 
    261 	/* Found the page. */
    262 	offset %= kd->nbpg;
    263 	*cnt = kd->nbpg - offset;
    264 	return (&kd->swapspc[(size_t)offset]);
    265 }
    266 
    267 char *
    268 _kvm_uread(kd, p, va, cnt)
    269 	kvm_t *kd;
    270 	const struct proc *p;
    271 	u_long va;
    272 	u_long *cnt;
    273 {
    274 	struct miniproc mp;
    275 
    276 	PTOMINI(p, &mp);
    277 	return (_kvm_ureadm(kd, &mp, va, cnt));
    278 }
    279 
    280 /*
    281  * Read proc's from memory file into buffer bp, which has space to hold
    282  * at most maxcnt procs.
    283  */
    284 static int
    285 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    286 	kvm_t *kd;
    287 	int what, arg;
    288 	struct proc *p;
    289 	struct kinfo_proc *bp;
    290 	int maxcnt;
    291 {
    292 	int cnt = 0;
    293 	int nlwps;
    294 	struct kinfo_lwp *kl;
    295 	struct eproc eproc;
    296 	struct pgrp pgrp;
    297 	struct session sess;
    298 	struct tty tty;
    299 	struct proc proc;
    300 
    301 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    302 		if (KREAD(kd, (u_long)p, &proc)) {
    303 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    304 			return (-1);
    305 		}
    306 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    307 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    308 			    &eproc.e_ucred)) {
    309 				_kvm_err(kd, kd->program,
    310 				    "can't read proc credentials at %p", p);
    311 				return (-1);
    312 			}
    313 
    314 		switch (what) {
    315 
    316 		case KERN_PROC_PID:
    317 			if (proc.p_pid != (pid_t)arg)
    318 				continue;
    319 			break;
    320 
    321 		case KERN_PROC_UID:
    322 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    323 				continue;
    324 			break;
    325 
    326 		case KERN_PROC_RUID:
    327 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    328 				continue;
    329 			break;
    330 		}
    331 		/*
    332 		 * We're going to add another proc to the set.  If this
    333 		 * will overflow the buffer, assume the reason is because
    334 		 * nprocs (or the proc list) is corrupt and declare an error.
    335 		 */
    336 		if (cnt >= maxcnt) {
    337 			_kvm_err(kd, kd->program, "nprocs corrupt");
    338 			return (-1);
    339 		}
    340 		/*
    341 		 * gather eproc
    342 		 */
    343 		eproc.e_paddr = p;
    344 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    345 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    346 			    proc.p_pgrp);
    347 			return (-1);
    348 		}
    349 		eproc.e_sess = pgrp.pg_session;
    350 		eproc.e_pgid = pgrp.pg_id;
    351 		eproc.e_jobc = pgrp.pg_jobc;
    352 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    353 			_kvm_err(kd, kd->program, "can't read session at %p",
    354 			    pgrp.pg_session);
    355 			return (-1);
    356 		}
    357 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    358 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    359 				_kvm_err(kd, kd->program,
    360 				    "can't read tty at %p", sess.s_ttyp);
    361 				return (-1);
    362 			}
    363 			eproc.e_tdev = tty.t_dev;
    364 			eproc.e_tsess = tty.t_session;
    365 			if (tty.t_pgrp != NULL) {
    366 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    367 					_kvm_err(kd, kd->program,
    368 					    "can't read tpgrp at %p",
    369 					    tty.t_pgrp);
    370 					return (-1);
    371 				}
    372 				eproc.e_tpgid = pgrp.pg_id;
    373 			} else
    374 				eproc.e_tpgid = -1;
    375 		} else
    376 			eproc.e_tdev = NODEV;
    377 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    378 		eproc.e_sid = sess.s_sid;
    379 		if (sess.s_leader == p)
    380 			eproc.e_flag |= EPROC_SLEADER;
    381 		/*
    382 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
    383 		 * from the first available LWP.
    384 		 */
    385 		kl = kvm_getlwps(kd, proc.p_pid,
    386 		    (u_long)PTRTOUINT64(eproc.e_paddr),
    387 		    sizeof(struct kinfo_lwp), &nlwps);
    388 		if (kl) {
    389 			if (nlwps > 0) {
    390 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
    391 			}
    392 		}
    393 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    394 		    sizeof(eproc.e_vm));
    395 
    396 		eproc.e_xsize = eproc.e_xrssize = 0;
    397 		eproc.e_xccount = eproc.e_xswrss = 0;
    398 
    399 		switch (what) {
    400 
    401 		case KERN_PROC_PGRP:
    402 			if (eproc.e_pgid != (pid_t)arg)
    403 				continue;
    404 			break;
    405 
    406 		case KERN_PROC_TTY:
    407 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    408 			    eproc.e_tdev != (dev_t)arg)
    409 				continue;
    410 			break;
    411 		}
    412 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    413 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    414 		++bp;
    415 		++cnt;
    416 	}
    417 	return (cnt);
    418 }
    419 
    420 /*
    421  * Build proc info array by reading in proc list from a crash dump.
    422  * Return number of procs read.  maxcnt is the max we will read.
    423  */
    424 static int
    425 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    426 	kvm_t *kd;
    427 	int what, arg;
    428 	u_long a_allproc;
    429 	u_long a_zombproc;
    430 	int maxcnt;
    431 {
    432 	struct kinfo_proc *bp = kd->procbase;
    433 	int acnt, zcnt;
    434 	struct proc *p;
    435 
    436 	if (KREAD(kd, a_allproc, &p)) {
    437 		_kvm_err(kd, kd->program, "cannot read allproc");
    438 		return (-1);
    439 	}
    440 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    441 	if (acnt < 0)
    442 		return (acnt);
    443 
    444 	if (KREAD(kd, a_zombproc, &p)) {
    445 		_kvm_err(kd, kd->program, "cannot read zombproc");
    446 		return (-1);
    447 	}
    448 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    449 	    maxcnt - acnt);
    450 	if (zcnt < 0)
    451 		zcnt = 0;
    452 
    453 	return (acnt + zcnt);
    454 }
    455 
    456 struct kinfo_proc2 *
    457 kvm_getproc2(kd, op, arg, esize, cnt)
    458 	kvm_t *kd;
    459 	int op, arg;
    460 	size_t esize;
    461 	int *cnt;
    462 {
    463 	size_t size;
    464 	int mib[6], st, nprocs;
    465 	struct pstats pstats;
    466 
    467 	if (ISSYSCTL(kd)) {
    468 		size = 0;
    469 		mib[0] = CTL_KERN;
    470 		mib[1] = KERN_PROC2;
    471 		mib[2] = op;
    472 		mib[3] = arg;
    473 		mib[4] = (int)esize;
    474 		mib[5] = 0;
    475 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
    476 		if (st == -1) {
    477 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    478 			return (NULL);
    479 		}
    480 
    481 		mib[5] = (int) (size / esize);
    482 		KVM_ALLOC(kd, procbase2, size);
    483 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
    484 		if (st == -1) {
    485 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    486 			return (NULL);
    487 		}
    488 		nprocs = (int) (size / esize);
    489 	} else {
    490 		char *kp2c;
    491 		struct kinfo_proc *kp;
    492 		struct kinfo_proc2 kp2, *kp2p;
    493 		struct kinfo_lwp *kl;
    494 		int i, nlwps;
    495 
    496 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    497 		if (kp == NULL)
    498 			return (NULL);
    499 
    500 		size = nprocs * esize;
    501 		KVM_ALLOC(kd, procbase2, size);
    502 		kp2c = (char *)(void *)kd->procbase2;
    503 		kp2p = &kp2;
    504 		for (i = 0; i < nprocs; i++, kp++) {
    505 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
    506 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
    507 			    sizeof(struct kinfo_lwp), &nlwps);
    508 			/* We use kl[0] as the "representative" LWP */
    509 			memset(kp2p, 0, sizeof(kp2));
    510 			kp2p->p_forw = kl[0].l_forw;
    511 			kp2p->p_back = kl[0].l_back;
    512 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
    513 			kp2p->p_addr = kl[0].l_addr;
    514 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
    515 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
    516 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
    517 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
    518 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
    519 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
    520 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
    521 			kp2p->p_tsess = 0;
    522 			kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru);
    523 
    524 			kp2p->p_eflag = 0;
    525 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    526 			kp2p->p_flag = kp->kp_proc.p_flag;
    527 
    528 			kp2p->p_pid = kp->kp_proc.p_pid;
    529 
    530 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    531 			kp2p->p_sid = kp->kp_eproc.e_sid;
    532 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    533 
    534 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
    535 
    536 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    537 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    538 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
    539 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    540 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    541 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
    542 
    543 			/*CONSTCOND*/
    544 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    545 			    MIN(sizeof(kp2p->p_groups),
    546 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    547 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    548 
    549 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    550 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    551 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    552 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
    553 
    554 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
    555 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
    556 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
    557 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
    558 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    559 			kp2p->p_swtime = kl[0].l_swtime;
    560 			kp2p->p_slptime = kl[0].l_slptime;
    561 #if 0 /* XXX thorpej */
    562 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    563 #else
    564 			kp2p->p_schedflags = 0;
    565 #endif
    566 
    567 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    568 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    569 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    570 
    571 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
    572 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    573 
    574 			kp2p->p_holdcnt = kl[0].l_holdcnt;
    575 
    576 			memcpy(&kp2p->p_siglist,
    577 			    &kp->kp_proc.p_sigctx.ps_siglist,
    578 			    sizeof(ki_sigset_t));
    579 			memcpy(&kp2p->p_sigmask,
    580 			    &kp->kp_proc.p_sigctx.ps_sigmask,
    581 			    sizeof(ki_sigset_t));
    582 			memcpy(&kp2p->p_sigignore,
    583 			    &kp->kp_proc.p_sigctx.ps_sigignore,
    584 			    sizeof(ki_sigset_t));
    585 			memcpy(&kp2p->p_sigcatch,
    586 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
    587 			    sizeof(ki_sigset_t));
    588 
    589 			kp2p->p_stat = kp->kp_proc.p_stat;
    590 			kp2p->p_priority = kl[0].l_priority;
    591 			kp2p->p_usrpri = kl[0].l_usrpri;
    592 			kp2p->p_nice = kp->kp_proc.p_nice;
    593 
    594 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    595 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    596 
    597 			/*CONSTCOND*/
    598 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    599 			    MIN(sizeof(kp2p->p_comm),
    600 			    sizeof(kp->kp_proc.p_comm)));
    601 
    602 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
    603 			    sizeof(kp2p->p_wmesg));
    604 			kp2p->p_wchan = kl[0].l_wchan;
    605 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
    606 			    sizeof(kp2p->p_login));
    607 
    608 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    609 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    610 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    611 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    612 
    613 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    614 
    615 			kp2p->p_realflag = kp->kp_proc.p_flag;
    616 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
    617 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
    618 			kp2p->p_realstat = kp->kp_proc.p_stat;
    619 
    620 			if (P_ZOMBIE(&kp->kp_proc) ||
    621 			    kp->kp_proc.p_stats == NULL ||
    622 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
    623 				kp2p->p_uvalid = 0;
    624 			} else {
    625 				kp2p->p_uvalid = 1;
    626 
    627 				kp2p->p_ustart_sec = (u_int32_t)
    628 				    pstats.p_start.tv_sec;
    629 				kp2p->p_ustart_usec = (u_int32_t)
    630 				    pstats.p_start.tv_usec;
    631 
    632 				kp2p->p_uutime_sec = (u_int32_t)
    633 				    pstats.p_ru.ru_utime.tv_sec;
    634 				kp2p->p_uutime_usec = (u_int32_t)
    635 				    pstats.p_ru.ru_utime.tv_usec;
    636 				kp2p->p_ustime_sec = (u_int32_t)
    637 				    pstats.p_ru.ru_stime.tv_sec;
    638 				kp2p->p_ustime_usec = (u_int32_t)
    639 				    pstats.p_ru.ru_stime.tv_usec;
    640 
    641 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
    642 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
    643 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
    644 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
    645 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
    646 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
    647 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
    648 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
    649 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
    650 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
    651 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
    652 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
    653 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
    654 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
    655 
    656 				kp2p->p_uctime_sec = (u_int32_t)
    657 				    (pstats.p_cru.ru_utime.tv_sec +
    658 				    pstats.p_cru.ru_stime.tv_sec);
    659 				kp2p->p_uctime_usec = (u_int32_t)
    660 				    (pstats.p_cru.ru_utime.tv_usec +
    661 				    pstats.p_cru.ru_stime.tv_usec);
    662 			}
    663 
    664 			memcpy(kp2c, &kp2, esize);
    665 			kp2c += esize;
    666 		}
    667 	}
    668 	*cnt = nprocs;
    669 	return (kd->procbase2);
    670 }
    671 
    672 struct kinfo_lwp *
    673 kvm_getlwps(kd, pid, paddr, esize, cnt)
    674 	kvm_t *kd;
    675 	int pid;
    676 	u_long paddr;
    677 	size_t esize;
    678 	int *cnt;
    679 {
    680 	size_t size;
    681 	int mib[5], nlwps;
    682 	ssize_t st;
    683 	struct kinfo_lwp *kl;
    684 
    685 	if (ISSYSCTL(kd)) {
    686 		size = 0;
    687 		mib[0] = CTL_KERN;
    688 		mib[1] = KERN_LWP;
    689 		mib[2] = pid;
    690 		mib[3] = (int)esize;
    691 		mib[4] = 0;
    692 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
    693 		if (st == -1) {
    694 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    695 			return (NULL);
    696 		}
    697 
    698 		mib[4] = (int) (size / esize);
    699 		KVM_ALLOC(kd, lwpbase, size);
    700 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
    701 		if (st == -1) {
    702 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    703 			return (NULL);
    704 		}
    705 		nlwps = (int) (size / esize);
    706 	} else {
    707 		/* grovel through the memory image */
    708 		struct proc p;
    709 		struct lwp l;
    710 		u_long laddr;
    711 		int i;
    712 
    713 		st = kvm_read(kd, paddr, &p, sizeof(p));
    714 		if (st == -1) {
    715 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    716 			return (NULL);
    717 		}
    718 
    719 		nlwps = p.p_nlwps;
    720 		size = nlwps * sizeof(*kd->lwpbase);
    721 		KVM_ALLOC(kd, lwpbase, size);
    722 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
    723 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
    724 			st = kvm_read(kd, laddr, &l, sizeof(l));
    725 			if (st == -1) {
    726 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    727 				return (NULL);
    728 			}
    729 			kl = &kd->lwpbase[i];
    730 			kl->l_laddr = laddr;
    731 			kl->l_forw = PTRTOUINT64(l.l_forw);
    732 			kl->l_back = PTRTOUINT64(l.l_back);
    733 			kl->l_addr = PTRTOUINT64(l.l_addr);
    734 			kl->l_lid = l.l_lid;
    735 			kl->l_flag = l.l_flag;
    736 			kl->l_swtime = l.l_swtime;
    737 			kl->l_slptime = l.l_slptime;
    738 			kl->l_schedflags = 0; /* XXX */
    739 			kl->l_holdcnt = l.l_holdcnt;
    740 			kl->l_priority = l.l_priority;
    741 			kl->l_usrpri = l.l_usrpri;
    742 			kl->l_stat = l.l_stat;
    743 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
    744 			if (l.l_wmesg)
    745 				(void)kvm_read(kd, (u_long)l.l_wmesg,
    746 				    kl->l_wmesg, (size_t)WMESGLEN);
    747 			kl->l_cpuid = KI_NOCPU;
    748 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
    749 		}
    750 	}
    751 
    752 	*cnt = nlwps;
    753 	return (kd->lwpbase);
    754 }
    755 
    756 struct kinfo_proc *
    757 kvm_getprocs(kd, op, arg, cnt)
    758 	kvm_t *kd;
    759 	int op, arg;
    760 	int *cnt;
    761 {
    762 	size_t size;
    763 	int mib[4], st, nprocs;
    764 
    765 	if (ISKMEM(kd)) {
    766 		size = 0;
    767 		mib[0] = CTL_KERN;
    768 		mib[1] = KERN_PROC;
    769 		mib[2] = op;
    770 		mib[3] = arg;
    771 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
    772 		if (st == -1) {
    773 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    774 			return (NULL);
    775 		}
    776 		KVM_ALLOC(kd, procbase, size);
    777 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
    778 		if (st == -1) {
    779 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    780 			return (NULL);
    781 		}
    782 		if (size % sizeof(struct kinfo_proc) != 0) {
    783 			_kvm_err(kd, kd->program,
    784 			    "proc size mismatch (%lu total, %lu chunks)",
    785 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    786 			return (NULL);
    787 		}
    788 		nprocs = (int) (size / sizeof(struct kinfo_proc));
    789 	} else if (ISSYSCTL(kd)) {
    790 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
    791 		    "can't use kvm_getprocs");
    792 		return (NULL);
    793 	} else {
    794 		struct nlist nl[4], *p;
    795 
    796 		(void)memset(nl, 0, sizeof(nl));
    797 		nl[0].n_name = "_nprocs";
    798 		nl[1].n_name = "_allproc";
    799 		nl[2].n_name = "_zombproc";
    800 		nl[3].n_name = NULL;
    801 
    802 		if (kvm_nlist(kd, nl) != 0) {
    803 			for (p = nl; p->n_type != 0; ++p)
    804 				continue;
    805 			_kvm_err(kd, kd->program,
    806 			    "%s: no such symbol", p->n_name);
    807 			return (NULL);
    808 		}
    809 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    810 			_kvm_err(kd, kd->program, "can't read nprocs");
    811 			return (NULL);
    812 		}
    813 		size = nprocs * sizeof(*kd->procbase);
    814 		KVM_ALLOC(kd, procbase, size);
    815 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    816 		    nl[2].n_value, nprocs);
    817 		if (nprocs < 0)
    818 			return (NULL);
    819 #ifdef notdef
    820 		size = nprocs * sizeof(struct kinfo_proc);
    821 		(void)realloc(kd->procbase, size);
    822 #endif
    823 	}
    824 	*cnt = nprocs;
    825 	return (kd->procbase);
    826 }
    827 
    828 void *
    829 _kvm_realloc(kd, p, n)
    830 	kvm_t *kd;
    831 	void *p;
    832 	size_t n;
    833 {
    834 	void *np = realloc(p, n);
    835 
    836 	if (np == NULL)
    837 		_kvm_err(kd, kd->program, "out of memory");
    838 	return (np);
    839 }
    840 
    841 /*
    842  * Read in an argument vector from the user address space of process p.
    843  * addr if the user-space base address of narg null-terminated contiguous
    844  * strings.  This is used to read in both the command arguments and
    845  * environment strings.  Read at most maxcnt characters of strings.
    846  */
    847 static char **
    848 kvm_argv(kd, p, addr, narg, maxcnt)
    849 	kvm_t *kd;
    850 	const struct miniproc *p;
    851 	u_long addr;
    852 	int narg;
    853 	int maxcnt;
    854 {
    855 	char *np, *cp, *ep, *ap;
    856 	u_long oaddr = (u_long)~0L;
    857 	u_long len;
    858 	size_t cc;
    859 	char **argv;
    860 
    861 	/*
    862 	 * Check that there aren't an unreasonable number of arguments,
    863 	 * and that the address is in user space.
    864 	 */
    865 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    866 		return (NULL);
    867 
    868 	if (kd->argv == NULL) {
    869 		/*
    870 		 * Try to avoid reallocs.
    871 		 */
    872 		kd->argc = MAX(narg + 1, 32);
    873 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
    874 		if (kd->argv == NULL)
    875 			return (NULL);
    876 	} else if (narg + 1 > kd->argc) {
    877 		kd->argc = MAX(2 * kd->argc, narg + 1);
    878 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
    879 		    sizeof(*kd->argv));
    880 		if (kd->argv == NULL)
    881 			return (NULL);
    882 	}
    883 	if (kd->argspc == NULL) {
    884 		kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    885 		if (kd->argspc == NULL)
    886 			return (NULL);
    887 		kd->argspc_len = kd->nbpg;
    888 	}
    889 	if (kd->argbuf == NULL) {
    890 		kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
    891 		if (kd->argbuf == NULL)
    892 			return (NULL);
    893 	}
    894 	cc = sizeof(char *) * narg;
    895 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    896 		return (NULL);
    897 	ap = np = kd->argspc;
    898 	argv = kd->argv;
    899 	len = 0;
    900 	/*
    901 	 * Loop over pages, filling in the argument vector.
    902 	 */
    903 	while (argv < kd->argv + narg && *argv != NULL) {
    904 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    905 		if (addr != oaddr) {
    906 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    907 			    (size_t)kd->nbpg) != kd->nbpg)
    908 				return (NULL);
    909 			oaddr = addr;
    910 		}
    911 		addr = (u_long)*argv & (kd->nbpg - 1);
    912 		cp = kd->argbuf + (size_t)addr;
    913 		cc = kd->nbpg - (size_t)addr;
    914 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    915 			cc = (size_t)(maxcnt - len);
    916 		ep = memchr(cp, '\0', cc);
    917 		if (ep != NULL)
    918 			cc = ep - cp + 1;
    919 		if (len + cc > kd->argspc_len) {
    920 			ptrdiff_t off;
    921 			char **pp;
    922 			char *op = kd->argspc;
    923 
    924 			kd->argspc_len *= 2;
    925 			kd->argspc = _kvm_realloc(kd, kd->argspc,
    926 			    kd->argspc_len);
    927 			if (kd->argspc == NULL)
    928 				return (NULL);
    929 			/*
    930 			 * Adjust argv pointers in case realloc moved
    931 			 * the string space.
    932 			 */
    933 			off = kd->argspc - op;
    934 			for (pp = kd->argv; pp < argv; pp++)
    935 				*pp += off;
    936 			ap += off;
    937 			np += off;
    938 		}
    939 		memcpy(np, cp, cc);
    940 		np += cc;
    941 		len += cc;
    942 		if (ep != NULL) {
    943 			*argv++ = ap;
    944 			ap = np;
    945 		} else
    946 			*argv += cc;
    947 		if (maxcnt > 0 && len >= maxcnt) {
    948 			/*
    949 			 * We're stopping prematurely.  Terminate the
    950 			 * current string.
    951 			 */
    952 			if (ep == NULL) {
    953 				*np = '\0';
    954 				*argv++ = ap;
    955 			}
    956 			break;
    957 		}
    958 	}
    959 	/* Make sure argv is terminated. */
    960 	*argv = NULL;
    961 	return (kd->argv);
    962 }
    963 
    964 static void
    965 ps_str_a(p, addr, n)
    966 	struct ps_strings *p;
    967 	u_long *addr;
    968 	int *n;
    969 {
    970 
    971 	*addr = (u_long)p->ps_argvstr;
    972 	*n = p->ps_nargvstr;
    973 }
    974 
    975 static void
    976 ps_str_e(p, addr, n)
    977 	struct ps_strings *p;
    978 	u_long *addr;
    979 	int *n;
    980 {
    981 
    982 	*addr = (u_long)p->ps_envstr;
    983 	*n = p->ps_nenvstr;
    984 }
    985 
    986 /*
    987  * Determine if the proc indicated by p is still active.
    988  * This test is not 100% foolproof in theory, but chances of
    989  * being wrong are very low.
    990  */
    991 static int
    992 proc_verify(kd, kernp, p)
    993 	kvm_t *kd;
    994 	u_long kernp;
    995 	const struct miniproc *p;
    996 {
    997 	struct proc kernproc;
    998 
    999 	/*
   1000 	 * Just read in the whole proc.  It's not that big relative
   1001 	 * to the cost of the read system call.
   1002 	 */
   1003 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
   1004 	    sizeof(kernproc))
   1005 		return (0);
   1006 	return (p->p_pid == kernproc.p_pid &&
   1007 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
   1008 }
   1009 
   1010 static char **
   1011 kvm_doargv(kd, p, nchr, info)
   1012 	kvm_t *kd;
   1013 	const struct miniproc *p;
   1014 	int nchr;
   1015 	void (*info)(struct ps_strings *, u_long *, int *);
   1016 {
   1017 	char **ap;
   1018 	u_long addr;
   1019 	int cnt;
   1020 	struct ps_strings arginfo;
   1021 
   1022 	/*
   1023 	 * Pointers are stored at the top of the user stack.
   1024 	 */
   1025 	if (p->p_stat == SZOMB)
   1026 		return (NULL);
   1027 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
   1028 	    (void *)&arginfo, sizeof(arginfo));
   1029 	if (cnt != sizeof(arginfo))
   1030 		return (NULL);
   1031 
   1032 	(*info)(&arginfo, &addr, &cnt);
   1033 	if (cnt == 0)
   1034 		return (NULL);
   1035 	ap = kvm_argv(kd, p, addr, cnt, nchr);
   1036 	/*
   1037 	 * For live kernels, make sure this process didn't go away.
   1038 	 */
   1039 	if (ap != NULL && ISALIVE(kd) &&
   1040 	    !proc_verify(kd, (u_long)p->p_paddr, p))
   1041 		ap = NULL;
   1042 	return (ap);
   1043 }
   1044 
   1045 /*
   1046  * Get the command args.  This code is now machine independent.
   1047  */
   1048 char **
   1049 kvm_getargv(kd, kp, nchr)
   1050 	kvm_t *kd;
   1051 	const struct kinfo_proc *kp;
   1052 	int nchr;
   1053 {
   1054 	struct miniproc p;
   1055 
   1056 	KPTOMINI(kp, &p);
   1057 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
   1058 }
   1059 
   1060 char **
   1061 kvm_getenvv(kd, kp, nchr)
   1062 	kvm_t *kd;
   1063 	const struct kinfo_proc *kp;
   1064 	int nchr;
   1065 {
   1066 	struct miniproc p;
   1067 
   1068 	KPTOMINI(kp, &p);
   1069 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1070 }
   1071 
   1072 static char **
   1073 kvm_doargv2(kd, pid, type, nchr)
   1074 	kvm_t *kd;
   1075 	pid_t pid;
   1076 	int type;
   1077 	int nchr;
   1078 {
   1079 	size_t bufs;
   1080 	int narg, mib[4];
   1081 	size_t newargspc_len;
   1082 	char **ap, *bp, *endp;
   1083 
   1084 	/*
   1085 	 * Check that there aren't an unreasonable number of arguments.
   1086 	 */
   1087 	if (nchr > ARG_MAX)
   1088 		return (NULL);
   1089 
   1090 	if (nchr == 0)
   1091 		nchr = ARG_MAX;
   1092 
   1093 	/* Get number of strings in argv */
   1094 	mib[0] = CTL_KERN;
   1095 	mib[1] = KERN_PROC_ARGS;
   1096 	mib[2] = pid;
   1097 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1098 	bufs = sizeof(narg);
   1099 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
   1100 		return (NULL);
   1101 
   1102 	if (kd->argv == NULL) {
   1103 		/*
   1104 		 * Try to avoid reallocs.
   1105 		 */
   1106 		kd->argc = MAX(narg + 1, 32);
   1107 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
   1108 		if (kd->argv == NULL)
   1109 			return (NULL);
   1110 	} else if (narg + 1 > kd->argc) {
   1111 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1112 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
   1113 		    sizeof(*kd->argv));
   1114 		if (kd->argv == NULL)
   1115 			return (NULL);
   1116 	}
   1117 
   1118 	newargspc_len = MIN(nchr, ARG_MAX);
   1119 	KVM_ALLOC(kd, argspc, newargspc_len);
   1120 	memset(kd->argspc, 0, (size_t)kd->argspc_len);	/* XXX necessary? */
   1121 
   1122 	mib[0] = CTL_KERN;
   1123 	mib[1] = KERN_PROC_ARGS;
   1124 	mib[2] = pid;
   1125 	mib[3] = type;
   1126 	bufs = kd->argspc_len;
   1127 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
   1128 		return (NULL);
   1129 
   1130 	bp = kd->argspc;
   1131 	bp[kd->argspc_len-1] = '\0';	/* make sure the string ends with nul */
   1132 	ap = kd->argv;
   1133 	endp = bp + MIN(nchr, bufs);
   1134 
   1135 	while (bp < endp) {
   1136 		*ap++ = bp;
   1137 		/*
   1138 		 * XXX: don't need following anymore, or stick check
   1139 		 * for max argc in above while loop?
   1140 		 */
   1141 		if (ap >= kd->argv + kd->argc) {
   1142 			kd->argc *= 2;
   1143 			kd->argv = _kvm_realloc(kd, kd->argv,
   1144 			    kd->argc * sizeof(*kd->argv));
   1145 			ap = kd->argv;
   1146 		}
   1147 		bp += strlen(bp) + 1;
   1148 	}
   1149 	*ap = NULL;
   1150 
   1151 	return (kd->argv);
   1152 }
   1153 
   1154 char **
   1155 kvm_getargv2(kd, kp, nchr)
   1156 	kvm_t *kd;
   1157 	const struct kinfo_proc2 *kp;
   1158 	int nchr;
   1159 {
   1160 
   1161 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1162 }
   1163 
   1164 char **
   1165 kvm_getenvv2(kd, kp, nchr)
   1166 	kvm_t *kd;
   1167 	const struct kinfo_proc2 *kp;
   1168 	int nchr;
   1169 {
   1170 
   1171 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1172 }
   1173 
   1174 /*
   1175  * Read from user space.  The user context is given by p.
   1176  */
   1177 static ssize_t
   1178 kvm_ureadm(kd, p, uva, buf, len)
   1179 	kvm_t *kd;
   1180 	const struct miniproc *p;
   1181 	u_long uva;
   1182 	char *buf;
   1183 	size_t len;
   1184 {
   1185 	char *cp;
   1186 
   1187 	cp = buf;
   1188 	while (len > 0) {
   1189 		size_t cc;
   1190 		char *dp;
   1191 		u_long cnt;
   1192 
   1193 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1194 		if (dp == NULL) {
   1195 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1196 			return (0);
   1197 		}
   1198 		cc = (size_t)MIN(cnt, len);
   1199 		memcpy(cp, dp, cc);
   1200 		cp += cc;
   1201 		uva += cc;
   1202 		len -= cc;
   1203 	}
   1204 	return (ssize_t)(cp - buf);
   1205 }
   1206 
   1207 ssize_t
   1208 kvm_uread(kd, p, uva, buf, len)
   1209 	kvm_t *kd;
   1210 	const struct proc *p;
   1211 	u_long uva;
   1212 	char *buf;
   1213 	size_t len;
   1214 {
   1215 	struct miniproc mp;
   1216 
   1217 	PTOMINI(p, &mp);
   1218 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1219 }
   1220