Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.62.4.1
      1 /*	$NetBSD: kvm_proc.c,v 1.62.4.1 2007/02/11 13:40:55 tron Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1989, 1992, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software developed by the Computer Systems
     44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     45  * BG 91-66 and contributed to Berkeley.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 #if defined(LIBC_SCCS) && !defined(lint)
     74 #if 0
     75 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     76 #else
     77 __RCSID("$NetBSD: kvm_proc.c,v 1.62.4.1 2007/02/11 13:40:55 tron Exp $");
     78 #endif
     79 #endif /* LIBC_SCCS and not lint */
     80 
     81 /*
     82  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     83  * users of this code, so we've factored it out into a separate module.
     84  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     85  * most other applications are interested only in open/close/read/nlist).
     86  */
     87 
     88 #include <sys/param.h>
     89 #include <sys/user.h>
     90 #include <sys/lwp.h>
     91 #include <sys/proc.h>
     92 #include <sys/exec.h>
     93 #include <sys/stat.h>
     94 #include <sys/ioctl.h>
     95 #include <sys/tty.h>
     96 #include <sys/resourcevar.h>
     97 #include <stdlib.h>
     98 #include <stddef.h>
     99 #include <string.h>
    100 #include <unistd.h>
    101 #include <nlist.h>
    102 #include <kvm.h>
    103 
    104 #include <uvm/uvm_extern.h>
    105 #include <uvm/uvm_amap.h>
    106 
    107 #include <sys/sysctl.h>
    108 
    109 #include <limits.h>
    110 #include <db.h>
    111 #include <paths.h>
    112 
    113 #include "kvm_private.h"
    114 
    115 /*
    116  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    117  */
    118 struct miniproc {
    119 	struct	vmspace *p_vmspace;
    120 	char	p_stat;
    121 	struct	proc *p_paddr;
    122 	pid_t	p_pid;
    123 };
    124 
    125 /*
    126  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    127  */
    128 #define PTOMINI(kp, p) \
    129 	do { \
    130 		(p)->p_stat = (kp)->p_stat; \
    131 		(p)->p_pid = (kp)->p_pid; \
    132 		(p)->p_paddr = NULL; \
    133 		(p)->p_vmspace = (kp)->p_vmspace; \
    134 	} while (/*CONSTCOND*/0);
    135 
    136 #define KPTOMINI(kp, p) \
    137 	do { \
    138 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    139 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    140 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    141 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    142 	} while (/*CONSTCOND*/0);
    143 
    144 #define KP2TOMINI(kp, p) \
    145 	do { \
    146 		(p)->p_stat = (kp)->p_stat; \
    147 		(p)->p_pid = (kp)->p_pid; \
    148 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    149 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    150 	} while (/*CONSTCOND*/0);
    151 
    152 /*
    153  * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
    154  * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
    155  * kvm(3) so dumps can be read properly.
    156  *
    157  * Whenever NetBSD starts exporting credentials to userland consistently (using
    158  * 'struct uucred', or something) this will have to be updated again.
    159  */
    160 struct kvm_kauth_cred {
    161 	struct simplelock cr_lock;	/* lock on cr_refcnt */
    162 	u_int cr_refcnt;		/* reference count */
    163 	uid_t cr_uid;			/* user id */
    164 	uid_t cr_euid;			/* effective user id */
    165 	uid_t cr_svuid;			/* saved effective user id */
    166 	gid_t cr_gid;			/* group id */
    167 	gid_t cr_egid;			/* effective group id */
    168 	gid_t cr_svgid;			/* saved effective group id */
    169 	u_int cr_ngroups;		/* number of groups */
    170 	gid_t cr_groups[NGROUPS];	/* group memberships */
    171 };
    172 
    173 #define KREAD(kd, addr, obj) \
    174 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    175 
    176 /* XXX: What uses these two functions? */
    177 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
    178 		    u_long *));
    179 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
    180 		    size_t));
    181 
    182 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    183 		    u_long *));
    184 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
    185 		    char *, size_t));
    186 
    187 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
    188 		    int));
    189 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
    190 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
    191 		    void (*)(struct ps_strings *, u_long *, int *)));
    192 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
    193 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
    194 		    struct kinfo_proc *, int));
    195 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
    196 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
    197 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
    198 
    199 
    200 static char *
    201 _kvm_ureadm(kd, p, va, cnt)
    202 	kvm_t *kd;
    203 	const struct miniproc *p;
    204 	u_long va;
    205 	u_long *cnt;
    206 {
    207 	int true = 1;
    208 	u_long addr, head;
    209 	u_long offset;
    210 	struct vm_map_entry vme;
    211 	struct vm_amap amap;
    212 	struct vm_anon *anonp, anon;
    213 	struct vm_page pg;
    214 	u_long slot;
    215 
    216 	if (kd->swapspc == NULL) {
    217 		kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    218 		if (kd->swapspc == NULL)
    219 			return (NULL);
    220 	}
    221 
    222 	/*
    223 	 * Look through the address map for the memory object
    224 	 * that corresponds to the given virtual address.
    225 	 * The header just has the entire valid range.
    226 	 */
    227 	head = (u_long)&p->p_vmspace->vm_map.header;
    228 	addr = head;
    229 	while (true) {
    230 		if (KREAD(kd, addr, &vme))
    231 			return (NULL);
    232 
    233 		if (va >= vme.start && va < vme.end &&
    234 		    vme.aref.ar_amap != NULL)
    235 			break;
    236 
    237 		addr = (u_long)vme.next;
    238 		if (addr == head)
    239 			return (NULL);
    240 	}
    241 
    242 	/*
    243 	 * we found the map entry, now to find the object...
    244 	 */
    245 	if (vme.aref.ar_amap == NULL)
    246 		return (NULL);
    247 
    248 	addr = (u_long)vme.aref.ar_amap;
    249 	if (KREAD(kd, addr, &amap))
    250 		return (NULL);
    251 
    252 	offset = va - vme.start;
    253 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    254 	/* sanity-check slot number */
    255 	if (slot > amap.am_nslot)
    256 		return (NULL);
    257 
    258 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    259 	if (KREAD(kd, addr, &anonp))
    260 		return (NULL);
    261 
    262 	addr = (u_long)anonp;
    263 	if (KREAD(kd, addr, &anon))
    264 		return (NULL);
    265 
    266 	addr = (u_long)anon.an_page;
    267 	if (addr) {
    268 		if (KREAD(kd, addr, &pg))
    269 			return (NULL);
    270 
    271 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    272 		    (off_t)pg.phys_addr) != kd->nbpg)
    273 			return (NULL);
    274 	} else {
    275 		if (kd->swfd < 0 ||
    276 		    pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    277 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    278 			return (NULL);
    279 	}
    280 
    281 	/* Found the page. */
    282 	offset %= kd->nbpg;
    283 	*cnt = kd->nbpg - offset;
    284 	return (&kd->swapspc[(size_t)offset]);
    285 }
    286 
    287 char *
    288 _kvm_uread(kd, p, va, cnt)
    289 	kvm_t *kd;
    290 	const struct proc *p;
    291 	u_long va;
    292 	u_long *cnt;
    293 {
    294 	struct miniproc mp;
    295 
    296 	PTOMINI(p, &mp);
    297 	return (_kvm_ureadm(kd, &mp, va, cnt));
    298 }
    299 
    300 /*
    301  * Convert credentials located in kernel space address 'cred' and store
    302  * them in the appropriate members of 'eproc'.
    303  */
    304 static int
    305 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
    306 {
    307 	struct kvm_kauth_cred kauthcred;
    308 	struct pcred *pc = &eproc->e_pcred;
    309 	struct ucred *uc = &eproc->e_ucred;
    310 
    311 	if (KREAD(kd, cred, &kauthcred) != 0)
    312 		return (-1);
    313 
    314 	/* inlined version of kauth_cred_to_pcred, see kauth(9). */
    315 	pc->p_ruid = kauthcred.cr_uid;
    316 	pc->p_svuid = kauthcred.cr_svuid;
    317 	pc->p_rgid = kauthcred.cr_gid;
    318 	pc->p_svgid = kauthcred.cr_svgid;
    319 	pc->p_refcnt = kauthcred.cr_refcnt;
    320 	pc->pc_ucred = (void *)cred;
    321 
    322 	/* inlined version of kauth_cred_to_ucred(), see kauth(9). */
    323 	uc->cr_ref = kauthcred.cr_refcnt;
    324 	uc->cr_uid = kauthcred.cr_euid;
    325 	uc->cr_gid = kauthcred.cr_egid;
    326 	uc->cr_ngroups = MIN(kauthcred.cr_ngroups,
    327 	    sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
    328 	memcpy(uc->cr_groups, kauthcred.cr_groups,
    329 	    uc->cr_ngroups * sizeof(uc->cr_groups[0]));
    330 
    331 	return (0);
    332 }
    333 
    334 /*
    335  * Read proc's from memory file into buffer bp, which has space to hold
    336  * at most maxcnt procs.
    337  */
    338 static int
    339 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    340 	kvm_t *kd;
    341 	int what, arg;
    342 	struct proc *p;
    343 	struct kinfo_proc *bp;
    344 	int maxcnt;
    345 {
    346 	int cnt = 0;
    347 	int nlwps;
    348 	struct kinfo_lwp *kl;
    349 	struct eproc eproc;
    350 	struct pgrp pgrp;
    351 	struct session sess;
    352 	struct tty tty;
    353 	struct proc proc;
    354 
    355 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    356 		if (KREAD(kd, (u_long)p, &proc)) {
    357 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    358 			return (-1);
    359 		}
    360 		if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
    361 			_kvm_err(kd, kd->program,
    362 			    "can't read proc credentials at %p", p);
    363 			return (-1);
    364 		}
    365 
    366 		switch (what) {
    367 
    368 		case KERN_PROC_PID:
    369 			if (proc.p_pid != (pid_t)arg)
    370 				continue;
    371 			break;
    372 
    373 		case KERN_PROC_UID:
    374 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    375 				continue;
    376 			break;
    377 
    378 		case KERN_PROC_RUID:
    379 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    380 				continue;
    381 			break;
    382 		}
    383 		/*
    384 		 * We're going to add another proc to the set.  If this
    385 		 * will overflow the buffer, assume the reason is because
    386 		 * nprocs (or the proc list) is corrupt and declare an error.
    387 		 */
    388 		if (cnt >= maxcnt) {
    389 			_kvm_err(kd, kd->program, "nprocs corrupt");
    390 			return (-1);
    391 		}
    392 		/*
    393 		 * gather eproc
    394 		 */
    395 		eproc.e_paddr = p;
    396 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    397 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    398 			    proc.p_pgrp);
    399 			return (-1);
    400 		}
    401 		eproc.e_sess = pgrp.pg_session;
    402 		eproc.e_pgid = pgrp.pg_id;
    403 		eproc.e_jobc = pgrp.pg_jobc;
    404 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    405 			_kvm_err(kd, kd->program, "can't read session at %p",
    406 			    pgrp.pg_session);
    407 			return (-1);
    408 		}
    409 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    410 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    411 				_kvm_err(kd, kd->program,
    412 				    "can't read tty at %p", sess.s_ttyp);
    413 				return (-1);
    414 			}
    415 			eproc.e_tdev = tty.t_dev;
    416 			eproc.e_tsess = tty.t_session;
    417 			if (tty.t_pgrp != NULL) {
    418 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    419 					_kvm_err(kd, kd->program,
    420 					    "can't read tpgrp at %p",
    421 					    tty.t_pgrp);
    422 					return (-1);
    423 				}
    424 				eproc.e_tpgid = pgrp.pg_id;
    425 			} else
    426 				eproc.e_tpgid = -1;
    427 		} else
    428 			eproc.e_tdev = NODEV;
    429 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    430 		eproc.e_sid = sess.s_sid;
    431 		if (sess.s_leader == p)
    432 			eproc.e_flag |= EPROC_SLEADER;
    433 		/*
    434 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
    435 		 * from the first available LWP.
    436 		 */
    437 		kl = kvm_getlwps(kd, proc.p_pid,
    438 		    (u_long)PTRTOUINT64(eproc.e_paddr),
    439 		    sizeof(struct kinfo_lwp), &nlwps);
    440 		if (kl) {
    441 			if (nlwps > 0) {
    442 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
    443 			}
    444 		}
    445 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    446 		    sizeof(eproc.e_vm));
    447 
    448 		eproc.e_xsize = eproc.e_xrssize = 0;
    449 		eproc.e_xccount = eproc.e_xswrss = 0;
    450 
    451 		switch (what) {
    452 
    453 		case KERN_PROC_PGRP:
    454 			if (eproc.e_pgid != (pid_t)arg)
    455 				continue;
    456 			break;
    457 
    458 		case KERN_PROC_TTY:
    459 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    460 			    eproc.e_tdev != (dev_t)arg)
    461 				continue;
    462 			break;
    463 		}
    464 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    465 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    466 		++bp;
    467 		++cnt;
    468 	}
    469 	return (cnt);
    470 }
    471 
    472 /*
    473  * Build proc info array by reading in proc list from a crash dump.
    474  * Return number of procs read.  maxcnt is the max we will read.
    475  */
    476 static int
    477 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    478 	kvm_t *kd;
    479 	int what, arg;
    480 	u_long a_allproc;
    481 	u_long a_zombproc;
    482 	int maxcnt;
    483 {
    484 	struct kinfo_proc *bp = kd->procbase;
    485 	int acnt, zcnt;
    486 	struct proc *p;
    487 
    488 	if (KREAD(kd, a_allproc, &p)) {
    489 		_kvm_err(kd, kd->program, "cannot read allproc");
    490 		return (-1);
    491 	}
    492 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    493 	if (acnt < 0)
    494 		return (acnt);
    495 
    496 	if (KREAD(kd, a_zombproc, &p)) {
    497 		_kvm_err(kd, kd->program, "cannot read zombproc");
    498 		return (-1);
    499 	}
    500 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    501 	    maxcnt - acnt);
    502 	if (zcnt < 0)
    503 		zcnt = 0;
    504 
    505 	return (acnt + zcnt);
    506 }
    507 
    508 struct kinfo_proc2 *
    509 kvm_getproc2(kd, op, arg, esize, cnt)
    510 	kvm_t *kd;
    511 	int op, arg;
    512 	size_t esize;
    513 	int *cnt;
    514 {
    515 	size_t size;
    516 	int mib[6], st, nprocs;
    517 	struct pstats pstats;
    518 
    519 	if (ISSYSCTL(kd)) {
    520 		size = 0;
    521 		mib[0] = CTL_KERN;
    522 		mib[1] = KERN_PROC2;
    523 		mib[2] = op;
    524 		mib[3] = arg;
    525 		mib[4] = (int)esize;
    526 		mib[5] = 0;
    527 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
    528 		if (st == -1) {
    529 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    530 			return (NULL);
    531 		}
    532 
    533 		mib[5] = (int) (size / esize);
    534 		KVM_ALLOC(kd, procbase2, size);
    535 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
    536 		if (st == -1) {
    537 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    538 			return (NULL);
    539 		}
    540 		nprocs = (int) (size / esize);
    541 	} else {
    542 		char *kp2c;
    543 		struct kinfo_proc *kp;
    544 		struct kinfo_proc2 kp2, *kp2p;
    545 		struct kinfo_lwp *kl;
    546 		int i, nlwps;
    547 
    548 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    549 		if (kp == NULL)
    550 			return (NULL);
    551 
    552 		size = nprocs * esize;
    553 		KVM_ALLOC(kd, procbase2, size);
    554 		kp2c = (char *)(void *)kd->procbase2;
    555 		kp2p = &kp2;
    556 		for (i = 0; i < nprocs; i++, kp++) {
    557 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
    558 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
    559 			    sizeof(struct kinfo_lwp), &nlwps);
    560 			/* We use kl[0] as the "representative" LWP */
    561 			memset(kp2p, 0, sizeof(kp2));
    562 			kp2p->p_forw = kl[0].l_forw;
    563 			kp2p->p_back = kl[0].l_back;
    564 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
    565 			kp2p->p_addr = kl[0].l_addr;
    566 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
    567 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
    568 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
    569 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
    570 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
    571 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
    572 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
    573 			kp2p->p_tsess = 0;
    574 			kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru);
    575 
    576 			kp2p->p_eflag = 0;
    577 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    578 			kp2p->p_flag = kp->kp_proc.p_flag;
    579 
    580 			kp2p->p_pid = kp->kp_proc.p_pid;
    581 
    582 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    583 			kp2p->p_sid = kp->kp_eproc.e_sid;
    584 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    585 
    586 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
    587 
    588 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    589 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    590 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
    591 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    592 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    593 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
    594 
    595 			/*CONSTCOND*/
    596 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    597 			    MIN(sizeof(kp2p->p_groups),
    598 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    599 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    600 
    601 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    602 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    603 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    604 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
    605 
    606 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
    607 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
    608 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
    609 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
    610 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    611 			kp2p->p_swtime = kl[0].l_swtime;
    612 			kp2p->p_slptime = kl[0].l_slptime;
    613 #if 0 /* XXX thorpej */
    614 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    615 #else
    616 			kp2p->p_schedflags = 0;
    617 #endif
    618 
    619 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    620 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    621 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    622 
    623 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
    624 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    625 
    626 			kp2p->p_holdcnt = kl[0].l_holdcnt;
    627 
    628 			memcpy(&kp2p->p_siglist,
    629 			    &kp->kp_proc.p_sigctx.ps_siglist,
    630 			    sizeof(ki_sigset_t));
    631 			memcpy(&kp2p->p_sigmask,
    632 			    &kp->kp_proc.p_sigctx.ps_sigmask,
    633 			    sizeof(ki_sigset_t));
    634 			memcpy(&kp2p->p_sigignore,
    635 			    &kp->kp_proc.p_sigctx.ps_sigignore,
    636 			    sizeof(ki_sigset_t));
    637 			memcpy(&kp2p->p_sigcatch,
    638 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
    639 			    sizeof(ki_sigset_t));
    640 
    641 			kp2p->p_stat = kp->kp_proc.p_stat;
    642 			kp2p->p_priority = kl[0].l_priority;
    643 			kp2p->p_usrpri = kl[0].l_usrpri;
    644 			kp2p->p_nice = kp->kp_proc.p_nice;
    645 
    646 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    647 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    648 
    649 			/*CONSTCOND*/
    650 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    651 			    MIN(sizeof(kp2p->p_comm),
    652 			    sizeof(kp->kp_proc.p_comm)));
    653 
    654 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
    655 			    sizeof(kp2p->p_wmesg));
    656 			kp2p->p_wchan = kl[0].l_wchan;
    657 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
    658 			    sizeof(kp2p->p_login));
    659 
    660 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    661 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    662 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    663 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    664 
    665 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    666 
    667 			kp2p->p_realflag = kp->kp_proc.p_flag;
    668 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
    669 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
    670 			kp2p->p_realstat = kp->kp_proc.p_stat;
    671 
    672 			if (P_ZOMBIE(&kp->kp_proc) ||
    673 			    kp->kp_proc.p_stats == NULL ||
    674 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
    675 				kp2p->p_uvalid = 0;
    676 			} else {
    677 				kp2p->p_uvalid = 1;
    678 
    679 				kp2p->p_ustart_sec = (u_int32_t)
    680 				    pstats.p_start.tv_sec;
    681 				kp2p->p_ustart_usec = (u_int32_t)
    682 				    pstats.p_start.tv_usec;
    683 
    684 				kp2p->p_uutime_sec = (u_int32_t)
    685 				    pstats.p_ru.ru_utime.tv_sec;
    686 				kp2p->p_uutime_usec = (u_int32_t)
    687 				    pstats.p_ru.ru_utime.tv_usec;
    688 				kp2p->p_ustime_sec = (u_int32_t)
    689 				    pstats.p_ru.ru_stime.tv_sec;
    690 				kp2p->p_ustime_usec = (u_int32_t)
    691 				    pstats.p_ru.ru_stime.tv_usec;
    692 
    693 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
    694 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
    695 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
    696 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
    697 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
    698 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
    699 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
    700 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
    701 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
    702 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
    703 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
    704 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
    705 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
    706 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
    707 
    708 				kp2p->p_uctime_sec = (u_int32_t)
    709 				    (pstats.p_cru.ru_utime.tv_sec +
    710 				    pstats.p_cru.ru_stime.tv_sec);
    711 				kp2p->p_uctime_usec = (u_int32_t)
    712 				    (pstats.p_cru.ru_utime.tv_usec +
    713 				    pstats.p_cru.ru_stime.tv_usec);
    714 			}
    715 
    716 			memcpy(kp2c, &kp2, esize);
    717 			kp2c += esize;
    718 		}
    719 	}
    720 	*cnt = nprocs;
    721 	return (kd->procbase2);
    722 }
    723 
    724 struct kinfo_lwp *
    725 kvm_getlwps(kd, pid, paddr, esize, cnt)
    726 	kvm_t *kd;
    727 	int pid;
    728 	u_long paddr;
    729 	size_t esize;
    730 	int *cnt;
    731 {
    732 	size_t size;
    733 	int mib[5], nlwps;
    734 	ssize_t st;
    735 	struct kinfo_lwp *kl;
    736 
    737 	if (ISSYSCTL(kd)) {
    738 		size = 0;
    739 		mib[0] = CTL_KERN;
    740 		mib[1] = KERN_LWP;
    741 		mib[2] = pid;
    742 		mib[3] = (int)esize;
    743 		mib[4] = 0;
    744 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
    745 		if (st == -1) {
    746 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    747 			return (NULL);
    748 		}
    749 
    750 		mib[4] = (int) (size / esize);
    751 		KVM_ALLOC(kd, lwpbase, size);
    752 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
    753 		if (st == -1) {
    754 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    755 			return (NULL);
    756 		}
    757 		nlwps = (int) (size / esize);
    758 	} else {
    759 		/* grovel through the memory image */
    760 		struct proc p;
    761 		struct lwp l;
    762 		u_long laddr;
    763 		int i;
    764 
    765 		st = kvm_read(kd, paddr, &p, sizeof(p));
    766 		if (st == -1) {
    767 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    768 			return (NULL);
    769 		}
    770 
    771 		nlwps = p.p_nlwps;
    772 		size = nlwps * sizeof(*kd->lwpbase);
    773 		KVM_ALLOC(kd, lwpbase, size);
    774 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
    775 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
    776 			st = kvm_read(kd, laddr, &l, sizeof(l));
    777 			if (st == -1) {
    778 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    779 				return (NULL);
    780 			}
    781 			kl = &kd->lwpbase[i];
    782 			kl->l_laddr = laddr;
    783 			kl->l_forw = PTRTOUINT64(l.l_forw);
    784 			kl->l_back = PTRTOUINT64(l.l_back);
    785 			kl->l_addr = PTRTOUINT64(l.l_addr);
    786 			kl->l_lid = l.l_lid;
    787 			kl->l_flag = l.l_flag;
    788 			kl->l_swtime = l.l_swtime;
    789 			kl->l_slptime = l.l_slptime;
    790 			kl->l_schedflags = 0; /* XXX */
    791 			kl->l_holdcnt = l.l_holdcnt;
    792 			kl->l_priority = l.l_priority;
    793 			kl->l_usrpri = l.l_usrpri;
    794 			kl->l_stat = l.l_stat;
    795 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
    796 			if (l.l_wmesg)
    797 				(void)kvm_read(kd, (u_long)l.l_wmesg,
    798 				    kl->l_wmesg, (size_t)WMESGLEN);
    799 			kl->l_cpuid = KI_NOCPU;
    800 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
    801 		}
    802 	}
    803 
    804 	*cnt = nlwps;
    805 	return (kd->lwpbase);
    806 }
    807 
    808 struct kinfo_proc *
    809 kvm_getprocs(kd, op, arg, cnt)
    810 	kvm_t *kd;
    811 	int op, arg;
    812 	int *cnt;
    813 {
    814 	size_t size;
    815 	int mib[4], st, nprocs;
    816 
    817 	if (ISKMEM(kd)) {
    818 		size = 0;
    819 		mib[0] = CTL_KERN;
    820 		mib[1] = KERN_PROC;
    821 		mib[2] = op;
    822 		mib[3] = arg;
    823 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
    824 		if (st == -1) {
    825 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    826 			return (NULL);
    827 		}
    828 		KVM_ALLOC(kd, procbase, size);
    829 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
    830 		if (st == -1) {
    831 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    832 			return (NULL);
    833 		}
    834 		if (size % sizeof(struct kinfo_proc) != 0) {
    835 			_kvm_err(kd, kd->program,
    836 			    "proc size mismatch (%lu total, %lu chunks)",
    837 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    838 			return (NULL);
    839 		}
    840 		nprocs = (int) (size / sizeof(struct kinfo_proc));
    841 	} else if (ISSYSCTL(kd)) {
    842 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
    843 		    "can't use kvm_getprocs");
    844 		return (NULL);
    845 	} else {
    846 		struct nlist nl[4], *p;
    847 
    848 		(void)memset(nl, 0, sizeof(nl));
    849 		nl[0].n_name = "_nprocs";
    850 		nl[1].n_name = "_allproc";
    851 		nl[2].n_name = "_zombproc";
    852 		nl[3].n_name = NULL;
    853 
    854 		if (kvm_nlist(kd, nl) != 0) {
    855 			for (p = nl; p->n_type != 0; ++p)
    856 				continue;
    857 			_kvm_err(kd, kd->program,
    858 			    "%s: no such symbol", p->n_name);
    859 			return (NULL);
    860 		}
    861 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    862 			_kvm_err(kd, kd->program, "can't read nprocs");
    863 			return (NULL);
    864 		}
    865 		size = nprocs * sizeof(*kd->procbase);
    866 		KVM_ALLOC(kd, procbase, size);
    867 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    868 		    nl[2].n_value, nprocs);
    869 		if (nprocs < 0)
    870 			return (NULL);
    871 #ifdef notdef
    872 		size = nprocs * sizeof(struct kinfo_proc);
    873 		(void)realloc(kd->procbase, size);
    874 #endif
    875 	}
    876 	*cnt = nprocs;
    877 	return (kd->procbase);
    878 }
    879 
    880 void *
    881 _kvm_realloc(kd, p, n)
    882 	kvm_t *kd;
    883 	void *p;
    884 	size_t n;
    885 {
    886 	void *np = realloc(p, n);
    887 
    888 	if (np == NULL)
    889 		_kvm_err(kd, kd->program, "out of memory");
    890 	return (np);
    891 }
    892 
    893 /*
    894  * Read in an argument vector from the user address space of process p.
    895  * addr if the user-space base address of narg null-terminated contiguous
    896  * strings.  This is used to read in both the command arguments and
    897  * environment strings.  Read at most maxcnt characters of strings.
    898  */
    899 static char **
    900 kvm_argv(kd, p, addr, narg, maxcnt)
    901 	kvm_t *kd;
    902 	const struct miniproc *p;
    903 	u_long addr;
    904 	int narg;
    905 	int maxcnt;
    906 {
    907 	char *np, *cp, *ep, *ap;
    908 	u_long oaddr = (u_long)~0L;
    909 	u_long len;
    910 	size_t cc;
    911 	char **argv;
    912 
    913 	/*
    914 	 * Check that there aren't an unreasonable number of arguments,
    915 	 * and that the address is in user space.
    916 	 */
    917 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    918 		return (NULL);
    919 
    920 	if (kd->argv == NULL) {
    921 		/*
    922 		 * Try to avoid reallocs.
    923 		 */
    924 		kd->argc = MAX(narg + 1, 32);
    925 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
    926 		if (kd->argv == NULL)
    927 			return (NULL);
    928 	} else if (narg + 1 > kd->argc) {
    929 		kd->argc = MAX(2 * kd->argc, narg + 1);
    930 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
    931 		    sizeof(*kd->argv));
    932 		if (kd->argv == NULL)
    933 			return (NULL);
    934 	}
    935 	if (kd->argspc == NULL) {
    936 		kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    937 		if (kd->argspc == NULL)
    938 			return (NULL);
    939 		kd->argspc_len = kd->nbpg;
    940 	}
    941 	if (kd->argbuf == NULL) {
    942 		kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
    943 		if (kd->argbuf == NULL)
    944 			return (NULL);
    945 	}
    946 	cc = sizeof(char *) * narg;
    947 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    948 		return (NULL);
    949 	ap = np = kd->argspc;
    950 	argv = kd->argv;
    951 	len = 0;
    952 	/*
    953 	 * Loop over pages, filling in the argument vector.
    954 	 */
    955 	while (argv < kd->argv + narg && *argv != NULL) {
    956 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    957 		if (addr != oaddr) {
    958 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    959 			    (size_t)kd->nbpg) != kd->nbpg)
    960 				return (NULL);
    961 			oaddr = addr;
    962 		}
    963 		addr = (u_long)*argv & (kd->nbpg - 1);
    964 		cp = kd->argbuf + (size_t)addr;
    965 		cc = kd->nbpg - (size_t)addr;
    966 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    967 			cc = (size_t)(maxcnt - len);
    968 		ep = memchr(cp, '\0', cc);
    969 		if (ep != NULL)
    970 			cc = ep - cp + 1;
    971 		if (len + cc > kd->argspc_len) {
    972 			ptrdiff_t off;
    973 			char **pp;
    974 			char *op = kd->argspc;
    975 
    976 			kd->argspc_len *= 2;
    977 			kd->argspc = _kvm_realloc(kd, kd->argspc,
    978 			    kd->argspc_len);
    979 			if (kd->argspc == NULL)
    980 				return (NULL);
    981 			/*
    982 			 * Adjust argv pointers in case realloc moved
    983 			 * the string space.
    984 			 */
    985 			off = kd->argspc - op;
    986 			for (pp = kd->argv; pp < argv; pp++)
    987 				*pp += off;
    988 			ap += off;
    989 			np += off;
    990 		}
    991 		memcpy(np, cp, cc);
    992 		np += cc;
    993 		len += cc;
    994 		if (ep != NULL) {
    995 			*argv++ = ap;
    996 			ap = np;
    997 		} else
    998 			*argv += cc;
    999 		if (maxcnt > 0 && len >= maxcnt) {
   1000 			/*
   1001 			 * We're stopping prematurely.  Terminate the
   1002 			 * current string.
   1003 			 */
   1004 			if (ep == NULL) {
   1005 				*np = '\0';
   1006 				*argv++ = ap;
   1007 			}
   1008 			break;
   1009 		}
   1010 	}
   1011 	/* Make sure argv is terminated. */
   1012 	*argv = NULL;
   1013 	return (kd->argv);
   1014 }
   1015 
   1016 static void
   1017 ps_str_a(p, addr, n)
   1018 	struct ps_strings *p;
   1019 	u_long *addr;
   1020 	int *n;
   1021 {
   1022 
   1023 	*addr = (u_long)p->ps_argvstr;
   1024 	*n = p->ps_nargvstr;
   1025 }
   1026 
   1027 static void
   1028 ps_str_e(p, addr, n)
   1029 	struct ps_strings *p;
   1030 	u_long *addr;
   1031 	int *n;
   1032 {
   1033 
   1034 	*addr = (u_long)p->ps_envstr;
   1035 	*n = p->ps_nenvstr;
   1036 }
   1037 
   1038 /*
   1039  * Determine if the proc indicated by p is still active.
   1040  * This test is not 100% foolproof in theory, but chances of
   1041  * being wrong are very low.
   1042  */
   1043 static int
   1044 proc_verify(kd, kernp, p)
   1045 	kvm_t *kd;
   1046 	u_long kernp;
   1047 	const struct miniproc *p;
   1048 {
   1049 	struct proc kernproc;
   1050 
   1051 	/*
   1052 	 * Just read in the whole proc.  It's not that big relative
   1053 	 * to the cost of the read system call.
   1054 	 */
   1055 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
   1056 	    sizeof(kernproc))
   1057 		return (0);
   1058 	return (p->p_pid == kernproc.p_pid &&
   1059 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
   1060 }
   1061 
   1062 static char **
   1063 kvm_doargv(kd, p, nchr, info)
   1064 	kvm_t *kd;
   1065 	const struct miniproc *p;
   1066 	int nchr;
   1067 	void (*info)(struct ps_strings *, u_long *, int *);
   1068 {
   1069 	char **ap;
   1070 	u_long addr;
   1071 	int cnt;
   1072 	struct ps_strings arginfo;
   1073 
   1074 	/*
   1075 	 * Pointers are stored at the top of the user stack.
   1076 	 */
   1077 	if (p->p_stat == SZOMB)
   1078 		return (NULL);
   1079 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
   1080 	    (void *)&arginfo, sizeof(arginfo));
   1081 	if (cnt != sizeof(arginfo))
   1082 		return (NULL);
   1083 
   1084 	(*info)(&arginfo, &addr, &cnt);
   1085 	if (cnt == 0)
   1086 		return (NULL);
   1087 	ap = kvm_argv(kd, p, addr, cnt, nchr);
   1088 	/*
   1089 	 * For live kernels, make sure this process didn't go away.
   1090 	 */
   1091 	if (ap != NULL && ISALIVE(kd) &&
   1092 	    !proc_verify(kd, (u_long)p->p_paddr, p))
   1093 		ap = NULL;
   1094 	return (ap);
   1095 }
   1096 
   1097 /*
   1098  * Get the command args.  This code is now machine independent.
   1099  */
   1100 char **
   1101 kvm_getargv(kd, kp, nchr)
   1102 	kvm_t *kd;
   1103 	const struct kinfo_proc *kp;
   1104 	int nchr;
   1105 {
   1106 	struct miniproc p;
   1107 
   1108 	KPTOMINI(kp, &p);
   1109 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
   1110 }
   1111 
   1112 char **
   1113 kvm_getenvv(kd, kp, nchr)
   1114 	kvm_t *kd;
   1115 	const struct kinfo_proc *kp;
   1116 	int nchr;
   1117 {
   1118 	struct miniproc p;
   1119 
   1120 	KPTOMINI(kp, &p);
   1121 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1122 }
   1123 
   1124 static char **
   1125 kvm_doargv2(kd, pid, type, nchr)
   1126 	kvm_t *kd;
   1127 	pid_t pid;
   1128 	int type;
   1129 	int nchr;
   1130 {
   1131 	size_t bufs;
   1132 	int narg, mib[4];
   1133 	size_t newargspc_len;
   1134 	char **ap, *bp, *endp;
   1135 
   1136 	/*
   1137 	 * Check that there aren't an unreasonable number of arguments.
   1138 	 */
   1139 	if (nchr > ARG_MAX)
   1140 		return (NULL);
   1141 
   1142 	if (nchr == 0)
   1143 		nchr = ARG_MAX;
   1144 
   1145 	/* Get number of strings in argv */
   1146 	mib[0] = CTL_KERN;
   1147 	mib[1] = KERN_PROC_ARGS;
   1148 	mib[2] = pid;
   1149 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1150 	bufs = sizeof(narg);
   1151 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
   1152 		return (NULL);
   1153 
   1154 	if (kd->argv == NULL) {
   1155 		/*
   1156 		 * Try to avoid reallocs.
   1157 		 */
   1158 		kd->argc = MAX(narg + 1, 32);
   1159 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
   1160 		if (kd->argv == NULL)
   1161 			return (NULL);
   1162 	} else if (narg + 1 > kd->argc) {
   1163 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1164 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
   1165 		    sizeof(*kd->argv));
   1166 		if (kd->argv == NULL)
   1167 			return (NULL);
   1168 	}
   1169 
   1170 	newargspc_len = MIN(nchr, ARG_MAX);
   1171 	KVM_ALLOC(kd, argspc, newargspc_len);
   1172 	memset(kd->argspc, 0, (size_t)kd->argspc_len);	/* XXX necessary? */
   1173 
   1174 	mib[0] = CTL_KERN;
   1175 	mib[1] = KERN_PROC_ARGS;
   1176 	mib[2] = pid;
   1177 	mib[3] = type;
   1178 	bufs = kd->argspc_len;
   1179 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
   1180 		return (NULL);
   1181 
   1182 	bp = kd->argspc;
   1183 	bp[kd->argspc_len-1] = '\0';	/* make sure the string ends with nul */
   1184 	ap = kd->argv;
   1185 	endp = bp + MIN(nchr, bufs);
   1186 
   1187 	while (bp < endp) {
   1188 		*ap++ = bp;
   1189 		/*
   1190 		 * XXX: don't need following anymore, or stick check
   1191 		 * for max argc in above while loop?
   1192 		 */
   1193 		if (ap >= kd->argv + kd->argc) {
   1194 			kd->argc *= 2;
   1195 			kd->argv = _kvm_realloc(kd, kd->argv,
   1196 			    kd->argc * sizeof(*kd->argv));
   1197 			ap = kd->argv;
   1198 		}
   1199 		bp += strlen(bp) + 1;
   1200 	}
   1201 	*ap = NULL;
   1202 
   1203 	return (kd->argv);
   1204 }
   1205 
   1206 char **
   1207 kvm_getargv2(kd, kp, nchr)
   1208 	kvm_t *kd;
   1209 	const struct kinfo_proc2 *kp;
   1210 	int nchr;
   1211 {
   1212 
   1213 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1214 }
   1215 
   1216 char **
   1217 kvm_getenvv2(kd, kp, nchr)
   1218 	kvm_t *kd;
   1219 	const struct kinfo_proc2 *kp;
   1220 	int nchr;
   1221 {
   1222 
   1223 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1224 }
   1225 
   1226 /*
   1227  * Read from user space.  The user context is given by p.
   1228  */
   1229 static ssize_t
   1230 kvm_ureadm(kd, p, uva, buf, len)
   1231 	kvm_t *kd;
   1232 	const struct miniproc *p;
   1233 	u_long uva;
   1234 	char *buf;
   1235 	size_t len;
   1236 {
   1237 	char *cp;
   1238 
   1239 	cp = buf;
   1240 	while (len > 0) {
   1241 		size_t cc;
   1242 		char *dp;
   1243 		u_long cnt;
   1244 
   1245 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1246 		if (dp == NULL) {
   1247 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1248 			return (0);
   1249 		}
   1250 		cc = (size_t)MIN(cnt, len);
   1251 		memcpy(cp, dp, cc);
   1252 		cp += cc;
   1253 		uva += cc;
   1254 		len -= cc;
   1255 	}
   1256 	return (ssize_t)(cp - buf);
   1257 }
   1258 
   1259 ssize_t
   1260 kvm_uread(kd, p, uva, buf, len)
   1261 	kvm_t *kd;
   1262 	const struct proc *p;
   1263 	u_long uva;
   1264 	char *buf;
   1265 	size_t len;
   1266 {
   1267 	struct miniproc mp;
   1268 
   1269 	PTOMINI(p, &mp);
   1270 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1271 }
   1272