Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.7
      1 /*-
      2  * Copyright (c) 1994 Charles Hannum.
      3  * Copyright (c) 1989, 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * This code is derived from software developed by the Computer Systems
      7  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
      8  * BG 91-66 and contributed to Berkeley.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  */
     38 
     39 #if defined(LIBC_SCCS) && !defined(lint)
     40 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     41 #endif /* LIBC_SCCS and not lint */
     42 
     43 /*
     44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     45  * users of this code, so we've factored it out into a separate module.
     46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     47  * most other applications are interested only in open/close/read/nlist).
     48  */
     49 
     50 #include <sys/param.h>
     51 #include <sys/user.h>
     52 #include <sys/proc.h>
     53 #include <sys/exec.h>
     54 #include <sys/stat.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/tty.h>
     57 #include <stdlib.h>
     58 #include <unistd.h>
     59 #include <nlist.h>
     60 #include <kvm.h>
     61 
     62 #include <vm/vm.h>
     63 #include <vm/vm_param.h>
     64 #include <vm/swap_pager.h>
     65 
     66 #include <sys/sysctl.h>
     67 
     68 #include <limits.h>
     69 #include <db.h>
     70 #include <paths.h>
     71 
     72 #include "kvm_private.h"
     73 
     74 #define KREAD(kd, addr, obj) \
     75 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
     76 
     77 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
     78 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, size_t));
     79 
     80 static char *
     81 kvm_readswap(kd, p, va, cnt)
     82 	kvm_t *kd;
     83 	const struct proc *p;
     84 	u_long va;
     85 	u_long *cnt;
     86 {
     87 	register u_long addr, head;
     88 	register u_long offset;
     89 	struct vm_map_entry vme;
     90 	struct vm_object vmo;
     91 
     92 	if (kd->swapspc == 0) {
     93 		kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
     94 		if (kd->swapspc == 0)
     95 			return (0);
     96 	}
     97 	head = (u_long)&p->p_vmspace->vm_map.header;
     98 	/*
     99 	 * Look through the address map for the memory object
    100 	 * that corresponds to the given virtual address.
    101 	 * The header just has the entire valid range.
    102 	 */
    103 	addr = head;
    104 	while (1) {
    105 		if (KREAD(kd, addr, &vme))
    106 			return (0);
    107 
    108 		if (va >= vme.start && va < vme.end &&
    109 		    vme.object.vm_object != 0)
    110 			break;
    111 
    112 		addr = (u_long)vme.next;
    113 		if (addr == head)
    114 			return (0);
    115 	}
    116 
    117 	/*
    118 	 * We found the right object -- follow shadow links.
    119 	 */
    120 	offset = va - vme.start + vme.offset;
    121 	addr = (u_long)vme.object.vm_object;
    122 	while (1) {
    123 		if (KREAD(kd, addr, &vmo))
    124 			return (0);
    125 
    126 		/* If there is a pager here, see if it has the page. */
    127 		if (vmo.pager != 0 &&
    128 		    _kvm_readfrompager(kd, &vmo, offset))
    129 			break;
    130 
    131 		/* Move down the shadow chain. */
    132 		addr = (u_long)vmo.shadow;
    133 		if (addr == 0)
    134 			return (0);
    135 		offset += vmo.shadow_offset;
    136 	}
    137 
    138 	/* Found the page. */
    139 	offset %= kd->nbpg;
    140 	*cnt = kd->nbpg - offset;
    141 	return (&kd->swapspc[offset]);
    142 }
    143 
    144 int
    145 _kvm_readfrompager(kd, vmop, offset)
    146 	kvm_t *kd;
    147 	struct vm_object *vmop;
    148 	u_long offset;
    149 {
    150 	u_long addr;
    151 	struct pager_struct pager;
    152 	struct swpager swap;
    153 	int ix;
    154 	struct swblock swb;
    155 	register off_t seekpoint;
    156 
    157 	/* Read in the pager info and make sure it's a swap device. */
    158 	addr = (u_long)vmop->pager;
    159 	if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
    160 		return (0);
    161 
    162 	/* Read in the swap_pager private data. */
    163 	addr = (u_long)pager.pg_data;
    164 	if (KREAD(kd, addr, &swap))
    165 		return (0);
    166 
    167 	/*
    168 	 * Calculate the paging offset, and make sure it's within the
    169 	 * bounds of the pager.
    170 	 */
    171 	offset += vmop->paging_offset;
    172 	ix = offset / dbtob(swap.sw_bsize);
    173 #if 0
    174 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
    175 		return (0);
    176 #else
    177 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
    178 		int i;
    179 		printf("BUG BUG BUG BUG:\n");
    180 		printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
    181 		    vmop, offset - vmop->paging_offset, vmop->paging_offset,
    182 		    vmop->pager, pager.pg_data);
    183 		printf("osize %x bsize %x blocks %x nblocks %x\n",
    184 		    swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
    185 		    swap.sw_nblocks);
    186 		for (ix = 0; ix < swap.sw_nblocks; ix++) {
    187 			addr = (u_long)&swap.sw_blocks[ix];
    188 			if (KREAD(kd, addr, &swb))
    189 				return (0);
    190 			printf("sw_blocks[%d]: block %x mask %x\n", ix,
    191 			    swb.swb_block, swb.swb_mask);
    192 		}
    193 		return (0);
    194 	}
    195 #endif
    196 
    197 	/* Read in the swap records. */
    198 	addr = (u_long)&swap.sw_blocks[ix];
    199 	if (KREAD(kd, addr, &swb))
    200 		return (0);
    201 
    202 	/* Calculate offset within pager. */
    203 	offset %= dbtob(swap.sw_bsize);
    204 
    205 	/* Check that the page is actually present. */
    206 	if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
    207 		return (0);
    208 
    209 	/* Calculate the physical address and read the page. */
    210 	seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
    211 	if (lseek(kd->swfd, seekpoint, 0) == -1)
    212 		return (0);
    213 	if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
    214 		return (0);
    215 
    216 	return (1);
    217 }
    218 
    219 /*
    220  * Read proc's from memory file into buffer bp, which has space to hold
    221  * at most maxcnt procs.
    222  */
    223 static int
    224 kvm_proclist(kd, what, arg, p, bp, maxcnt)
    225 	kvm_t *kd;
    226 	int what, arg;
    227 	struct proc *p;
    228 	struct kinfo_proc *bp;
    229 	int maxcnt;
    230 {
    231 	register int cnt = 0;
    232 	struct eproc eproc;
    233 	struct pgrp pgrp;
    234 	struct session sess;
    235 	struct tty tty;
    236 	struct proc proc;
    237 
    238 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    239 		if (KREAD(kd, (u_long)p, &proc)) {
    240 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
    241 			return (-1);
    242 		}
    243 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
    244 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
    245 			      &eproc.e_ucred);
    246 
    247 		switch(what) {
    248 
    249 		case KERN_PROC_PID:
    250 			if (proc.p_pid != (pid_t)arg)
    251 				continue;
    252 			break;
    253 
    254 		case KERN_PROC_UID:
    255 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    256 				continue;
    257 			break;
    258 
    259 		case KERN_PROC_RUID:
    260 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    261 				continue;
    262 			break;
    263 		}
    264 		/*
    265 		 * We're going to add another proc to the set.  If this
    266 		 * will overflow the buffer, assume the reason is because
    267 		 * nprocs (or the proc list) is corrupt and declare an error.
    268 		 */
    269 		if (cnt >= maxcnt) {
    270 			_kvm_err(kd, kd->program, "nprocs corrupt");
    271 			return (-1);
    272 		}
    273 		/*
    274 		 * gather eproc
    275 		 */
    276 		eproc.e_paddr = p;
    277 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    278 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
    279 				 proc.p_pgrp);
    280 			return (-1);
    281 		}
    282 		eproc.e_sess = pgrp.pg_session;
    283 		eproc.e_pgid = pgrp.pg_id;
    284 		eproc.e_jobc = pgrp.pg_jobc;
    285 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    286 			_kvm_err(kd, kd->program, "can't read session at %x",
    287 				pgrp.pg_session);
    288 			return (-1);
    289 		}
    290 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
    291 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    292 				_kvm_err(kd, kd->program,
    293 					 "can't read tty at %x", sess.s_ttyp);
    294 				return (-1);
    295 			}
    296 			eproc.e_tdev = tty.t_dev;
    297 			eproc.e_tsess = tty.t_session;
    298 			if (tty.t_pgrp != NULL) {
    299 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    300 					_kvm_err(kd, kd->program,
    301 						 "can't read tpgrp at &x",
    302 						tty.t_pgrp);
    303 					return (-1);
    304 				}
    305 				eproc.e_tpgid = pgrp.pg_id;
    306 			} else
    307 				eproc.e_tpgid = -1;
    308 		} else
    309 			eproc.e_tdev = NODEV;
    310 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    311 		if (sess.s_leader == p)
    312 			eproc.e_flag |= EPROC_SLEADER;
    313 		if (proc.p_wmesg)
    314 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
    315 			    eproc.e_wmesg, WMESGLEN);
    316 
    317 #ifdef sparc
    318 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
    319 		    (char *)&eproc.e_vm.vm_rssize,
    320 		    sizeof(eproc.e_vm.vm_rssize));
    321 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
    322 		    (char *)&eproc.e_vm.vm_tsize,
    323 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
    324 #else
    325 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
    326 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
    327 #endif
    328 		eproc.e_xsize = eproc.e_xrssize = 0;
    329 		eproc.e_xccount = eproc.e_xswrss = 0;
    330 
    331 		switch (what) {
    332 
    333 		case KERN_PROC_PGRP:
    334 			if (eproc.e_pgid != (pid_t)arg)
    335 				continue;
    336 			break;
    337 
    338 		case KERN_PROC_TTY:
    339 			if ((proc.p_flag & P_CONTROLT) == 0 ||
    340 			     eproc.e_tdev != (dev_t)arg)
    341 				continue;
    342 			break;
    343 		}
    344 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
    345 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
    346 		++bp;
    347 		++cnt;
    348 	}
    349 	return (cnt);
    350 }
    351 
    352 /*
    353  * Build proc info array by reading in proc list from a crash dump.
    354  * Return number of procs read.  maxcnt is the max we will read.
    355  */
    356 static int
    357 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
    358 	kvm_t *kd;
    359 	int what, arg;
    360 	u_long a_allproc;
    361 	u_long a_zombproc;
    362 	int maxcnt;
    363 {
    364 	register struct kinfo_proc *bp = kd->procbase;
    365 	register int acnt, zcnt;
    366 	struct proc *p;
    367 
    368 	if (KREAD(kd, a_allproc, &p)) {
    369 		_kvm_err(kd, kd->program, "cannot read allproc");
    370 		return (-1);
    371 	}
    372 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    373 	if (acnt < 0)
    374 		return (acnt);
    375 
    376 	if (KREAD(kd, a_zombproc, &p)) {
    377 		_kvm_err(kd, kd->program, "cannot read zombproc");
    378 		return (-1);
    379 	}
    380 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
    381 	if (zcnt < 0)
    382 		zcnt = 0;
    383 
    384 	return (acnt + zcnt);
    385 }
    386 
    387 struct kinfo_proc *
    388 kvm_getprocs(kd, op, arg, cnt)
    389 	kvm_t *kd;
    390 	int op, arg;
    391 	int *cnt;
    392 {
    393 	size_t size;
    394 	int mib[4], st, nprocs;
    395 
    396 	if (kd->procbase != 0) {
    397 		free((void *)kd->procbase);
    398 		/*
    399 		 * Clear this pointer in case this call fails.  Otherwise,
    400 		 * kvm_close() will free it again.
    401 		 */
    402 		kd->procbase = 0;
    403 	}
    404 	if (ISALIVE(kd)) {
    405 		size = 0;
    406 		mib[0] = CTL_KERN;
    407 		mib[1] = KERN_PROC;
    408 		mib[2] = op;
    409 		mib[3] = arg;
    410 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
    411 		if (st == -1) {
    412 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    413 			return (0);
    414 		}
    415 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    416 		if (kd->procbase == 0)
    417 			return (0);
    418 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
    419 		if (st == -1) {
    420 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    421 			return (0);
    422 		}
    423 		if (size % sizeof(struct kinfo_proc) != 0) {
    424 			_kvm_err(kd, kd->program,
    425 				"proc size mismatch (%d total, %d chunks)",
    426 				size, sizeof(struct kinfo_proc));
    427 			return (0);
    428 		}
    429 		nprocs = size / sizeof(struct kinfo_proc);
    430 	} else {
    431 		struct nlist nl[4], *p;
    432 
    433 		nl[0].n_name = "_nprocs";
    434 		nl[1].n_name = "_allproc";
    435 		nl[2].n_name = "_zombproc";
    436 		nl[3].n_name = 0;
    437 
    438 		if (kvm_nlist(kd, nl) != 0) {
    439 			for (p = nl; p->n_type != 0; ++p)
    440 				;
    441 			_kvm_err(kd, kd->program,
    442 				 "%s: no such symbol", p->n_name);
    443 			return (0);
    444 		}
    445 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    446 			_kvm_err(kd, kd->program, "can't read nprocs");
    447 			return (0);
    448 		}
    449 		size = nprocs * sizeof(struct kinfo_proc);
    450 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
    451 		if (kd->procbase == 0)
    452 			return (0);
    453 
    454 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    455 				      nl[2].n_value, nprocs);
    456 #ifdef notdef
    457 		size = nprocs * sizeof(struct kinfo_proc);
    458 		(void)realloc(kd->procbase, size);
    459 #endif
    460 	}
    461 	*cnt = nprocs;
    462 	return (kd->procbase);
    463 }
    464 
    465 void
    466 _kvm_freeprocs(kd)
    467 	kvm_t *kd;
    468 {
    469 	if (kd->procbase) {
    470 		free(kd->procbase);
    471 		kd->procbase = 0;
    472 	}
    473 }
    474 
    475 void *
    476 _kvm_realloc(kd, p, n)
    477 	kvm_t *kd;
    478 	void *p;
    479 	size_t n;
    480 {
    481 	void *np = (void *)realloc(p, n);
    482 
    483 	if (np == 0)
    484 		_kvm_err(kd, kd->program, "out of memory");
    485 	return (np);
    486 }
    487 
    488 #ifndef MAX
    489 #define MAX(a, b) ((a) > (b) ? (a) : (b))
    490 #endif
    491 
    492 /*
    493  * Read in an argument vector from the user address space of process p.
    494  * addr if the user-space base address of narg null-terminated contiguous
    495  * strings.  This is used to read in both the command arguments and
    496  * environment strings.  Read at most maxcnt characters of strings.
    497  */
    498 static char **
    499 kvm_argv(kd, p, addr, narg, maxcnt)
    500 	kvm_t *kd;
    501 	struct proc *p;
    502 	register u_long addr;
    503 	register int narg;
    504 	register int maxcnt;
    505 {
    506 	register char *cp;
    507 	register int len, cc;
    508 	register char **argv;
    509 
    510 	/*
    511 	 * Check that there aren't an unreasonable number of agruments,
    512 	 * and that the address is in user space.
    513 	 */
    514 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
    515 		return (0);
    516 
    517 	if (kd->argv == 0) {
    518 		/*
    519 		 * Try to avoid reallocs.
    520 		 */
    521 		kd->argc = MAX(narg + 1, 32);
    522 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
    523 						sizeof(*kd->argv));
    524 		if (kd->argv == 0)
    525 			return (0);
    526 	} else if (narg + 1 > kd->argc) {
    527 		kd->argc = MAX(2 * kd->argc, narg + 1);
    528 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
    529 						sizeof(*kd->argv));
    530 		if (kd->argv == 0)
    531 			return (0);
    532 	}
    533 	if (kd->argspc == 0) {
    534 		kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
    535 		if (kd->argspc == 0)
    536 			return (0);
    537 		kd->arglen = kd->nbpg;
    538 	}
    539 	cp = kd->argspc;
    540 	argv = kd->argv;
    541 	*argv = cp;
    542 	len = 0;
    543 	/*
    544 	 * Loop over pages, filling in the argument vector.
    545 	 */
    546 	while (addr < VM_MAXUSER_ADDRESS) {
    547 		cc = kd->nbpg - (addr & (kd->nbpg - 1));
    548 		if (maxcnt > 0 && cc > maxcnt - len)
    549 			cc = maxcnt - len;;
    550 		if (len + cc > kd->arglen) {
    551 			register int off;
    552 			register char **pp;
    553 			register char *op = kd->argspc;
    554 
    555 			kd->arglen *= 2;
    556 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
    557 							  kd->arglen);
    558 			if (kd->argspc == 0)
    559 				return (0);
    560 			cp = &kd->argspc[len];
    561 			/*
    562 			 * Adjust argv pointers in case realloc moved
    563 			 * the string space.
    564 			 */
    565 			off = kd->argspc - op;
    566 			for (pp = kd->argv; pp < argv; ++pp)
    567 				*pp += off;
    568 		}
    569 		if (kvm_uread(kd, p, addr, cp, cc) != cc)
    570 			/* XXX */
    571 			return (0);
    572 		len += cc;
    573 		addr += cc;
    574 
    575 		if (maxcnt == 0 && len > 16 * kd->nbpg)
    576 			/* sanity */
    577 			return (0);
    578 
    579 		while (--cc >= 0) {
    580 			if (*cp++ == 0) {
    581 				if (--narg <= 0) {
    582 					*++argv = 0;
    583 					return (kd->argv);
    584 				} else
    585 					*++argv = cp;
    586 			}
    587 		}
    588 		if (maxcnt > 0 && len >= maxcnt) {
    589 			/*
    590 			 * We're stopping prematurely.  Terminate the
    591 			 * argv and current string.
    592 			 */
    593 			*++argv = 0;
    594 			*cp = 0;
    595 			return (kd->argv);
    596 		}
    597 	}
    598 }
    599 
    600 static void
    601 ps_str_a(p, addr, n)
    602 	struct ps_strings *p;
    603 	u_long *addr;
    604 	int *n;
    605 {
    606 	*addr = (u_long)p->ps_argvstr;
    607 	*n = p->ps_nargvstr;
    608 }
    609 
    610 static void
    611 ps_str_e(p, addr, n)
    612 	struct ps_strings *p;
    613 	u_long *addr;
    614 	int *n;
    615 {
    616 	*addr = (u_long)p->ps_envstr;
    617 	*n = p->ps_nenvstr;
    618 }
    619 
    620 /*
    621  * Determine if the proc indicated by p is still active.
    622  * This test is not 100% foolproof in theory, but chances of
    623  * being wrong are very low.
    624  */
    625 static int
    626 proc_verify(kd, kernp, p)
    627 	kvm_t *kd;
    628 	u_long kernp;
    629 	const struct proc *p;
    630 {
    631 	struct proc kernproc;
    632 
    633 	/*
    634 	 * Just read in the whole proc.  It's not that big relative
    635 	 * to the cost of the read system call.
    636 	 */
    637 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
    638 	    sizeof(kernproc))
    639 		return (0);
    640 	return (p->p_pid == kernproc.p_pid &&
    641 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
    642 }
    643 
    644 static char **
    645 kvm_doargv(kd, kp, nchr, info)
    646 	kvm_t *kd;
    647 	const struct kinfo_proc *kp;
    648 	int nchr;
    649 	int (*info)(struct ps_strings*, u_long *, int *);
    650 {
    651 	register const struct proc *p = &kp->kp_proc;
    652 	register char **ap;
    653 	u_long addr;
    654 	int cnt;
    655 	struct ps_strings arginfo;
    656 
    657 	/*
    658 	 * Pointers are stored at the top of the user stack.
    659 	 */
    660 	if (p->p_stat == SZOMB ||
    661 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
    662 		      sizeof(arginfo)) != sizeof(arginfo))
    663 		return (0);
    664 
    665 	(*info)(&arginfo, &addr, &cnt);
    666 	if (cnt == 0)
    667 		return (0);
    668 	ap = kvm_argv(kd, p, addr, cnt, nchr);
    669 	/*
    670 	 * For live kernels, make sure this process didn't go away.
    671 	 */
    672 	if (ap != 0 && ISALIVE(kd) &&
    673 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
    674 		ap = 0;
    675 	return (ap);
    676 }
    677 
    678 /*
    679  * Get the command args.  This code is now machine independent.
    680  */
    681 char **
    682 kvm_getargv(kd, kp, nchr)
    683 	kvm_t *kd;
    684 	const struct kinfo_proc *kp;
    685 	int nchr;
    686 {
    687 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
    688 }
    689 
    690 char **
    691 kvm_getenvv(kd, kp, nchr)
    692 	kvm_t *kd;
    693 	const struct kinfo_proc *kp;
    694 	int nchr;
    695 {
    696 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
    697 }
    698 
    699 /*
    700  * Read from user space.  The user context is given by p.
    701  */
    702 ssize_t
    703 kvm_uread(kd, p, uva, buf, len)
    704 	kvm_t *kd;
    705 	register const struct proc *p;
    706 	register u_long uva;
    707 	register char *buf;
    708 	register size_t len;
    709 {
    710 	register char *cp;
    711 
    712 	cp = buf;
    713 	while (len > 0) {
    714 		u_long pa;
    715 		register int cc;
    716 
    717 		cc = _kvm_uvatop(kd, p, uva, &pa);
    718 		if (cc > 0) {
    719 			if (cc > len)
    720 				cc = len;
    721 			errno = 0;
    722 			if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
    723 				_kvm_err(kd, 0, "invalid address (%x)", uva);
    724 				break;
    725 			}
    726 			cc = read(kd->pmfd, cp, cc);
    727 			if (cc < 0) {
    728 				_kvm_syserr(kd, 0, _PATH_MEM);
    729 				break;
    730 			} else if (cc < len) {
    731 				_kvm_err(kd, kd->program, "short read");
    732 				break;
    733 			}
    734 		} else if (ISALIVE(kd)) {
    735 			/* try swap */
    736 			register char *dp;
    737 			int cnt;
    738 
    739 			dp = kvm_readswap(kd, p, uva, &cnt);
    740 			if (dp == 0) {
    741 				_kvm_err(kd, 0, "invalid address (%x)", uva);
    742 				return (0);
    743 			}
    744 			cc = MIN(cnt, len);
    745 			bcopy(dp, cp, cc);
    746 		} else
    747 			break;
    748 		cp += cc;
    749 		uva += cc;
    750 		len -= cc;
    751 	}
    752 	return (ssize_t)(cp - buf);
    753 }
    754