kvm_proc.c revision 1.77 1 /* $NetBSD: kvm_proc.c,v 1.77 2008/02/05 15:56:01 elad Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1989, 1992, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software developed by the Computer Systems
44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45 * BG 91-66 and contributed to Berkeley.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 #if defined(LIBC_SCCS) && !defined(lint)
74 #if 0
75 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
76 #else
77 __RCSID("$NetBSD: kvm_proc.c,v 1.77 2008/02/05 15:56:01 elad Exp $");
78 #endif
79 #endif /* LIBC_SCCS and not lint */
80
81 /*
82 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
83 * users of this code, so we've factored it out into a separate module.
84 * Thus, we keep this grunge out of the other kvm applications (i.e.,
85 * most other applications are interested only in open/close/read/nlist).
86 */
87
88 #include <sys/param.h>
89 #include <sys/user.h>
90 #include <sys/lwp.h>
91 #include <sys/proc.h>
92 #include <sys/exec.h>
93 #include <sys/stat.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <sys/resourcevar.h>
97 #include <sys/mutex.h>
98 #include <sys/specificdata.h>
99
100 #include <errno.h>
101 #include <stdlib.h>
102 #include <stddef.h>
103 #include <string.h>
104 #include <unistd.h>
105 #include <nlist.h>
106 #include <kvm.h>
107
108 #include <uvm/uvm_extern.h>
109 #include <uvm/uvm_amap.h>
110
111 #include <sys/sysctl.h>
112
113 #include <limits.h>
114 #include <db.h>
115 #include <paths.h>
116
117 #include "kvm_private.h"
118
119 /*
120 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
121 */
122 struct miniproc {
123 struct vmspace *p_vmspace;
124 char p_stat;
125 struct proc *p_paddr;
126 pid_t p_pid;
127 };
128
129 /*
130 * Convert from struct proc and kinfo_proc{,2} to miniproc.
131 */
132 #define PTOMINI(kp, p) \
133 do { \
134 (p)->p_stat = (kp)->p_stat; \
135 (p)->p_pid = (kp)->p_pid; \
136 (p)->p_paddr = NULL; \
137 (p)->p_vmspace = (kp)->p_vmspace; \
138 } while (/*CONSTCOND*/0);
139
140 #define KPTOMINI(kp, p) \
141 do { \
142 (p)->p_stat = (kp)->kp_proc.p_stat; \
143 (p)->p_pid = (kp)->kp_proc.p_pid; \
144 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
145 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
146 } while (/*CONSTCOND*/0);
147
148 #define KP2TOMINI(kp, p) \
149 do { \
150 (p)->p_stat = (kp)->p_stat; \
151 (p)->p_pid = (kp)->p_pid; \
152 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
153 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
154 } while (/*CONSTCOND*/0);
155
156 /*
157 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
158 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
159 * kvm(3) so dumps can be read properly.
160 *
161 * Whenever NetBSD starts exporting credentials to userland consistently (using
162 * 'struct uucred', or something) this will have to be updated again.
163 */
164 struct kvm_kauth_cred {
165 u_int cr_refcnt; /* reference count */
166 uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
167 uid_t cr_uid; /* user id */
168 uid_t cr_euid; /* effective user id */
169 uid_t cr_svuid; /* saved effective user id */
170 gid_t cr_gid; /* group id */
171 gid_t cr_egid; /* effective group id */
172 gid_t cr_svgid; /* saved effective group id */
173 u_int cr_ngroups; /* number of groups */
174 gid_t cr_groups[NGROUPS]; /* group memberships */
175 specificdata_reference cr_sd; /* specific data */
176 };
177
178 #define KREAD(kd, addr, obj) \
179 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
180
181 /* XXX: What uses these two functions? */
182 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
183 u_long *));
184 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
185 size_t));
186
187 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
188 u_long *));
189 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
190 char *, size_t));
191
192 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
193 int));
194 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
195 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
196 void (*)(struct ps_strings *, u_long *, int *)));
197 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
198 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
199 struct kinfo_proc *, int));
200 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
201 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
202 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
203
204
205 static char *
206 _kvm_ureadm(kd, p, va, cnt)
207 kvm_t *kd;
208 const struct miniproc *p;
209 u_long va;
210 u_long *cnt;
211 {
212 u_long addr, head;
213 u_long offset;
214 struct vm_map_entry vme;
215 struct vm_amap amap;
216 struct vm_anon *anonp, anon;
217 struct vm_page pg;
218 u_long slot;
219
220 if (kd->swapspc == NULL) {
221 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
222 if (kd->swapspc == NULL)
223 return (NULL);
224 }
225
226 /*
227 * Look through the address map for the memory object
228 * that corresponds to the given virtual address.
229 * The header just has the entire valid range.
230 */
231 head = (u_long)&p->p_vmspace->vm_map.header;
232 addr = head;
233 for (;;) {
234 if (KREAD(kd, addr, &vme))
235 return (NULL);
236
237 if (va >= vme.start && va < vme.end &&
238 vme.aref.ar_amap != NULL)
239 break;
240
241 addr = (u_long)vme.next;
242 if (addr == head)
243 return (NULL);
244 }
245
246 /*
247 * we found the map entry, now to find the object...
248 */
249 if (vme.aref.ar_amap == NULL)
250 return (NULL);
251
252 addr = (u_long)vme.aref.ar_amap;
253 if (KREAD(kd, addr, &amap))
254 return (NULL);
255
256 offset = va - vme.start;
257 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
258 /* sanity-check slot number */
259 if (slot > amap.am_nslot)
260 return (NULL);
261
262 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
263 if (KREAD(kd, addr, &anonp))
264 return (NULL);
265
266 addr = (u_long)anonp;
267 if (KREAD(kd, addr, &anon))
268 return (NULL);
269
270 addr = (u_long)anon.an_page;
271 if (addr) {
272 if (KREAD(kd, addr, &pg))
273 return (NULL);
274
275 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
276 (off_t)pg.phys_addr) != kd->nbpg)
277 return (NULL);
278 } else {
279 if (kd->swfd < 0 ||
280 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
281 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
282 return (NULL);
283 }
284
285 /* Found the page. */
286 offset %= kd->nbpg;
287 *cnt = kd->nbpg - offset;
288 return (&kd->swapspc[(size_t)offset]);
289 }
290
291 char *
292 _kvm_uread(kd, p, va, cnt)
293 kvm_t *kd;
294 const struct proc *p;
295 u_long va;
296 u_long *cnt;
297 {
298 struct miniproc mp;
299
300 PTOMINI(p, &mp);
301 return (_kvm_ureadm(kd, &mp, va, cnt));
302 }
303
304 /*
305 * Convert credentials located in kernel space address 'cred' and store
306 * them in the appropriate members of 'eproc'.
307 */
308 static int
309 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
310 {
311 struct kvm_kauth_cred kauthcred;
312 struct ki_pcred *pc = &eproc->e_pcred;
313 struct ki_ucred *uc = &eproc->e_ucred;
314
315 if (KREAD(kd, cred, &kauthcred) != 0)
316 return (-1);
317
318 /* inlined version of kauth_cred_to_pcred, see kauth(9). */
319 pc->p_ruid = kauthcred.cr_uid;
320 pc->p_svuid = kauthcred.cr_svuid;
321 pc->p_rgid = kauthcred.cr_gid;
322 pc->p_svgid = kauthcred.cr_svgid;
323 pc->p_refcnt = kauthcred.cr_refcnt;
324 pc->p_pad = NULL;
325
326 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
327 uc->cr_ref = kauthcred.cr_refcnt;
328 uc->cr_uid = kauthcred.cr_euid;
329 uc->cr_gid = kauthcred.cr_egid;
330 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
331 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
332 memcpy(uc->cr_groups, kauthcred.cr_groups,
333 uc->cr_ngroups * sizeof(uc->cr_groups[0]));
334
335 return (0);
336 }
337
338 /*
339 * Read proc's from memory file into buffer bp, which has space to hold
340 * at most maxcnt procs.
341 */
342 static int
343 kvm_proclist(kd, what, arg, p, bp, maxcnt)
344 kvm_t *kd;
345 int what, arg;
346 struct proc *p;
347 struct kinfo_proc *bp;
348 int maxcnt;
349 {
350 int cnt = 0;
351 int nlwps;
352 struct kinfo_lwp *kl;
353 struct eproc eproc;
354 struct pgrp pgrp;
355 struct session sess;
356 struct tty tty;
357 struct proc proc;
358
359 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
360 if (KREAD(kd, (u_long)p, &proc)) {
361 _kvm_err(kd, kd->program, "can't read proc at %p", p);
362 return (-1);
363 }
364 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
365 _kvm_err(kd, kd->program,
366 "can't read proc credentials at %p", p);
367 return (-1);
368 }
369
370 switch (what) {
371
372 case KERN_PROC_PID:
373 if (proc.p_pid != (pid_t)arg)
374 continue;
375 break;
376
377 case KERN_PROC_UID:
378 if (eproc.e_ucred.cr_uid != (uid_t)arg)
379 continue;
380 break;
381
382 case KERN_PROC_RUID:
383 if (eproc.e_pcred.p_ruid != (uid_t)arg)
384 continue;
385 break;
386 }
387 /*
388 * We're going to add another proc to the set. If this
389 * will overflow the buffer, assume the reason is because
390 * nprocs (or the proc list) is corrupt and declare an error.
391 */
392 if (cnt >= maxcnt) {
393 _kvm_err(kd, kd->program, "nprocs corrupt");
394 return (-1);
395 }
396 /*
397 * gather eproc
398 */
399 eproc.e_paddr = p;
400 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
401 _kvm_err(kd, kd->program, "can't read pgrp at %p",
402 proc.p_pgrp);
403 return (-1);
404 }
405 eproc.e_sess = pgrp.pg_session;
406 eproc.e_pgid = pgrp.pg_id;
407 eproc.e_jobc = pgrp.pg_jobc;
408 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
409 _kvm_err(kd, kd->program, "can't read session at %p",
410 pgrp.pg_session);
411 return (-1);
412 }
413 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
414 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
415 _kvm_err(kd, kd->program,
416 "can't read tty at %p", sess.s_ttyp);
417 return (-1);
418 }
419 eproc.e_tdev = tty.t_dev;
420 eproc.e_tsess = tty.t_session;
421 if (tty.t_pgrp != NULL) {
422 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
423 _kvm_err(kd, kd->program,
424 "can't read tpgrp at %p",
425 tty.t_pgrp);
426 return (-1);
427 }
428 eproc.e_tpgid = pgrp.pg_id;
429 } else
430 eproc.e_tpgid = -1;
431 } else
432 eproc.e_tdev = NODEV;
433 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
434 eproc.e_sid = sess.s_sid;
435 if (sess.s_leader == p)
436 eproc.e_flag |= EPROC_SLEADER;
437 /*
438 * Fill in the old-style proc.p_wmesg by copying the wmesg
439 * from the first available LWP.
440 */
441 kl = kvm_getlwps(kd, proc.p_pid,
442 (u_long)PTRTOUINT64(eproc.e_paddr),
443 sizeof(struct kinfo_lwp), &nlwps);
444 if (kl) {
445 if (nlwps > 0) {
446 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
447 }
448 }
449 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
450 sizeof(eproc.e_vm));
451
452 eproc.e_xsize = eproc.e_xrssize = 0;
453 eproc.e_xccount = eproc.e_xswrss = 0;
454
455 switch (what) {
456
457 case KERN_PROC_PGRP:
458 if (eproc.e_pgid != (pid_t)arg)
459 continue;
460 break;
461
462 case KERN_PROC_TTY:
463 if ((proc.p_lflag & PL_CONTROLT) == 0 ||
464 eproc.e_tdev != (dev_t)arg)
465 continue;
466 break;
467 }
468 memcpy(&bp->kp_proc, &proc, sizeof(proc));
469 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
470 ++bp;
471 ++cnt;
472 }
473 return (cnt);
474 }
475
476 /*
477 * Build proc info array by reading in proc list from a crash dump.
478 * Return number of procs read. maxcnt is the max we will read.
479 */
480 static int
481 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
482 kvm_t *kd;
483 int what, arg;
484 u_long a_allproc;
485 u_long a_zombproc;
486 int maxcnt;
487 {
488 struct kinfo_proc *bp = kd->procbase;
489 int acnt, zcnt;
490 struct proc *p;
491
492 if (KREAD(kd, a_allproc, &p)) {
493 _kvm_err(kd, kd->program, "cannot read allproc");
494 return (-1);
495 }
496 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
497 if (acnt < 0)
498 return (acnt);
499
500 if (KREAD(kd, a_zombproc, &p)) {
501 _kvm_err(kd, kd->program, "cannot read zombproc");
502 return (-1);
503 }
504 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
505 maxcnt - acnt);
506 if (zcnt < 0)
507 zcnt = 0;
508
509 return (acnt + zcnt);
510 }
511
512 struct kinfo_proc2 *
513 kvm_getproc2(kd, op, arg, esize, cnt)
514 kvm_t *kd;
515 int op, arg;
516 size_t esize;
517 int *cnt;
518 {
519 size_t size;
520 int mib[6], st, nprocs;
521 struct pstats pstats;
522
523 if (ISSYSCTL(kd)) {
524 size = 0;
525 mib[0] = CTL_KERN;
526 mib[1] = KERN_PROC2;
527 mib[2] = op;
528 mib[3] = arg;
529 mib[4] = (int)esize;
530 again:
531 mib[5] = 0;
532 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
533 if (st == -1) {
534 _kvm_syserr(kd, kd->program, "kvm_getproc2");
535 return (NULL);
536 }
537
538 mib[5] = (int) (size / esize);
539 KVM_ALLOC(kd, procbase2, size);
540 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
541 if (st == -1) {
542 if (errno == ENOMEM) {
543 goto again;
544 }
545 _kvm_syserr(kd, kd->program, "kvm_getproc2");
546 return (NULL);
547 }
548 nprocs = (int) (size / esize);
549 } else {
550 char *kp2c;
551 struct kinfo_proc *kp;
552 struct kinfo_proc2 kp2, *kp2p;
553 struct kinfo_lwp *kl;
554 int i, nlwps;
555
556 kp = kvm_getprocs(kd, op, arg, &nprocs);
557 if (kp == NULL)
558 return (NULL);
559
560 size = nprocs * esize;
561 KVM_ALLOC(kd, procbase2, size);
562 kp2c = (char *)(void *)kd->procbase2;
563 kp2p = &kp2;
564 for (i = 0; i < nprocs; i++, kp++) {
565 struct timeval tv;
566
567 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
568 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
569 sizeof(struct kinfo_lwp), &nlwps);
570
571 /* We use kl[0] as the "representative" LWP */
572 memset(kp2p, 0, sizeof(kp2));
573 kp2p->p_forw = kl[0].l_forw;
574 kp2p->p_back = kl[0].l_back;
575 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
576 kp2p->p_addr = kl[0].l_addr;
577 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
578 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
579 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
580 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
581 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
582 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
583 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
584 kp2p->p_tsess = 0;
585 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
586 kp2p->p_ru = 0;
587 #else
588 kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
589 #endif
590
591 kp2p->p_eflag = 0;
592 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
593 kp2p->p_flag = kp->kp_proc.p_flag;
594
595 kp2p->p_pid = kp->kp_proc.p_pid;
596
597 kp2p->p_ppid = kp->kp_eproc.e_ppid;
598 kp2p->p_sid = kp->kp_eproc.e_sid;
599 kp2p->p__pgid = kp->kp_eproc.e_pgid;
600
601 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
602
603 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
604 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
605 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
606 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
607 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
608 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
609
610 /*CONSTCOND*/
611 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
612 MIN(sizeof(kp2p->p_groups),
613 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
614 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
615
616 kp2p->p_jobc = kp->kp_eproc.e_jobc;
617 kp2p->p_tdev = kp->kp_eproc.e_tdev;
618 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
619 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
620
621 kp2p->p_estcpu = 0;
622 bintime2timeval(&kp->kp_proc.p_rtime, &tv);
623 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
624 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
625 kp2p->p_cpticks = kl[0].l_cpticks;
626 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
627 kp2p->p_swtime = kl[0].l_swtime;
628 kp2p->p_slptime = kl[0].l_slptime;
629 #if 0 /* XXX thorpej */
630 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
631 #else
632 kp2p->p_schedflags = 0;
633 #endif
634
635 kp2p->p_uticks = kp->kp_proc.p_uticks;
636 kp2p->p_sticks = kp->kp_proc.p_sticks;
637 kp2p->p_iticks = kp->kp_proc.p_iticks;
638
639 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
640 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
641
642 kp2p->p_holdcnt = kl[0].l_holdcnt;
643
644 memcpy(&kp2p->p_siglist,
645 &kp->kp_proc.p_sigpend.sp_set,
646 sizeof(ki_sigset_t));
647 memset(&kp2p->p_sigmask, 0,
648 sizeof(ki_sigset_t));
649 memcpy(&kp2p->p_sigignore,
650 &kp->kp_proc.p_sigctx.ps_sigignore,
651 sizeof(ki_sigset_t));
652 memcpy(&kp2p->p_sigcatch,
653 &kp->kp_proc.p_sigctx.ps_sigcatch,
654 sizeof(ki_sigset_t));
655
656 kp2p->p_stat = kl[0].l_stat;
657 kp2p->p_priority = kl[0].l_priority;
658 kp2p->p_usrpri = kl[0].l_priority;
659 kp2p->p_nice = kp->kp_proc.p_nice;
660
661 kp2p->p_xstat = kp->kp_proc.p_xstat;
662 kp2p->p_acflag = kp->kp_proc.p_acflag;
663
664 /*CONSTCOND*/
665 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
666 MIN(sizeof(kp2p->p_comm),
667 sizeof(kp->kp_proc.p_comm)));
668
669 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
670 sizeof(kp2p->p_wmesg));
671 kp2p->p_wchan = kl[0].l_wchan;
672 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
673 sizeof(kp2p->p_login));
674
675 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
676 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
677 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
678 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
679
680 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
681
682 kp2p->p_realflag = kp->kp_proc.p_flag;
683 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
684 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
685 kp2p->p_realstat = kp->kp_proc.p_stat;
686
687 if (P_ZOMBIE(&kp->kp_proc) ||
688 kp->kp_proc.p_stats == NULL ||
689 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
690 kp2p->p_uvalid = 0;
691 } else {
692 kp2p->p_uvalid = 1;
693
694 kp2p->p_ustart_sec = (u_int32_t)
695 pstats.p_start.tv_sec;
696 kp2p->p_ustart_usec = (u_int32_t)
697 pstats.p_start.tv_usec;
698
699 kp2p->p_uutime_sec = (u_int32_t)
700 pstats.p_ru.ru_utime.tv_sec;
701 kp2p->p_uutime_usec = (u_int32_t)
702 pstats.p_ru.ru_utime.tv_usec;
703 kp2p->p_ustime_sec = (u_int32_t)
704 pstats.p_ru.ru_stime.tv_sec;
705 kp2p->p_ustime_usec = (u_int32_t)
706 pstats.p_ru.ru_stime.tv_usec;
707
708 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
709 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
710 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
711 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
712 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
713 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
714 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
715 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
716 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
717 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
718 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
719 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
720 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
721 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
722
723 kp2p->p_uctime_sec = (u_int32_t)
724 (pstats.p_cru.ru_utime.tv_sec +
725 pstats.p_cru.ru_stime.tv_sec);
726 kp2p->p_uctime_usec = (u_int32_t)
727 (pstats.p_cru.ru_utime.tv_usec +
728 pstats.p_cru.ru_stime.tv_usec);
729 }
730
731 memcpy(kp2c, &kp2, esize);
732 kp2c += esize;
733 }
734 }
735 *cnt = nprocs;
736 return (kd->procbase2);
737 }
738
739 struct kinfo_lwp *
740 kvm_getlwps(kd, pid, paddr, esize, cnt)
741 kvm_t *kd;
742 int pid;
743 u_long paddr;
744 size_t esize;
745 int *cnt;
746 {
747 size_t size;
748 int mib[5], nlwps;
749 ssize_t st;
750 struct kinfo_lwp *kl;
751
752 if (ISSYSCTL(kd)) {
753 size = 0;
754 mib[0] = CTL_KERN;
755 mib[1] = KERN_LWP;
756 mib[2] = pid;
757 mib[3] = (int)esize;
758 mib[4] = 0;
759 again:
760 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
761 if (st == -1) {
762 switch (errno) {
763 case ESRCH: /* Treat this as a soft error; see kvm.c */
764 _kvm_syserr(kd, NULL, "kvm_getlwps");
765 return NULL;
766 default:
767 _kvm_syserr(kd, kd->program, "kvm_getlwps");
768 return NULL;
769 }
770 }
771 mib[4] = (int) (size / esize);
772 KVM_ALLOC(kd, lwpbase, size);
773 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
774 if (st == -1) {
775 switch (errno) {
776 case ESRCH: /* Treat this as a soft error; see kvm.c */
777 _kvm_syserr(kd, NULL, "kvm_getlwps");
778 return NULL;
779 case ENOMEM:
780 goto again;
781 default:
782 _kvm_syserr(kd, kd->program, "kvm_getlwps");
783 return NULL;
784 }
785 }
786 nlwps = (int) (size / esize);
787 } else {
788 /* grovel through the memory image */
789 struct proc p;
790 struct lwp l;
791 u_long laddr;
792 void *back;
793 int i;
794
795 st = kvm_read(kd, paddr, &p, sizeof(p));
796 if (st == -1) {
797 _kvm_syserr(kd, kd->program, "kvm_getlwps");
798 return (NULL);
799 }
800
801 nlwps = p.p_nlwps;
802 size = nlwps * sizeof(*kd->lwpbase);
803 KVM_ALLOC(kd, lwpbase, size);
804 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
805 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
806 st = kvm_read(kd, laddr, &l, sizeof(l));
807 if (st == -1) {
808 _kvm_syserr(kd, kd->program, "kvm_getlwps");
809 return (NULL);
810 }
811 kl = &kd->lwpbase[i];
812 kl->l_laddr = laddr;
813 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
814 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
815 st = kvm_read(kd, laddr, &back, sizeof(back));
816 if (st == -1) {
817 _kvm_syserr(kd, kd->program, "kvm_getlwps");
818 return (NULL);
819 }
820 kl->l_back = PTRTOUINT64(back);
821 kl->l_addr = PTRTOUINT64(l.l_addr);
822 kl->l_lid = l.l_lid;
823 kl->l_flag = l.l_flag;
824 kl->l_swtime = l.l_swtime;
825 kl->l_slptime = l.l_slptime;
826 kl->l_schedflags = 0; /* XXX */
827 kl->l_holdcnt = l.l_holdcnt;
828 kl->l_priority = l.l_priority;
829 kl->l_usrpri = l.l_priority;
830 kl->l_stat = l.l_stat;
831 kl->l_wchan = PTRTOUINT64(l.l_wchan);
832 if (l.l_wmesg)
833 (void)kvm_read(kd, (u_long)l.l_wmesg,
834 kl->l_wmesg, (size_t)WMESGLEN);
835 kl->l_cpuid = KI_NOCPU;
836 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
837 }
838 }
839
840 *cnt = nlwps;
841 return (kd->lwpbase);
842 }
843
844 struct kinfo_proc *
845 kvm_getprocs(kd, op, arg, cnt)
846 kvm_t *kd;
847 int op, arg;
848 int *cnt;
849 {
850 size_t size;
851 int mib[4], st, nprocs;
852
853 if (ISKMEM(kd)) {
854 size = 0;
855 mib[0] = CTL_KERN;
856 mib[1] = KERN_PROC;
857 mib[2] = op;
858 mib[3] = arg;
859 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
860 if (st == -1) {
861 _kvm_syserr(kd, kd->program, "kvm_getprocs");
862 return (NULL);
863 }
864 KVM_ALLOC(kd, procbase, size);
865 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
866 if (st == -1) {
867 _kvm_syserr(kd, kd->program, "kvm_getprocs");
868 return (NULL);
869 }
870 if (size % sizeof(struct kinfo_proc) != 0) {
871 _kvm_err(kd, kd->program,
872 "proc size mismatch (%lu total, %lu chunks)",
873 (u_long)size, (u_long)sizeof(struct kinfo_proc));
874 return (NULL);
875 }
876 nprocs = (int) (size / sizeof(struct kinfo_proc));
877 } else if (ISSYSCTL(kd)) {
878 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
879 "can't use kvm_getprocs");
880 return (NULL);
881 } else {
882 struct nlist nl[4], *p;
883
884 (void)memset(nl, 0, sizeof(nl));
885 nl[0].n_name = "_nprocs";
886 nl[1].n_name = "_allproc";
887 nl[2].n_name = "_zombproc";
888 nl[3].n_name = NULL;
889
890 if (kvm_nlist(kd, nl) != 0) {
891 for (p = nl; p->n_type != 0; ++p)
892 continue;
893 _kvm_err(kd, kd->program,
894 "%s: no such symbol", p->n_name);
895 return (NULL);
896 }
897 if (KREAD(kd, nl[0].n_value, &nprocs)) {
898 _kvm_err(kd, kd->program, "can't read nprocs");
899 return (NULL);
900 }
901 size = nprocs * sizeof(*kd->procbase);
902 KVM_ALLOC(kd, procbase, size);
903 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
904 nl[2].n_value, nprocs);
905 if (nprocs < 0)
906 return (NULL);
907 #ifdef notdef
908 size = nprocs * sizeof(struct kinfo_proc);
909 (void)realloc(kd->procbase, size);
910 #endif
911 }
912 *cnt = nprocs;
913 return (kd->procbase);
914 }
915
916 void *
917 _kvm_realloc(kd, p, n)
918 kvm_t *kd;
919 void *p;
920 size_t n;
921 {
922 void *np = realloc(p, n);
923
924 if (np == NULL)
925 _kvm_err(kd, kd->program, "out of memory");
926 return (np);
927 }
928
929 /*
930 * Read in an argument vector from the user address space of process p.
931 * addr if the user-space base address of narg null-terminated contiguous
932 * strings. This is used to read in both the command arguments and
933 * environment strings. Read at most maxcnt characters of strings.
934 */
935 static char **
936 kvm_argv(kd, p, addr, narg, maxcnt)
937 kvm_t *kd;
938 const struct miniproc *p;
939 u_long addr;
940 int narg;
941 int maxcnt;
942 {
943 char *np, *cp, *ep, *ap;
944 u_long oaddr = (u_long)~0L;
945 u_long len;
946 size_t cc;
947 char **argv;
948
949 /*
950 * Check that there aren't an unreasonable number of arguments,
951 * and that the address is in user space.
952 */
953 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
954 return (NULL);
955
956 if (kd->argv == NULL) {
957 /*
958 * Try to avoid reallocs.
959 */
960 kd->argc = MAX(narg + 1, 32);
961 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
962 if (kd->argv == NULL)
963 return (NULL);
964 } else if (narg + 1 > kd->argc) {
965 kd->argc = MAX(2 * kd->argc, narg + 1);
966 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
967 sizeof(*kd->argv));
968 if (kd->argv == NULL)
969 return (NULL);
970 }
971 if (kd->argspc == NULL) {
972 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
973 if (kd->argspc == NULL)
974 return (NULL);
975 kd->argspc_len = kd->nbpg;
976 }
977 if (kd->argbuf == NULL) {
978 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
979 if (kd->argbuf == NULL)
980 return (NULL);
981 }
982 cc = sizeof(char *) * narg;
983 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
984 return (NULL);
985 ap = np = kd->argspc;
986 argv = kd->argv;
987 len = 0;
988 /*
989 * Loop over pages, filling in the argument vector.
990 */
991 while (argv < kd->argv + narg && *argv != NULL) {
992 addr = (u_long)*argv & ~(kd->nbpg - 1);
993 if (addr != oaddr) {
994 if (kvm_ureadm(kd, p, addr, kd->argbuf,
995 (size_t)kd->nbpg) != kd->nbpg)
996 return (NULL);
997 oaddr = addr;
998 }
999 addr = (u_long)*argv & (kd->nbpg - 1);
1000 cp = kd->argbuf + (size_t)addr;
1001 cc = kd->nbpg - (size_t)addr;
1002 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
1003 cc = (size_t)(maxcnt - len);
1004 ep = memchr(cp, '\0', cc);
1005 if (ep != NULL)
1006 cc = ep - cp + 1;
1007 if (len + cc > kd->argspc_len) {
1008 ptrdiff_t off;
1009 char **pp;
1010 char *op = kd->argspc;
1011
1012 kd->argspc_len *= 2;
1013 kd->argspc = _kvm_realloc(kd, kd->argspc,
1014 kd->argspc_len);
1015 if (kd->argspc == NULL)
1016 return (NULL);
1017 /*
1018 * Adjust argv pointers in case realloc moved
1019 * the string space.
1020 */
1021 off = kd->argspc - op;
1022 for (pp = kd->argv; pp < argv; pp++)
1023 *pp += off;
1024 ap += off;
1025 np += off;
1026 }
1027 memcpy(np, cp, cc);
1028 np += cc;
1029 len += cc;
1030 if (ep != NULL) {
1031 *argv++ = ap;
1032 ap = np;
1033 } else
1034 *argv += cc;
1035 if (maxcnt > 0 && len >= maxcnt) {
1036 /*
1037 * We're stopping prematurely. Terminate the
1038 * current string.
1039 */
1040 if (ep == NULL) {
1041 *np = '\0';
1042 *argv++ = ap;
1043 }
1044 break;
1045 }
1046 }
1047 /* Make sure argv is terminated. */
1048 *argv = NULL;
1049 return (kd->argv);
1050 }
1051
1052 static void
1053 ps_str_a(p, addr, n)
1054 struct ps_strings *p;
1055 u_long *addr;
1056 int *n;
1057 {
1058
1059 *addr = (u_long)p->ps_argvstr;
1060 *n = p->ps_nargvstr;
1061 }
1062
1063 static void
1064 ps_str_e(p, addr, n)
1065 struct ps_strings *p;
1066 u_long *addr;
1067 int *n;
1068 {
1069
1070 *addr = (u_long)p->ps_envstr;
1071 *n = p->ps_nenvstr;
1072 }
1073
1074 /*
1075 * Determine if the proc indicated by p is still active.
1076 * This test is not 100% foolproof in theory, but chances of
1077 * being wrong are very low.
1078 */
1079 static int
1080 proc_verify(kd, kernp, p)
1081 kvm_t *kd;
1082 u_long kernp;
1083 const struct miniproc *p;
1084 {
1085 struct proc kernproc;
1086
1087 /*
1088 * Just read in the whole proc. It's not that big relative
1089 * to the cost of the read system call.
1090 */
1091 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1092 sizeof(kernproc))
1093 return (0);
1094 return (p->p_pid == kernproc.p_pid &&
1095 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1096 }
1097
1098 static char **
1099 kvm_doargv(kd, p, nchr, info)
1100 kvm_t *kd;
1101 const struct miniproc *p;
1102 int nchr;
1103 void (*info)(struct ps_strings *, u_long *, int *);
1104 {
1105 char **ap;
1106 u_long addr;
1107 int cnt;
1108 struct ps_strings arginfo;
1109
1110 /*
1111 * Pointers are stored at the top of the user stack.
1112 */
1113 if (p->p_stat == SZOMB)
1114 return (NULL);
1115 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1116 (void *)&arginfo, sizeof(arginfo));
1117 if (cnt != sizeof(arginfo))
1118 return (NULL);
1119
1120 (*info)(&arginfo, &addr, &cnt);
1121 if (cnt == 0)
1122 return (NULL);
1123 ap = kvm_argv(kd, p, addr, cnt, nchr);
1124 /*
1125 * For live kernels, make sure this process didn't go away.
1126 */
1127 if (ap != NULL && ISALIVE(kd) &&
1128 !proc_verify(kd, (u_long)p->p_paddr, p))
1129 ap = NULL;
1130 return (ap);
1131 }
1132
1133 /*
1134 * Get the command args. This code is now machine independent.
1135 */
1136 char **
1137 kvm_getargv(kd, kp, nchr)
1138 kvm_t *kd;
1139 const struct kinfo_proc *kp;
1140 int nchr;
1141 {
1142 struct miniproc p;
1143
1144 KPTOMINI(kp, &p);
1145 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1146 }
1147
1148 char **
1149 kvm_getenvv(kd, kp, nchr)
1150 kvm_t *kd;
1151 const struct kinfo_proc *kp;
1152 int nchr;
1153 {
1154 struct miniproc p;
1155
1156 KPTOMINI(kp, &p);
1157 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1158 }
1159
1160 static char **
1161 kvm_doargv2(kd, pid, type, nchr)
1162 kvm_t *kd;
1163 pid_t pid;
1164 int type;
1165 int nchr;
1166 {
1167 size_t bufs;
1168 int narg, mib[4];
1169 size_t newargspc_len;
1170 char **ap, *bp, *endp;
1171
1172 /*
1173 * Check that there aren't an unreasonable number of arguments.
1174 */
1175 if (nchr > ARG_MAX)
1176 return (NULL);
1177
1178 if (nchr == 0)
1179 nchr = ARG_MAX;
1180
1181 /* Get number of strings in argv */
1182 mib[0] = CTL_KERN;
1183 mib[1] = KERN_PROC_ARGS;
1184 mib[2] = pid;
1185 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1186 bufs = sizeof(narg);
1187 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1188 return (NULL);
1189
1190 if (kd->argv == NULL) {
1191 /*
1192 * Try to avoid reallocs.
1193 */
1194 kd->argc = MAX(narg + 1, 32);
1195 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1196 if (kd->argv == NULL)
1197 return (NULL);
1198 } else if (narg + 1 > kd->argc) {
1199 kd->argc = MAX(2 * kd->argc, narg + 1);
1200 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1201 sizeof(*kd->argv));
1202 if (kd->argv == NULL)
1203 return (NULL);
1204 }
1205
1206 newargspc_len = MIN(nchr, ARG_MAX);
1207 KVM_ALLOC(kd, argspc, newargspc_len);
1208 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1209
1210 mib[0] = CTL_KERN;
1211 mib[1] = KERN_PROC_ARGS;
1212 mib[2] = pid;
1213 mib[3] = type;
1214 bufs = kd->argspc_len;
1215 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1216 return (NULL);
1217
1218 bp = kd->argspc;
1219 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1220 ap = kd->argv;
1221 endp = bp + MIN(nchr, bufs);
1222
1223 while (bp < endp) {
1224 *ap++ = bp;
1225 /*
1226 * XXX: don't need following anymore, or stick check
1227 * for max argc in above while loop?
1228 */
1229 if (ap >= kd->argv + kd->argc) {
1230 kd->argc *= 2;
1231 kd->argv = _kvm_realloc(kd, kd->argv,
1232 kd->argc * sizeof(*kd->argv));
1233 ap = kd->argv;
1234 }
1235 bp += strlen(bp) + 1;
1236 }
1237 *ap = NULL;
1238
1239 return (kd->argv);
1240 }
1241
1242 char **
1243 kvm_getargv2(kd, kp, nchr)
1244 kvm_t *kd;
1245 const struct kinfo_proc2 *kp;
1246 int nchr;
1247 {
1248
1249 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1250 }
1251
1252 char **
1253 kvm_getenvv2(kd, kp, nchr)
1254 kvm_t *kd;
1255 const struct kinfo_proc2 *kp;
1256 int nchr;
1257 {
1258
1259 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1260 }
1261
1262 /*
1263 * Read from user space. The user context is given by p.
1264 */
1265 static ssize_t
1266 kvm_ureadm(kd, p, uva, buf, len)
1267 kvm_t *kd;
1268 const struct miniproc *p;
1269 u_long uva;
1270 char *buf;
1271 size_t len;
1272 {
1273 char *cp;
1274
1275 cp = buf;
1276 while (len > 0) {
1277 size_t cc;
1278 char *dp;
1279 u_long cnt;
1280
1281 dp = _kvm_ureadm(kd, p, uva, &cnt);
1282 if (dp == NULL) {
1283 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1284 return (0);
1285 }
1286 cc = (size_t)MIN(cnt, len);
1287 memcpy(cp, dp, cc);
1288 cp += cc;
1289 uva += cc;
1290 len -= cc;
1291 }
1292 return (ssize_t)(cp - buf);
1293 }
1294
1295 ssize_t
1296 kvm_uread(kd, p, uva, buf, len)
1297 kvm_t *kd;
1298 const struct proc *p;
1299 u_long uva;
1300 char *buf;
1301 size_t len;
1302 {
1303 struct miniproc mp;
1304
1305 PTOMINI(p, &mp);
1306 return (kvm_ureadm(kd, &mp, uva, buf, len));
1307 }
1308