kvm_proc.c revision 1.78 1 /* $NetBSD: kvm_proc.c,v 1.78 2008/04/28 20:23:01 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1989, 1992, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * This code is derived from software developed by the Computer Systems
37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38 * BG 91-66 and contributed to Berkeley.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 #if defined(LIBC_SCCS) && !defined(lint)
67 #if 0
68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
69 #else
70 __RCSID("$NetBSD: kvm_proc.c,v 1.78 2008/04/28 20:23:01 martin Exp $");
71 #endif
72 #endif /* LIBC_SCCS and not lint */
73
74 /*
75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
76 * users of this code, so we've factored it out into a separate module.
77 * Thus, we keep this grunge out of the other kvm applications (i.e.,
78 * most other applications are interested only in open/close/read/nlist).
79 */
80
81 #include <sys/param.h>
82 #include <sys/user.h>
83 #include <sys/lwp.h>
84 #include <sys/proc.h>
85 #include <sys/exec.h>
86 #include <sys/stat.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/resourcevar.h>
90 #include <sys/mutex.h>
91 #include <sys/specificdata.h>
92
93 #include <errno.h>
94 #include <stdlib.h>
95 #include <stddef.h>
96 #include <string.h>
97 #include <unistd.h>
98 #include <nlist.h>
99 #include <kvm.h>
100
101 #include <uvm/uvm_extern.h>
102 #include <uvm/uvm_amap.h>
103
104 #include <sys/sysctl.h>
105
106 #include <limits.h>
107 #include <db.h>
108 #include <paths.h>
109
110 #include "kvm_private.h"
111
112 /*
113 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
114 */
115 struct miniproc {
116 struct vmspace *p_vmspace;
117 char p_stat;
118 struct proc *p_paddr;
119 pid_t p_pid;
120 };
121
122 /*
123 * Convert from struct proc and kinfo_proc{,2} to miniproc.
124 */
125 #define PTOMINI(kp, p) \
126 do { \
127 (p)->p_stat = (kp)->p_stat; \
128 (p)->p_pid = (kp)->p_pid; \
129 (p)->p_paddr = NULL; \
130 (p)->p_vmspace = (kp)->p_vmspace; \
131 } while (/*CONSTCOND*/0);
132
133 #define KPTOMINI(kp, p) \
134 do { \
135 (p)->p_stat = (kp)->kp_proc.p_stat; \
136 (p)->p_pid = (kp)->kp_proc.p_pid; \
137 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
138 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
139 } while (/*CONSTCOND*/0);
140
141 #define KP2TOMINI(kp, p) \
142 do { \
143 (p)->p_stat = (kp)->p_stat; \
144 (p)->p_pid = (kp)->p_pid; \
145 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
146 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
147 } while (/*CONSTCOND*/0);
148
149 /*
150 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
151 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
152 * kvm(3) so dumps can be read properly.
153 *
154 * Whenever NetBSD starts exporting credentials to userland consistently (using
155 * 'struct uucred', or something) this will have to be updated again.
156 */
157 struct kvm_kauth_cred {
158 u_int cr_refcnt; /* reference count */
159 uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
160 uid_t cr_uid; /* user id */
161 uid_t cr_euid; /* effective user id */
162 uid_t cr_svuid; /* saved effective user id */
163 gid_t cr_gid; /* group id */
164 gid_t cr_egid; /* effective group id */
165 gid_t cr_svgid; /* saved effective group id */
166 u_int cr_ngroups; /* number of groups */
167 gid_t cr_groups[NGROUPS]; /* group memberships */
168 specificdata_reference cr_sd; /* specific data */
169 };
170
171 #define KREAD(kd, addr, obj) \
172 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
173
174 /* XXX: What uses these two functions? */
175 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
176 u_long *));
177 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
178 size_t));
179
180 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
181 u_long *));
182 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
183 char *, size_t));
184
185 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
186 int));
187 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
188 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
189 void (*)(struct ps_strings *, u_long *, int *)));
190 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
191 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
192 struct kinfo_proc *, int));
193 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
194 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
195 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
196
197
198 static char *
199 _kvm_ureadm(kd, p, va, cnt)
200 kvm_t *kd;
201 const struct miniproc *p;
202 u_long va;
203 u_long *cnt;
204 {
205 u_long addr, head;
206 u_long offset;
207 struct vm_map_entry vme;
208 struct vm_amap amap;
209 struct vm_anon *anonp, anon;
210 struct vm_page pg;
211 u_long slot;
212
213 if (kd->swapspc == NULL) {
214 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
215 if (kd->swapspc == NULL)
216 return (NULL);
217 }
218
219 /*
220 * Look through the address map for the memory object
221 * that corresponds to the given virtual address.
222 * The header just has the entire valid range.
223 */
224 head = (u_long)&p->p_vmspace->vm_map.header;
225 addr = head;
226 for (;;) {
227 if (KREAD(kd, addr, &vme))
228 return (NULL);
229
230 if (va >= vme.start && va < vme.end &&
231 vme.aref.ar_amap != NULL)
232 break;
233
234 addr = (u_long)vme.next;
235 if (addr == head)
236 return (NULL);
237 }
238
239 /*
240 * we found the map entry, now to find the object...
241 */
242 if (vme.aref.ar_amap == NULL)
243 return (NULL);
244
245 addr = (u_long)vme.aref.ar_amap;
246 if (KREAD(kd, addr, &amap))
247 return (NULL);
248
249 offset = va - vme.start;
250 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
251 /* sanity-check slot number */
252 if (slot > amap.am_nslot)
253 return (NULL);
254
255 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
256 if (KREAD(kd, addr, &anonp))
257 return (NULL);
258
259 addr = (u_long)anonp;
260 if (KREAD(kd, addr, &anon))
261 return (NULL);
262
263 addr = (u_long)anon.an_page;
264 if (addr) {
265 if (KREAD(kd, addr, &pg))
266 return (NULL);
267
268 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
269 (off_t)pg.phys_addr) != kd->nbpg)
270 return (NULL);
271 } else {
272 if (kd->swfd < 0 ||
273 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
274 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
275 return (NULL);
276 }
277
278 /* Found the page. */
279 offset %= kd->nbpg;
280 *cnt = kd->nbpg - offset;
281 return (&kd->swapspc[(size_t)offset]);
282 }
283
284 char *
285 _kvm_uread(kd, p, va, cnt)
286 kvm_t *kd;
287 const struct proc *p;
288 u_long va;
289 u_long *cnt;
290 {
291 struct miniproc mp;
292
293 PTOMINI(p, &mp);
294 return (_kvm_ureadm(kd, &mp, va, cnt));
295 }
296
297 /*
298 * Convert credentials located in kernel space address 'cred' and store
299 * them in the appropriate members of 'eproc'.
300 */
301 static int
302 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
303 {
304 struct kvm_kauth_cred kauthcred;
305 struct ki_pcred *pc = &eproc->e_pcred;
306 struct ki_ucred *uc = &eproc->e_ucred;
307
308 if (KREAD(kd, cred, &kauthcred) != 0)
309 return (-1);
310
311 /* inlined version of kauth_cred_to_pcred, see kauth(9). */
312 pc->p_ruid = kauthcred.cr_uid;
313 pc->p_svuid = kauthcred.cr_svuid;
314 pc->p_rgid = kauthcred.cr_gid;
315 pc->p_svgid = kauthcred.cr_svgid;
316 pc->p_refcnt = kauthcred.cr_refcnt;
317 pc->p_pad = NULL;
318
319 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
320 uc->cr_ref = kauthcred.cr_refcnt;
321 uc->cr_uid = kauthcred.cr_euid;
322 uc->cr_gid = kauthcred.cr_egid;
323 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
324 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
325 memcpy(uc->cr_groups, kauthcred.cr_groups,
326 uc->cr_ngroups * sizeof(uc->cr_groups[0]));
327
328 return (0);
329 }
330
331 /*
332 * Read proc's from memory file into buffer bp, which has space to hold
333 * at most maxcnt procs.
334 */
335 static int
336 kvm_proclist(kd, what, arg, p, bp, maxcnt)
337 kvm_t *kd;
338 int what, arg;
339 struct proc *p;
340 struct kinfo_proc *bp;
341 int maxcnt;
342 {
343 int cnt = 0;
344 int nlwps;
345 struct kinfo_lwp *kl;
346 struct eproc eproc;
347 struct pgrp pgrp;
348 struct session sess;
349 struct tty tty;
350 struct proc proc;
351
352 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
353 if (KREAD(kd, (u_long)p, &proc)) {
354 _kvm_err(kd, kd->program, "can't read proc at %p", p);
355 return (-1);
356 }
357 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
358 _kvm_err(kd, kd->program,
359 "can't read proc credentials at %p", p);
360 return (-1);
361 }
362
363 switch (what) {
364
365 case KERN_PROC_PID:
366 if (proc.p_pid != (pid_t)arg)
367 continue;
368 break;
369
370 case KERN_PROC_UID:
371 if (eproc.e_ucred.cr_uid != (uid_t)arg)
372 continue;
373 break;
374
375 case KERN_PROC_RUID:
376 if (eproc.e_pcred.p_ruid != (uid_t)arg)
377 continue;
378 break;
379 }
380 /*
381 * We're going to add another proc to the set. If this
382 * will overflow the buffer, assume the reason is because
383 * nprocs (or the proc list) is corrupt and declare an error.
384 */
385 if (cnt >= maxcnt) {
386 _kvm_err(kd, kd->program, "nprocs corrupt");
387 return (-1);
388 }
389 /*
390 * gather eproc
391 */
392 eproc.e_paddr = p;
393 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
394 _kvm_err(kd, kd->program, "can't read pgrp at %p",
395 proc.p_pgrp);
396 return (-1);
397 }
398 eproc.e_sess = pgrp.pg_session;
399 eproc.e_pgid = pgrp.pg_id;
400 eproc.e_jobc = pgrp.pg_jobc;
401 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
402 _kvm_err(kd, kd->program, "can't read session at %p",
403 pgrp.pg_session);
404 return (-1);
405 }
406 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
407 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
408 _kvm_err(kd, kd->program,
409 "can't read tty at %p", sess.s_ttyp);
410 return (-1);
411 }
412 eproc.e_tdev = tty.t_dev;
413 eproc.e_tsess = tty.t_session;
414 if (tty.t_pgrp != NULL) {
415 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
416 _kvm_err(kd, kd->program,
417 "can't read tpgrp at %p",
418 tty.t_pgrp);
419 return (-1);
420 }
421 eproc.e_tpgid = pgrp.pg_id;
422 } else
423 eproc.e_tpgid = -1;
424 } else
425 eproc.e_tdev = NODEV;
426 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
427 eproc.e_sid = sess.s_sid;
428 if (sess.s_leader == p)
429 eproc.e_flag |= EPROC_SLEADER;
430 /*
431 * Fill in the old-style proc.p_wmesg by copying the wmesg
432 * from the first available LWP.
433 */
434 kl = kvm_getlwps(kd, proc.p_pid,
435 (u_long)PTRTOUINT64(eproc.e_paddr),
436 sizeof(struct kinfo_lwp), &nlwps);
437 if (kl) {
438 if (nlwps > 0) {
439 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
440 }
441 }
442 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
443 sizeof(eproc.e_vm));
444
445 eproc.e_xsize = eproc.e_xrssize = 0;
446 eproc.e_xccount = eproc.e_xswrss = 0;
447
448 switch (what) {
449
450 case KERN_PROC_PGRP:
451 if (eproc.e_pgid != (pid_t)arg)
452 continue;
453 break;
454
455 case KERN_PROC_TTY:
456 if ((proc.p_lflag & PL_CONTROLT) == 0 ||
457 eproc.e_tdev != (dev_t)arg)
458 continue;
459 break;
460 }
461 memcpy(&bp->kp_proc, &proc, sizeof(proc));
462 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
463 ++bp;
464 ++cnt;
465 }
466 return (cnt);
467 }
468
469 /*
470 * Build proc info array by reading in proc list from a crash dump.
471 * Return number of procs read. maxcnt is the max we will read.
472 */
473 static int
474 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
475 kvm_t *kd;
476 int what, arg;
477 u_long a_allproc;
478 u_long a_zombproc;
479 int maxcnt;
480 {
481 struct kinfo_proc *bp = kd->procbase;
482 int acnt, zcnt;
483 struct proc *p;
484
485 if (KREAD(kd, a_allproc, &p)) {
486 _kvm_err(kd, kd->program, "cannot read allproc");
487 return (-1);
488 }
489 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
490 if (acnt < 0)
491 return (acnt);
492
493 if (KREAD(kd, a_zombproc, &p)) {
494 _kvm_err(kd, kd->program, "cannot read zombproc");
495 return (-1);
496 }
497 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
498 maxcnt - acnt);
499 if (zcnt < 0)
500 zcnt = 0;
501
502 return (acnt + zcnt);
503 }
504
505 struct kinfo_proc2 *
506 kvm_getproc2(kd, op, arg, esize, cnt)
507 kvm_t *kd;
508 int op, arg;
509 size_t esize;
510 int *cnt;
511 {
512 size_t size;
513 int mib[6], st, nprocs;
514 struct pstats pstats;
515
516 if (ISSYSCTL(kd)) {
517 size = 0;
518 mib[0] = CTL_KERN;
519 mib[1] = KERN_PROC2;
520 mib[2] = op;
521 mib[3] = arg;
522 mib[4] = (int)esize;
523 again:
524 mib[5] = 0;
525 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
526 if (st == -1) {
527 _kvm_syserr(kd, kd->program, "kvm_getproc2");
528 return (NULL);
529 }
530
531 mib[5] = (int) (size / esize);
532 KVM_ALLOC(kd, procbase2, size);
533 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
534 if (st == -1) {
535 if (errno == ENOMEM) {
536 goto again;
537 }
538 _kvm_syserr(kd, kd->program, "kvm_getproc2");
539 return (NULL);
540 }
541 nprocs = (int) (size / esize);
542 } else {
543 char *kp2c;
544 struct kinfo_proc *kp;
545 struct kinfo_proc2 kp2, *kp2p;
546 struct kinfo_lwp *kl;
547 int i, nlwps;
548
549 kp = kvm_getprocs(kd, op, arg, &nprocs);
550 if (kp == NULL)
551 return (NULL);
552
553 size = nprocs * esize;
554 KVM_ALLOC(kd, procbase2, size);
555 kp2c = (char *)(void *)kd->procbase2;
556 kp2p = &kp2;
557 for (i = 0; i < nprocs; i++, kp++) {
558 struct timeval tv;
559
560 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
561 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
562 sizeof(struct kinfo_lwp), &nlwps);
563
564 /* We use kl[0] as the "representative" LWP */
565 memset(kp2p, 0, sizeof(kp2));
566 kp2p->p_forw = kl[0].l_forw;
567 kp2p->p_back = kl[0].l_back;
568 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
569 kp2p->p_addr = kl[0].l_addr;
570 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
571 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
572 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
573 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
574 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
575 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
576 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
577 kp2p->p_tsess = 0;
578 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
579 kp2p->p_ru = 0;
580 #else
581 kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
582 #endif
583
584 kp2p->p_eflag = 0;
585 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
586 kp2p->p_flag = kp->kp_proc.p_flag;
587
588 kp2p->p_pid = kp->kp_proc.p_pid;
589
590 kp2p->p_ppid = kp->kp_eproc.e_ppid;
591 kp2p->p_sid = kp->kp_eproc.e_sid;
592 kp2p->p__pgid = kp->kp_eproc.e_pgid;
593
594 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
595
596 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
597 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
598 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
599 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
600 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
601 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
602
603 /*CONSTCOND*/
604 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
605 MIN(sizeof(kp2p->p_groups),
606 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
607 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
608
609 kp2p->p_jobc = kp->kp_eproc.e_jobc;
610 kp2p->p_tdev = kp->kp_eproc.e_tdev;
611 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
612 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
613
614 kp2p->p_estcpu = 0;
615 bintime2timeval(&kp->kp_proc.p_rtime, &tv);
616 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
617 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
618 kp2p->p_cpticks = kl[0].l_cpticks;
619 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
620 kp2p->p_swtime = kl[0].l_swtime;
621 kp2p->p_slptime = kl[0].l_slptime;
622 #if 0 /* XXX thorpej */
623 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
624 #else
625 kp2p->p_schedflags = 0;
626 #endif
627
628 kp2p->p_uticks = kp->kp_proc.p_uticks;
629 kp2p->p_sticks = kp->kp_proc.p_sticks;
630 kp2p->p_iticks = kp->kp_proc.p_iticks;
631
632 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
633 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
634
635 kp2p->p_holdcnt = kl[0].l_holdcnt;
636
637 memcpy(&kp2p->p_siglist,
638 &kp->kp_proc.p_sigpend.sp_set,
639 sizeof(ki_sigset_t));
640 memset(&kp2p->p_sigmask, 0,
641 sizeof(ki_sigset_t));
642 memcpy(&kp2p->p_sigignore,
643 &kp->kp_proc.p_sigctx.ps_sigignore,
644 sizeof(ki_sigset_t));
645 memcpy(&kp2p->p_sigcatch,
646 &kp->kp_proc.p_sigctx.ps_sigcatch,
647 sizeof(ki_sigset_t));
648
649 kp2p->p_stat = kl[0].l_stat;
650 kp2p->p_priority = kl[0].l_priority;
651 kp2p->p_usrpri = kl[0].l_priority;
652 kp2p->p_nice = kp->kp_proc.p_nice;
653
654 kp2p->p_xstat = kp->kp_proc.p_xstat;
655 kp2p->p_acflag = kp->kp_proc.p_acflag;
656
657 /*CONSTCOND*/
658 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
659 MIN(sizeof(kp2p->p_comm),
660 sizeof(kp->kp_proc.p_comm)));
661
662 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
663 sizeof(kp2p->p_wmesg));
664 kp2p->p_wchan = kl[0].l_wchan;
665 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
666 sizeof(kp2p->p_login));
667
668 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
669 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
670 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
671 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
672
673 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
674
675 kp2p->p_realflag = kp->kp_proc.p_flag;
676 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
677 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
678 kp2p->p_realstat = kp->kp_proc.p_stat;
679
680 if (P_ZOMBIE(&kp->kp_proc) ||
681 kp->kp_proc.p_stats == NULL ||
682 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
683 kp2p->p_uvalid = 0;
684 } else {
685 kp2p->p_uvalid = 1;
686
687 kp2p->p_ustart_sec = (u_int32_t)
688 pstats.p_start.tv_sec;
689 kp2p->p_ustart_usec = (u_int32_t)
690 pstats.p_start.tv_usec;
691
692 kp2p->p_uutime_sec = (u_int32_t)
693 pstats.p_ru.ru_utime.tv_sec;
694 kp2p->p_uutime_usec = (u_int32_t)
695 pstats.p_ru.ru_utime.tv_usec;
696 kp2p->p_ustime_sec = (u_int32_t)
697 pstats.p_ru.ru_stime.tv_sec;
698 kp2p->p_ustime_usec = (u_int32_t)
699 pstats.p_ru.ru_stime.tv_usec;
700
701 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
702 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
703 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
704 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
705 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
706 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
707 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
708 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
709 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
710 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
711 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
712 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
713 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
714 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
715
716 kp2p->p_uctime_sec = (u_int32_t)
717 (pstats.p_cru.ru_utime.tv_sec +
718 pstats.p_cru.ru_stime.tv_sec);
719 kp2p->p_uctime_usec = (u_int32_t)
720 (pstats.p_cru.ru_utime.tv_usec +
721 pstats.p_cru.ru_stime.tv_usec);
722 }
723
724 memcpy(kp2c, &kp2, esize);
725 kp2c += esize;
726 }
727 }
728 *cnt = nprocs;
729 return (kd->procbase2);
730 }
731
732 struct kinfo_lwp *
733 kvm_getlwps(kd, pid, paddr, esize, cnt)
734 kvm_t *kd;
735 int pid;
736 u_long paddr;
737 size_t esize;
738 int *cnt;
739 {
740 size_t size;
741 int mib[5], nlwps;
742 ssize_t st;
743 struct kinfo_lwp *kl;
744
745 if (ISSYSCTL(kd)) {
746 size = 0;
747 mib[0] = CTL_KERN;
748 mib[1] = KERN_LWP;
749 mib[2] = pid;
750 mib[3] = (int)esize;
751 mib[4] = 0;
752 again:
753 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
754 if (st == -1) {
755 switch (errno) {
756 case ESRCH: /* Treat this as a soft error; see kvm.c */
757 _kvm_syserr(kd, NULL, "kvm_getlwps");
758 return NULL;
759 default:
760 _kvm_syserr(kd, kd->program, "kvm_getlwps");
761 return NULL;
762 }
763 }
764 mib[4] = (int) (size / esize);
765 KVM_ALLOC(kd, lwpbase, size);
766 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
767 if (st == -1) {
768 switch (errno) {
769 case ESRCH: /* Treat this as a soft error; see kvm.c */
770 _kvm_syserr(kd, NULL, "kvm_getlwps");
771 return NULL;
772 case ENOMEM:
773 goto again;
774 default:
775 _kvm_syserr(kd, kd->program, "kvm_getlwps");
776 return NULL;
777 }
778 }
779 nlwps = (int) (size / esize);
780 } else {
781 /* grovel through the memory image */
782 struct proc p;
783 struct lwp l;
784 u_long laddr;
785 void *back;
786 int i;
787
788 st = kvm_read(kd, paddr, &p, sizeof(p));
789 if (st == -1) {
790 _kvm_syserr(kd, kd->program, "kvm_getlwps");
791 return (NULL);
792 }
793
794 nlwps = p.p_nlwps;
795 size = nlwps * sizeof(*kd->lwpbase);
796 KVM_ALLOC(kd, lwpbase, size);
797 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
798 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
799 st = kvm_read(kd, laddr, &l, sizeof(l));
800 if (st == -1) {
801 _kvm_syserr(kd, kd->program, "kvm_getlwps");
802 return (NULL);
803 }
804 kl = &kd->lwpbase[i];
805 kl->l_laddr = laddr;
806 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
807 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
808 st = kvm_read(kd, laddr, &back, sizeof(back));
809 if (st == -1) {
810 _kvm_syserr(kd, kd->program, "kvm_getlwps");
811 return (NULL);
812 }
813 kl->l_back = PTRTOUINT64(back);
814 kl->l_addr = PTRTOUINT64(l.l_addr);
815 kl->l_lid = l.l_lid;
816 kl->l_flag = l.l_flag;
817 kl->l_swtime = l.l_swtime;
818 kl->l_slptime = l.l_slptime;
819 kl->l_schedflags = 0; /* XXX */
820 kl->l_holdcnt = l.l_holdcnt;
821 kl->l_priority = l.l_priority;
822 kl->l_usrpri = l.l_priority;
823 kl->l_stat = l.l_stat;
824 kl->l_wchan = PTRTOUINT64(l.l_wchan);
825 if (l.l_wmesg)
826 (void)kvm_read(kd, (u_long)l.l_wmesg,
827 kl->l_wmesg, (size_t)WMESGLEN);
828 kl->l_cpuid = KI_NOCPU;
829 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
830 }
831 }
832
833 *cnt = nlwps;
834 return (kd->lwpbase);
835 }
836
837 struct kinfo_proc *
838 kvm_getprocs(kd, op, arg, cnt)
839 kvm_t *kd;
840 int op, arg;
841 int *cnt;
842 {
843 size_t size;
844 int mib[4], st, nprocs;
845
846 if (ISKMEM(kd)) {
847 size = 0;
848 mib[0] = CTL_KERN;
849 mib[1] = KERN_PROC;
850 mib[2] = op;
851 mib[3] = arg;
852 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
853 if (st == -1) {
854 _kvm_syserr(kd, kd->program, "kvm_getprocs");
855 return (NULL);
856 }
857 KVM_ALLOC(kd, procbase, size);
858 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
859 if (st == -1) {
860 _kvm_syserr(kd, kd->program, "kvm_getprocs");
861 return (NULL);
862 }
863 if (size % sizeof(struct kinfo_proc) != 0) {
864 _kvm_err(kd, kd->program,
865 "proc size mismatch (%lu total, %lu chunks)",
866 (u_long)size, (u_long)sizeof(struct kinfo_proc));
867 return (NULL);
868 }
869 nprocs = (int) (size / sizeof(struct kinfo_proc));
870 } else if (ISSYSCTL(kd)) {
871 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
872 "can't use kvm_getprocs");
873 return (NULL);
874 } else {
875 struct nlist nl[4], *p;
876
877 (void)memset(nl, 0, sizeof(nl));
878 nl[0].n_name = "_nprocs";
879 nl[1].n_name = "_allproc";
880 nl[2].n_name = "_zombproc";
881 nl[3].n_name = NULL;
882
883 if (kvm_nlist(kd, nl) != 0) {
884 for (p = nl; p->n_type != 0; ++p)
885 continue;
886 _kvm_err(kd, kd->program,
887 "%s: no such symbol", p->n_name);
888 return (NULL);
889 }
890 if (KREAD(kd, nl[0].n_value, &nprocs)) {
891 _kvm_err(kd, kd->program, "can't read nprocs");
892 return (NULL);
893 }
894 size = nprocs * sizeof(*kd->procbase);
895 KVM_ALLOC(kd, procbase, size);
896 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
897 nl[2].n_value, nprocs);
898 if (nprocs < 0)
899 return (NULL);
900 #ifdef notdef
901 size = nprocs * sizeof(struct kinfo_proc);
902 (void)realloc(kd->procbase, size);
903 #endif
904 }
905 *cnt = nprocs;
906 return (kd->procbase);
907 }
908
909 void *
910 _kvm_realloc(kd, p, n)
911 kvm_t *kd;
912 void *p;
913 size_t n;
914 {
915 void *np = realloc(p, n);
916
917 if (np == NULL)
918 _kvm_err(kd, kd->program, "out of memory");
919 return (np);
920 }
921
922 /*
923 * Read in an argument vector from the user address space of process p.
924 * addr if the user-space base address of narg null-terminated contiguous
925 * strings. This is used to read in both the command arguments and
926 * environment strings. Read at most maxcnt characters of strings.
927 */
928 static char **
929 kvm_argv(kd, p, addr, narg, maxcnt)
930 kvm_t *kd;
931 const struct miniproc *p;
932 u_long addr;
933 int narg;
934 int maxcnt;
935 {
936 char *np, *cp, *ep, *ap;
937 u_long oaddr = (u_long)~0L;
938 u_long len;
939 size_t cc;
940 char **argv;
941
942 /*
943 * Check that there aren't an unreasonable number of arguments,
944 * and that the address is in user space.
945 */
946 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
947 return (NULL);
948
949 if (kd->argv == NULL) {
950 /*
951 * Try to avoid reallocs.
952 */
953 kd->argc = MAX(narg + 1, 32);
954 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
955 if (kd->argv == NULL)
956 return (NULL);
957 } else if (narg + 1 > kd->argc) {
958 kd->argc = MAX(2 * kd->argc, narg + 1);
959 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
960 sizeof(*kd->argv));
961 if (kd->argv == NULL)
962 return (NULL);
963 }
964 if (kd->argspc == NULL) {
965 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
966 if (kd->argspc == NULL)
967 return (NULL);
968 kd->argspc_len = kd->nbpg;
969 }
970 if (kd->argbuf == NULL) {
971 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
972 if (kd->argbuf == NULL)
973 return (NULL);
974 }
975 cc = sizeof(char *) * narg;
976 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
977 return (NULL);
978 ap = np = kd->argspc;
979 argv = kd->argv;
980 len = 0;
981 /*
982 * Loop over pages, filling in the argument vector.
983 */
984 while (argv < kd->argv + narg && *argv != NULL) {
985 addr = (u_long)*argv & ~(kd->nbpg - 1);
986 if (addr != oaddr) {
987 if (kvm_ureadm(kd, p, addr, kd->argbuf,
988 (size_t)kd->nbpg) != kd->nbpg)
989 return (NULL);
990 oaddr = addr;
991 }
992 addr = (u_long)*argv & (kd->nbpg - 1);
993 cp = kd->argbuf + (size_t)addr;
994 cc = kd->nbpg - (size_t)addr;
995 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
996 cc = (size_t)(maxcnt - len);
997 ep = memchr(cp, '\0', cc);
998 if (ep != NULL)
999 cc = ep - cp + 1;
1000 if (len + cc > kd->argspc_len) {
1001 ptrdiff_t off;
1002 char **pp;
1003 char *op = kd->argspc;
1004
1005 kd->argspc_len *= 2;
1006 kd->argspc = _kvm_realloc(kd, kd->argspc,
1007 kd->argspc_len);
1008 if (kd->argspc == NULL)
1009 return (NULL);
1010 /*
1011 * Adjust argv pointers in case realloc moved
1012 * the string space.
1013 */
1014 off = kd->argspc - op;
1015 for (pp = kd->argv; pp < argv; pp++)
1016 *pp += off;
1017 ap += off;
1018 np += off;
1019 }
1020 memcpy(np, cp, cc);
1021 np += cc;
1022 len += cc;
1023 if (ep != NULL) {
1024 *argv++ = ap;
1025 ap = np;
1026 } else
1027 *argv += cc;
1028 if (maxcnt > 0 && len >= maxcnt) {
1029 /*
1030 * We're stopping prematurely. Terminate the
1031 * current string.
1032 */
1033 if (ep == NULL) {
1034 *np = '\0';
1035 *argv++ = ap;
1036 }
1037 break;
1038 }
1039 }
1040 /* Make sure argv is terminated. */
1041 *argv = NULL;
1042 return (kd->argv);
1043 }
1044
1045 static void
1046 ps_str_a(p, addr, n)
1047 struct ps_strings *p;
1048 u_long *addr;
1049 int *n;
1050 {
1051
1052 *addr = (u_long)p->ps_argvstr;
1053 *n = p->ps_nargvstr;
1054 }
1055
1056 static void
1057 ps_str_e(p, addr, n)
1058 struct ps_strings *p;
1059 u_long *addr;
1060 int *n;
1061 {
1062
1063 *addr = (u_long)p->ps_envstr;
1064 *n = p->ps_nenvstr;
1065 }
1066
1067 /*
1068 * Determine if the proc indicated by p is still active.
1069 * This test is not 100% foolproof in theory, but chances of
1070 * being wrong are very low.
1071 */
1072 static int
1073 proc_verify(kd, kernp, p)
1074 kvm_t *kd;
1075 u_long kernp;
1076 const struct miniproc *p;
1077 {
1078 struct proc kernproc;
1079
1080 /*
1081 * Just read in the whole proc. It's not that big relative
1082 * to the cost of the read system call.
1083 */
1084 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1085 sizeof(kernproc))
1086 return (0);
1087 return (p->p_pid == kernproc.p_pid &&
1088 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1089 }
1090
1091 static char **
1092 kvm_doargv(kd, p, nchr, info)
1093 kvm_t *kd;
1094 const struct miniproc *p;
1095 int nchr;
1096 void (*info)(struct ps_strings *, u_long *, int *);
1097 {
1098 char **ap;
1099 u_long addr;
1100 int cnt;
1101 struct ps_strings arginfo;
1102
1103 /*
1104 * Pointers are stored at the top of the user stack.
1105 */
1106 if (p->p_stat == SZOMB)
1107 return (NULL);
1108 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1109 (void *)&arginfo, sizeof(arginfo));
1110 if (cnt != sizeof(arginfo))
1111 return (NULL);
1112
1113 (*info)(&arginfo, &addr, &cnt);
1114 if (cnt == 0)
1115 return (NULL);
1116 ap = kvm_argv(kd, p, addr, cnt, nchr);
1117 /*
1118 * For live kernels, make sure this process didn't go away.
1119 */
1120 if (ap != NULL && ISALIVE(kd) &&
1121 !proc_verify(kd, (u_long)p->p_paddr, p))
1122 ap = NULL;
1123 return (ap);
1124 }
1125
1126 /*
1127 * Get the command args. This code is now machine independent.
1128 */
1129 char **
1130 kvm_getargv(kd, kp, nchr)
1131 kvm_t *kd;
1132 const struct kinfo_proc *kp;
1133 int nchr;
1134 {
1135 struct miniproc p;
1136
1137 KPTOMINI(kp, &p);
1138 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1139 }
1140
1141 char **
1142 kvm_getenvv(kd, kp, nchr)
1143 kvm_t *kd;
1144 const struct kinfo_proc *kp;
1145 int nchr;
1146 {
1147 struct miniproc p;
1148
1149 KPTOMINI(kp, &p);
1150 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1151 }
1152
1153 static char **
1154 kvm_doargv2(kd, pid, type, nchr)
1155 kvm_t *kd;
1156 pid_t pid;
1157 int type;
1158 int nchr;
1159 {
1160 size_t bufs;
1161 int narg, mib[4];
1162 size_t newargspc_len;
1163 char **ap, *bp, *endp;
1164
1165 /*
1166 * Check that there aren't an unreasonable number of arguments.
1167 */
1168 if (nchr > ARG_MAX)
1169 return (NULL);
1170
1171 if (nchr == 0)
1172 nchr = ARG_MAX;
1173
1174 /* Get number of strings in argv */
1175 mib[0] = CTL_KERN;
1176 mib[1] = KERN_PROC_ARGS;
1177 mib[2] = pid;
1178 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1179 bufs = sizeof(narg);
1180 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1181 return (NULL);
1182
1183 if (kd->argv == NULL) {
1184 /*
1185 * Try to avoid reallocs.
1186 */
1187 kd->argc = MAX(narg + 1, 32);
1188 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1189 if (kd->argv == NULL)
1190 return (NULL);
1191 } else if (narg + 1 > kd->argc) {
1192 kd->argc = MAX(2 * kd->argc, narg + 1);
1193 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1194 sizeof(*kd->argv));
1195 if (kd->argv == NULL)
1196 return (NULL);
1197 }
1198
1199 newargspc_len = MIN(nchr, ARG_MAX);
1200 KVM_ALLOC(kd, argspc, newargspc_len);
1201 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1202
1203 mib[0] = CTL_KERN;
1204 mib[1] = KERN_PROC_ARGS;
1205 mib[2] = pid;
1206 mib[3] = type;
1207 bufs = kd->argspc_len;
1208 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1209 return (NULL);
1210
1211 bp = kd->argspc;
1212 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1213 ap = kd->argv;
1214 endp = bp + MIN(nchr, bufs);
1215
1216 while (bp < endp) {
1217 *ap++ = bp;
1218 /*
1219 * XXX: don't need following anymore, or stick check
1220 * for max argc in above while loop?
1221 */
1222 if (ap >= kd->argv + kd->argc) {
1223 kd->argc *= 2;
1224 kd->argv = _kvm_realloc(kd, kd->argv,
1225 kd->argc * sizeof(*kd->argv));
1226 ap = kd->argv;
1227 }
1228 bp += strlen(bp) + 1;
1229 }
1230 *ap = NULL;
1231
1232 return (kd->argv);
1233 }
1234
1235 char **
1236 kvm_getargv2(kd, kp, nchr)
1237 kvm_t *kd;
1238 const struct kinfo_proc2 *kp;
1239 int nchr;
1240 {
1241
1242 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1243 }
1244
1245 char **
1246 kvm_getenvv2(kd, kp, nchr)
1247 kvm_t *kd;
1248 const struct kinfo_proc2 *kp;
1249 int nchr;
1250 {
1251
1252 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1253 }
1254
1255 /*
1256 * Read from user space. The user context is given by p.
1257 */
1258 static ssize_t
1259 kvm_ureadm(kd, p, uva, buf, len)
1260 kvm_t *kd;
1261 const struct miniproc *p;
1262 u_long uva;
1263 char *buf;
1264 size_t len;
1265 {
1266 char *cp;
1267
1268 cp = buf;
1269 while (len > 0) {
1270 size_t cc;
1271 char *dp;
1272 u_long cnt;
1273
1274 dp = _kvm_ureadm(kd, p, uva, &cnt);
1275 if (dp == NULL) {
1276 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1277 return (0);
1278 }
1279 cc = (size_t)MIN(cnt, len);
1280 memcpy(cp, dp, cc);
1281 cp += cc;
1282 uva += cc;
1283 len -= cc;
1284 }
1285 return (ssize_t)(cp - buf);
1286 }
1287
1288 ssize_t
1289 kvm_uread(kd, p, uva, buf, len)
1290 kvm_t *kd;
1291 const struct proc *p;
1292 u_long uva;
1293 char *buf;
1294 size_t len;
1295 {
1296 struct miniproc mp;
1297
1298 PTOMINI(p, &mp);
1299 return (kvm_ureadm(kd, &mp, uva, buf, len));
1300 }
1301