kvm_proc.c revision 1.82 1 /* $NetBSD: kvm_proc.c,v 1.82 2009/03/29 01:02:49 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1989, 1992, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * This code is derived from software developed by the Computer Systems
37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38 * BG 91-66 and contributed to Berkeley.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 #if defined(LIBC_SCCS) && !defined(lint)
67 #if 0
68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
69 #else
70 __RCSID("$NetBSD: kvm_proc.c,v 1.82 2009/03/29 01:02:49 mrg Exp $");
71 #endif
72 #endif /* LIBC_SCCS and not lint */
73
74 /*
75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
76 * users of this code, so we've factored it out into a separate module.
77 * Thus, we keep this grunge out of the other kvm applications (i.e.,
78 * most other applications are interested only in open/close/read/nlist).
79 */
80
81 #include <sys/param.h>
82 #include <sys/user.h>
83 #include <sys/lwp.h>
84 #include <sys/proc.h>
85 #include <sys/exec.h>
86 #include <sys/stat.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/resourcevar.h>
90 #include <sys/mutex.h>
91 #include <sys/specificdata.h>
92
93 #include <errno.h>
94 #include <stdlib.h>
95 #include <stddef.h>
96 #include <string.h>
97 #include <unistd.h>
98 #include <nlist.h>
99 #include <kvm.h>
100
101 #include <uvm/uvm_extern.h>
102 #include <uvm/uvm_param.h>
103 #include <uvm/uvm_amap.h>
104
105 #include <sys/sysctl.h>
106
107 #include <limits.h>
108 #include <db.h>
109 #include <paths.h>
110
111 #include "kvm_private.h"
112
113 /*
114 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
115 */
116 struct miniproc {
117 struct vmspace *p_vmspace;
118 char p_stat;
119 struct proc *p_paddr;
120 pid_t p_pid;
121 };
122
123 /*
124 * Convert from struct proc and kinfo_proc{,2} to miniproc.
125 */
126 #define PTOMINI(kp, p) \
127 do { \
128 (p)->p_stat = (kp)->p_stat; \
129 (p)->p_pid = (kp)->p_pid; \
130 (p)->p_paddr = NULL; \
131 (p)->p_vmspace = (kp)->p_vmspace; \
132 } while (/*CONSTCOND*/0);
133
134 #define KPTOMINI(kp, p) \
135 do { \
136 (p)->p_stat = (kp)->kp_proc.p_stat; \
137 (p)->p_pid = (kp)->kp_proc.p_pid; \
138 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
139 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
140 } while (/*CONSTCOND*/0);
141
142 #define KP2TOMINI(kp, p) \
143 do { \
144 (p)->p_stat = (kp)->p_stat; \
145 (p)->p_pid = (kp)->p_pid; \
146 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
147 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
148 } while (/*CONSTCOND*/0);
149
150 /*
151 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
152 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
153 * kvm(3) so dumps can be read properly.
154 *
155 * Whenever NetBSD starts exporting credentials to userland consistently (using
156 * 'struct uucred', or something) this will have to be updated again.
157 */
158 struct kvm_kauth_cred {
159 u_int cr_refcnt; /* reference count */
160 uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
161 uid_t cr_uid; /* user id */
162 uid_t cr_euid; /* effective user id */
163 uid_t cr_svuid; /* saved effective user id */
164 gid_t cr_gid; /* group id */
165 gid_t cr_egid; /* effective group id */
166 gid_t cr_svgid; /* saved effective group id */
167 u_int cr_ngroups; /* number of groups */
168 gid_t cr_groups[NGROUPS]; /* group memberships */
169 specificdata_reference cr_sd; /* specific data */
170 };
171
172 #define KREAD(kd, addr, obj) \
173 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
174
175 /* XXX: What uses these two functions? */
176 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
177 u_long *));
178 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
179 size_t));
180
181 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
182 u_long *));
183 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
184 char *, size_t));
185
186 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
187 int));
188 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
189 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
190 void (*)(struct ps_strings *, u_long *, int *)));
191 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
192 static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
193 struct kinfo_proc *, int));
194 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
195 static void ps_str_a __P((struct ps_strings *, u_long *, int *));
196 static void ps_str_e __P((struct ps_strings *, u_long *, int *));
197
198
199 static char *
200 _kvm_ureadm(kd, p, va, cnt)
201 kvm_t *kd;
202 const struct miniproc *p;
203 u_long va;
204 u_long *cnt;
205 {
206 u_long addr, head;
207 u_long offset;
208 struct vm_map_entry vme;
209 struct vm_amap amap;
210 struct vm_anon *anonp, anon;
211 struct vm_page pg;
212 u_long slot;
213
214 if (kd->swapspc == NULL) {
215 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
216 if (kd->swapspc == NULL)
217 return (NULL);
218 }
219
220 /*
221 * Look through the address map for the memory object
222 * that corresponds to the given virtual address.
223 * The header just has the entire valid range.
224 */
225 head = (u_long)&p->p_vmspace->vm_map.header;
226 addr = head;
227 for (;;) {
228 if (KREAD(kd, addr, &vme))
229 return (NULL);
230
231 if (va >= vme.start && va < vme.end &&
232 vme.aref.ar_amap != NULL)
233 break;
234
235 addr = (u_long)vme.next;
236 if (addr == head)
237 return (NULL);
238 }
239
240 /*
241 * we found the map entry, now to find the object...
242 */
243 if (vme.aref.ar_amap == NULL)
244 return (NULL);
245
246 addr = (u_long)vme.aref.ar_amap;
247 if (KREAD(kd, addr, &amap))
248 return (NULL);
249
250 offset = va - vme.start;
251 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
252 /* sanity-check slot number */
253 if (slot > amap.am_nslot)
254 return (NULL);
255
256 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
257 if (KREAD(kd, addr, &anonp))
258 return (NULL);
259
260 addr = (u_long)anonp;
261 if (KREAD(kd, addr, &anon))
262 return (NULL);
263
264 addr = (u_long)anon.an_page;
265 if (addr) {
266 if (KREAD(kd, addr, &pg))
267 return (NULL);
268
269 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
270 (off_t)pg.phys_addr) != kd->nbpg)
271 return (NULL);
272 } else {
273 if (kd->swfd < 0 ||
274 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
275 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
276 return (NULL);
277 }
278
279 /* Found the page. */
280 offset %= kd->nbpg;
281 *cnt = kd->nbpg - offset;
282 return (&kd->swapspc[(size_t)offset]);
283 }
284
285 char *
286 _kvm_uread(kd, p, va, cnt)
287 kvm_t *kd;
288 const struct proc *p;
289 u_long va;
290 u_long *cnt;
291 {
292 struct miniproc mp;
293
294 PTOMINI(p, &mp);
295 return (_kvm_ureadm(kd, &mp, va, cnt));
296 }
297
298 /*
299 * Convert credentials located in kernel space address 'cred' and store
300 * them in the appropriate members of 'eproc'.
301 */
302 static int
303 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
304 {
305 struct kvm_kauth_cred kauthcred;
306 struct ki_pcred *pc = &eproc->e_pcred;
307 struct ki_ucred *uc = &eproc->e_ucred;
308
309 if (KREAD(kd, cred, &kauthcred) != 0)
310 return (-1);
311
312 /* inlined version of kauth_cred_to_pcred, see kauth(9). */
313 pc->p_ruid = kauthcred.cr_uid;
314 pc->p_svuid = kauthcred.cr_svuid;
315 pc->p_rgid = kauthcred.cr_gid;
316 pc->p_svgid = kauthcred.cr_svgid;
317 pc->p_refcnt = kauthcred.cr_refcnt;
318 pc->p_pad = NULL;
319
320 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
321 uc->cr_ref = kauthcred.cr_refcnt;
322 uc->cr_uid = kauthcred.cr_euid;
323 uc->cr_gid = kauthcred.cr_egid;
324 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
325 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
326 memcpy(uc->cr_groups, kauthcred.cr_groups,
327 uc->cr_ngroups * sizeof(uc->cr_groups[0]));
328
329 return (0);
330 }
331
332 /*
333 * Read proc's from memory file into buffer bp, which has space to hold
334 * at most maxcnt procs.
335 */
336 static int
337 kvm_proclist(kd, what, arg, p, bp, maxcnt)
338 kvm_t *kd;
339 int what, arg;
340 struct proc *p;
341 struct kinfo_proc *bp;
342 int maxcnt;
343 {
344 int cnt = 0;
345 int nlwps;
346 struct kinfo_lwp *kl;
347 struct eproc eproc;
348 struct pgrp pgrp;
349 struct session sess;
350 struct tty tty;
351 struct proc proc;
352
353 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
354 if (KREAD(kd, (u_long)p, &proc)) {
355 _kvm_err(kd, kd->program, "can't read proc at %p", p);
356 return (-1);
357 }
358 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
359 _kvm_err(kd, kd->program,
360 "can't read proc credentials at %p", p);
361 return (-1);
362 }
363
364 switch (what) {
365
366 case KERN_PROC_PID:
367 if (proc.p_pid != (pid_t)arg)
368 continue;
369 break;
370
371 case KERN_PROC_UID:
372 if (eproc.e_ucred.cr_uid != (uid_t)arg)
373 continue;
374 break;
375
376 case KERN_PROC_RUID:
377 if (eproc.e_pcred.p_ruid != (uid_t)arg)
378 continue;
379 break;
380 }
381 /*
382 * We're going to add another proc to the set. If this
383 * will overflow the buffer, assume the reason is because
384 * nprocs (or the proc list) is corrupt and declare an error.
385 */
386 if (cnt >= maxcnt) {
387 _kvm_err(kd, kd->program, "nprocs corrupt");
388 return (-1);
389 }
390 /*
391 * gather eproc
392 */
393 eproc.e_paddr = p;
394 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
395 _kvm_err(kd, kd->program, "can't read pgrp at %p",
396 proc.p_pgrp);
397 return (-1);
398 }
399 eproc.e_sess = pgrp.pg_session;
400 eproc.e_pgid = pgrp.pg_id;
401 eproc.e_jobc = pgrp.pg_jobc;
402 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
403 _kvm_err(kd, kd->program, "can't read session at %p",
404 pgrp.pg_session);
405 return (-1);
406 }
407 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
408 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
409 _kvm_err(kd, kd->program,
410 "can't read tty at %p", sess.s_ttyp);
411 return (-1);
412 }
413 eproc.e_tdev = (uint32_t)tty.t_dev;
414 eproc.e_tsess = tty.t_session;
415 if (tty.t_pgrp != NULL) {
416 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
417 _kvm_err(kd, kd->program,
418 "can't read tpgrp at %p",
419 tty.t_pgrp);
420 return (-1);
421 }
422 eproc.e_tpgid = pgrp.pg_id;
423 } else
424 eproc.e_tpgid = -1;
425 } else
426 eproc.e_tdev = (uint32_t)NODEV;
427 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
428 eproc.e_sid = sess.s_sid;
429 if (sess.s_leader == p)
430 eproc.e_flag |= EPROC_SLEADER;
431 /*
432 * Fill in the old-style proc.p_wmesg by copying the wmesg
433 * from the first available LWP.
434 */
435 kl = kvm_getlwps(kd, proc.p_pid,
436 (u_long)PTRTOUINT64(eproc.e_paddr),
437 sizeof(struct kinfo_lwp), &nlwps);
438 if (kl) {
439 if (nlwps > 0) {
440 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
441 }
442 }
443 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
444 sizeof(eproc.e_vm));
445
446 eproc.e_xsize = eproc.e_xrssize = 0;
447 eproc.e_xccount = eproc.e_xswrss = 0;
448
449 switch (what) {
450
451 case KERN_PROC_PGRP:
452 if (eproc.e_pgid != (pid_t)arg)
453 continue;
454 break;
455
456 case KERN_PROC_TTY:
457 if ((proc.p_lflag & PL_CONTROLT) == 0 ||
458 eproc.e_tdev != (dev_t)arg)
459 continue;
460 break;
461 }
462 memcpy(&bp->kp_proc, &proc, sizeof(proc));
463 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
464 ++bp;
465 ++cnt;
466 }
467 return (cnt);
468 }
469
470 /*
471 * Build proc info array by reading in proc list from a crash dump.
472 * Return number of procs read. maxcnt is the max we will read.
473 */
474 static int
475 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
476 kvm_t *kd;
477 int what, arg;
478 u_long a_allproc;
479 u_long a_zombproc;
480 int maxcnt;
481 {
482 struct kinfo_proc *bp = kd->procbase;
483 int acnt, zcnt;
484 struct proc *p;
485
486 if (KREAD(kd, a_allproc, &p)) {
487 _kvm_err(kd, kd->program, "cannot read allproc");
488 return (-1);
489 }
490 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
491 if (acnt < 0)
492 return (acnt);
493
494 if (KREAD(kd, a_zombproc, &p)) {
495 _kvm_err(kd, kd->program, "cannot read zombproc");
496 return (-1);
497 }
498 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
499 maxcnt - acnt);
500 if (zcnt < 0)
501 zcnt = 0;
502
503 return (acnt + zcnt);
504 }
505
506 struct kinfo_proc2 *
507 kvm_getproc2(kd, op, arg, esize, cnt)
508 kvm_t *kd;
509 int op, arg;
510 size_t esize;
511 int *cnt;
512 {
513 size_t size;
514 int mib[6], st, nprocs;
515 struct pstats pstats;
516
517 if (ISSYSCTL(kd)) {
518 size = 0;
519 mib[0] = CTL_KERN;
520 mib[1] = KERN_PROC2;
521 mib[2] = op;
522 mib[3] = arg;
523 mib[4] = (int)esize;
524 again:
525 mib[5] = 0;
526 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
527 if (st == -1) {
528 _kvm_syserr(kd, kd->program, "kvm_getproc2");
529 return (NULL);
530 }
531
532 mib[5] = (int) (size / esize);
533 KVM_ALLOC(kd, procbase2, size);
534 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
535 if (st == -1) {
536 if (errno == ENOMEM) {
537 goto again;
538 }
539 _kvm_syserr(kd, kd->program, "kvm_getproc2");
540 return (NULL);
541 }
542 nprocs = (int) (size / esize);
543 } else {
544 char *kp2c;
545 struct kinfo_proc *kp;
546 struct kinfo_proc2 kp2, *kp2p;
547 struct kinfo_lwp *kl;
548 int i, nlwps;
549
550 kp = kvm_getprocs(kd, op, arg, &nprocs);
551 if (kp == NULL)
552 return (NULL);
553
554 size = nprocs * esize;
555 KVM_ALLOC(kd, procbase2, size);
556 kp2c = (char *)(void *)kd->procbase2;
557 kp2p = &kp2;
558 for (i = 0; i < nprocs; i++, kp++) {
559 struct timeval tv;
560
561 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
562 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
563 sizeof(struct kinfo_lwp), &nlwps);
564
565 if (kl == NULL) {
566 _kvm_syserr(kd, NULL,
567 "kvm_getlwps() failed on process %u\n",
568 kp->kp_proc.p_pid);
569 if (nlwps == 0)
570 return NULL;
571 else
572 continue;
573 }
574
575 /* We use kl[0] as the "representative" LWP */
576 memset(kp2p, 0, sizeof(kp2));
577 kp2p->p_forw = kl[0].l_forw;
578 kp2p->p_back = kl[0].l_back;
579 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
580 kp2p->p_addr = kl[0].l_addr;
581 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
582 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
583 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
584 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
585 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
586 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
587 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
588 kp2p->p_tsess = 0;
589 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
590 kp2p->p_ru = 0;
591 #else
592 kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
593 #endif
594
595 kp2p->p_eflag = 0;
596 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
597 kp2p->p_flag = kp->kp_proc.p_flag;
598
599 kp2p->p_pid = kp->kp_proc.p_pid;
600
601 kp2p->p_ppid = kp->kp_eproc.e_ppid;
602 kp2p->p_sid = kp->kp_eproc.e_sid;
603 kp2p->p__pgid = kp->kp_eproc.e_pgid;
604
605 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
606
607 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
608 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
609 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
610 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
611 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
612 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
613
614 /*CONSTCOND*/
615 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
616 MIN(sizeof(kp2p->p_groups),
617 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
618 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
619
620 kp2p->p_jobc = kp->kp_eproc.e_jobc;
621 kp2p->p_tdev = kp->kp_eproc.e_tdev;
622 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
623 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
624
625 kp2p->p_estcpu = 0;
626 bintime2timeval(&kp->kp_proc.p_rtime, &tv);
627 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
628 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
629 kp2p->p_cpticks = kl[0].l_cpticks;
630 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
631 kp2p->p_swtime = kl[0].l_swtime;
632 kp2p->p_slptime = kl[0].l_slptime;
633 #if 0 /* XXX thorpej */
634 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
635 #else
636 kp2p->p_schedflags = 0;
637 #endif
638
639 kp2p->p_uticks = kp->kp_proc.p_uticks;
640 kp2p->p_sticks = kp->kp_proc.p_sticks;
641 kp2p->p_iticks = kp->kp_proc.p_iticks;
642
643 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
644 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
645
646 kp2p->p_holdcnt = kl[0].l_holdcnt;
647
648 memcpy(&kp2p->p_siglist,
649 &kp->kp_proc.p_sigpend.sp_set,
650 sizeof(ki_sigset_t));
651 memset(&kp2p->p_sigmask, 0,
652 sizeof(ki_sigset_t));
653 memcpy(&kp2p->p_sigignore,
654 &kp->kp_proc.p_sigctx.ps_sigignore,
655 sizeof(ki_sigset_t));
656 memcpy(&kp2p->p_sigcatch,
657 &kp->kp_proc.p_sigctx.ps_sigcatch,
658 sizeof(ki_sigset_t));
659
660 kp2p->p_stat = kl[0].l_stat;
661 kp2p->p_priority = kl[0].l_priority;
662 kp2p->p_usrpri = kl[0].l_priority;
663 kp2p->p_nice = kp->kp_proc.p_nice;
664
665 kp2p->p_xstat = kp->kp_proc.p_xstat;
666 kp2p->p_acflag = kp->kp_proc.p_acflag;
667
668 /*CONSTCOND*/
669 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
670 MIN(sizeof(kp2p->p_comm),
671 sizeof(kp->kp_proc.p_comm)));
672
673 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
674 sizeof(kp2p->p_wmesg));
675 kp2p->p_wchan = kl[0].l_wchan;
676 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
677 sizeof(kp2p->p_login));
678
679 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
680 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
681 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
682 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
683 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size;
684 /* Adjust mapped size */
685 kp2p->p_vm_msize =
686 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
687 kp->kp_eproc.e_vm.vm_issize +
688 kp->kp_eproc.e_vm.vm_ssize;
689
690 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
691
692 kp2p->p_realflag = kp->kp_proc.p_flag;
693 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
694 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
695 kp2p->p_realstat = kp->kp_proc.p_stat;
696
697 if (P_ZOMBIE(&kp->kp_proc) ||
698 kp->kp_proc.p_stats == NULL ||
699 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
700 kp2p->p_uvalid = 0;
701 } else {
702 kp2p->p_uvalid = 1;
703
704 kp2p->p_ustart_sec = (u_int32_t)
705 pstats.p_start.tv_sec;
706 kp2p->p_ustart_usec = (u_int32_t)
707 pstats.p_start.tv_usec;
708
709 kp2p->p_uutime_sec = (u_int32_t)
710 pstats.p_ru.ru_utime.tv_sec;
711 kp2p->p_uutime_usec = (u_int32_t)
712 pstats.p_ru.ru_utime.tv_usec;
713 kp2p->p_ustime_sec = (u_int32_t)
714 pstats.p_ru.ru_stime.tv_sec;
715 kp2p->p_ustime_usec = (u_int32_t)
716 pstats.p_ru.ru_stime.tv_usec;
717
718 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
719 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
720 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
721 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
722 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
723 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
724 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
725 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
726 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
727 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
728 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
729 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
730 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
731 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
732
733 kp2p->p_uctime_sec = (u_int32_t)
734 (pstats.p_cru.ru_utime.tv_sec +
735 pstats.p_cru.ru_stime.tv_sec);
736 kp2p->p_uctime_usec = (u_int32_t)
737 (pstats.p_cru.ru_utime.tv_usec +
738 pstats.p_cru.ru_stime.tv_usec);
739 }
740
741 memcpy(kp2c, &kp2, esize);
742 kp2c += esize;
743 }
744 }
745 *cnt = nprocs;
746 return (kd->procbase2);
747 }
748
749 struct kinfo_lwp *
750 kvm_getlwps(kd, pid, paddr, esize, cnt)
751 kvm_t *kd;
752 int pid;
753 u_long paddr;
754 size_t esize;
755 int *cnt;
756 {
757 size_t size;
758 int mib[5], nlwps;
759 ssize_t st;
760 struct kinfo_lwp *kl;
761
762 if (ISSYSCTL(kd)) {
763 size = 0;
764 mib[0] = CTL_KERN;
765 mib[1] = KERN_LWP;
766 mib[2] = pid;
767 mib[3] = (int)esize;
768 mib[4] = 0;
769 again:
770 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
771 if (st == -1) {
772 switch (errno) {
773 case ESRCH: /* Treat this as a soft error; see kvm.c */
774 _kvm_syserr(kd, NULL, "kvm_getlwps");
775 return NULL;
776 default:
777 _kvm_syserr(kd, kd->program, "kvm_getlwps");
778 return NULL;
779 }
780 }
781 mib[4] = (int) (size / esize);
782 KVM_ALLOC(kd, lwpbase, size);
783 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
784 if (st == -1) {
785 switch (errno) {
786 case ESRCH: /* Treat this as a soft error; see kvm.c */
787 _kvm_syserr(kd, NULL, "kvm_getlwps");
788 return NULL;
789 case ENOMEM:
790 goto again;
791 default:
792 _kvm_syserr(kd, kd->program, "kvm_getlwps");
793 return NULL;
794 }
795 }
796 nlwps = (int) (size / esize);
797 } else {
798 /* grovel through the memory image */
799 struct proc p;
800 struct lwp l;
801 u_long laddr;
802 void *back;
803 int i;
804
805 st = kvm_read(kd, paddr, &p, sizeof(p));
806 if (st == -1) {
807 _kvm_syserr(kd, kd->program, "kvm_getlwps");
808 return (NULL);
809 }
810
811 nlwps = p.p_nlwps;
812 size = nlwps * sizeof(*kd->lwpbase);
813 KVM_ALLOC(kd, lwpbase, size);
814 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
815 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
816 st = kvm_read(kd, laddr, &l, sizeof(l));
817 if (st == -1) {
818 _kvm_syserr(kd, kd->program, "kvm_getlwps");
819 return (NULL);
820 }
821 kl = &kd->lwpbase[i];
822 kl->l_laddr = laddr;
823 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
824 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
825 st = kvm_read(kd, laddr, &back, sizeof(back));
826 if (st == -1) {
827 _kvm_syserr(kd, kd->program, "kvm_getlwps");
828 return (NULL);
829 }
830 kl->l_back = PTRTOUINT64(back);
831 kl->l_addr = PTRTOUINT64(l.l_addr);
832 kl->l_lid = l.l_lid;
833 kl->l_flag = l.l_flag;
834 kl->l_swtime = l.l_swtime;
835 kl->l_slptime = l.l_slptime;
836 kl->l_schedflags = 0; /* XXX */
837 kl->l_holdcnt = l.l_holdcnt;
838 kl->l_priority = l.l_priority;
839 kl->l_usrpri = l.l_priority;
840 kl->l_stat = l.l_stat;
841 kl->l_wchan = PTRTOUINT64(l.l_wchan);
842 if (l.l_wmesg)
843 (void)kvm_read(kd, (u_long)l.l_wmesg,
844 kl->l_wmesg, (size_t)WMESGLEN);
845 kl->l_cpuid = KI_NOCPU;
846 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
847 }
848 }
849
850 *cnt = nlwps;
851 return (kd->lwpbase);
852 }
853
854 struct kinfo_proc *
855 kvm_getprocs(kd, op, arg, cnt)
856 kvm_t *kd;
857 int op, arg;
858 int *cnt;
859 {
860 size_t size;
861 int mib[4], st, nprocs;
862
863 if (ISKMEM(kd)) {
864 size = 0;
865 mib[0] = CTL_KERN;
866 mib[1] = KERN_PROC;
867 mib[2] = op;
868 mib[3] = arg;
869 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
870 if (st == -1) {
871 _kvm_syserr(kd, kd->program, "kvm_getprocs");
872 return (NULL);
873 }
874 KVM_ALLOC(kd, procbase, size);
875 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
876 if (st == -1) {
877 _kvm_syserr(kd, kd->program, "kvm_getprocs");
878 return (NULL);
879 }
880 if (size % sizeof(struct kinfo_proc) != 0) {
881 _kvm_err(kd, kd->program,
882 "proc size mismatch (%lu total, %lu chunks)",
883 (u_long)size, (u_long)sizeof(struct kinfo_proc));
884 return (NULL);
885 }
886 nprocs = (int) (size / sizeof(struct kinfo_proc));
887 } else if (ISSYSCTL(kd)) {
888 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
889 "can't use kvm_getprocs");
890 return (NULL);
891 } else {
892 struct nlist nl[4], *p;
893
894 (void)memset(nl, 0, sizeof(nl));
895 nl[0].n_name = "_nprocs";
896 nl[1].n_name = "_allproc";
897 nl[2].n_name = "_zombproc";
898 nl[3].n_name = NULL;
899
900 if (kvm_nlist(kd, nl) != 0) {
901 for (p = nl; p->n_type != 0; ++p)
902 continue;
903 _kvm_err(kd, kd->program,
904 "%s: no such symbol", p->n_name);
905 return (NULL);
906 }
907 if (KREAD(kd, nl[0].n_value, &nprocs)) {
908 _kvm_err(kd, kd->program, "can't read nprocs");
909 return (NULL);
910 }
911 size = nprocs * sizeof(*kd->procbase);
912 KVM_ALLOC(kd, procbase, size);
913 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
914 nl[2].n_value, nprocs);
915 if (nprocs < 0)
916 return (NULL);
917 #ifdef notdef
918 size = nprocs * sizeof(struct kinfo_proc);
919 (void)realloc(kd->procbase, size);
920 #endif
921 }
922 *cnt = nprocs;
923 return (kd->procbase);
924 }
925
926 void *
927 _kvm_realloc(kd, p, n)
928 kvm_t *kd;
929 void *p;
930 size_t n;
931 {
932 void *np = realloc(p, n);
933
934 if (np == NULL)
935 _kvm_err(kd, kd->program, "out of memory");
936 return (np);
937 }
938
939 /*
940 * Read in an argument vector from the user address space of process p.
941 * addr if the user-space base address of narg null-terminated contiguous
942 * strings. This is used to read in both the command arguments and
943 * environment strings. Read at most maxcnt characters of strings.
944 */
945 static char **
946 kvm_argv(kd, p, addr, narg, maxcnt)
947 kvm_t *kd;
948 const struct miniproc *p;
949 u_long addr;
950 int narg;
951 int maxcnt;
952 {
953 char *np, *cp, *ep, *ap;
954 u_long oaddr = (u_long)~0L;
955 u_long len;
956 size_t cc;
957 char **argv;
958
959 /*
960 * Check that there aren't an unreasonable number of arguments,
961 * and that the address is in user space.
962 */
963 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
964 return (NULL);
965
966 if (kd->argv == NULL) {
967 /*
968 * Try to avoid reallocs.
969 */
970 kd->argc = MAX(narg + 1, 32);
971 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
972 if (kd->argv == NULL)
973 return (NULL);
974 } else if (narg + 1 > kd->argc) {
975 kd->argc = MAX(2 * kd->argc, narg + 1);
976 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
977 sizeof(*kd->argv));
978 if (kd->argv == NULL)
979 return (NULL);
980 }
981 if (kd->argspc == NULL) {
982 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
983 if (kd->argspc == NULL)
984 return (NULL);
985 kd->argspc_len = kd->nbpg;
986 }
987 if (kd->argbuf == NULL) {
988 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
989 if (kd->argbuf == NULL)
990 return (NULL);
991 }
992 cc = sizeof(char *) * narg;
993 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
994 return (NULL);
995 ap = np = kd->argspc;
996 argv = kd->argv;
997 len = 0;
998 /*
999 * Loop over pages, filling in the argument vector.
1000 */
1001 while (argv < kd->argv + narg && *argv != NULL) {
1002 addr = (u_long)*argv & ~(kd->nbpg - 1);
1003 if (addr != oaddr) {
1004 if (kvm_ureadm(kd, p, addr, kd->argbuf,
1005 (size_t)kd->nbpg) != kd->nbpg)
1006 return (NULL);
1007 oaddr = addr;
1008 }
1009 addr = (u_long)*argv & (kd->nbpg - 1);
1010 cp = kd->argbuf + (size_t)addr;
1011 cc = kd->nbpg - (size_t)addr;
1012 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
1013 cc = (size_t)(maxcnt - len);
1014 ep = memchr(cp, '\0', cc);
1015 if (ep != NULL)
1016 cc = ep - cp + 1;
1017 if (len + cc > kd->argspc_len) {
1018 ptrdiff_t off;
1019 char **pp;
1020 char *op = kd->argspc;
1021
1022 kd->argspc_len *= 2;
1023 kd->argspc = _kvm_realloc(kd, kd->argspc,
1024 kd->argspc_len);
1025 if (kd->argspc == NULL)
1026 return (NULL);
1027 /*
1028 * Adjust argv pointers in case realloc moved
1029 * the string space.
1030 */
1031 off = kd->argspc - op;
1032 for (pp = kd->argv; pp < argv; pp++)
1033 *pp += off;
1034 ap += off;
1035 np += off;
1036 }
1037 memcpy(np, cp, cc);
1038 np += cc;
1039 len += cc;
1040 if (ep != NULL) {
1041 *argv++ = ap;
1042 ap = np;
1043 } else
1044 *argv += cc;
1045 if (maxcnt > 0 && len >= maxcnt) {
1046 /*
1047 * We're stopping prematurely. Terminate the
1048 * current string.
1049 */
1050 if (ep == NULL) {
1051 *np = '\0';
1052 *argv++ = ap;
1053 }
1054 break;
1055 }
1056 }
1057 /* Make sure argv is terminated. */
1058 *argv = NULL;
1059 return (kd->argv);
1060 }
1061
1062 static void
1063 ps_str_a(p, addr, n)
1064 struct ps_strings *p;
1065 u_long *addr;
1066 int *n;
1067 {
1068
1069 *addr = (u_long)p->ps_argvstr;
1070 *n = p->ps_nargvstr;
1071 }
1072
1073 static void
1074 ps_str_e(p, addr, n)
1075 struct ps_strings *p;
1076 u_long *addr;
1077 int *n;
1078 {
1079
1080 *addr = (u_long)p->ps_envstr;
1081 *n = p->ps_nenvstr;
1082 }
1083
1084 /*
1085 * Determine if the proc indicated by p is still active.
1086 * This test is not 100% foolproof in theory, but chances of
1087 * being wrong are very low.
1088 */
1089 static int
1090 proc_verify(kd, kernp, p)
1091 kvm_t *kd;
1092 u_long kernp;
1093 const struct miniproc *p;
1094 {
1095 struct proc kernproc;
1096
1097 /*
1098 * Just read in the whole proc. It's not that big relative
1099 * to the cost of the read system call.
1100 */
1101 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1102 sizeof(kernproc))
1103 return (0);
1104 return (p->p_pid == kernproc.p_pid &&
1105 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1106 }
1107
1108 static char **
1109 kvm_doargv(kd, p, nchr, info)
1110 kvm_t *kd;
1111 const struct miniproc *p;
1112 int nchr;
1113 void (*info)(struct ps_strings *, u_long *, int *);
1114 {
1115 char **ap;
1116 u_long addr;
1117 int cnt;
1118 struct ps_strings arginfo;
1119
1120 /*
1121 * Pointers are stored at the top of the user stack.
1122 */
1123 if (p->p_stat == SZOMB)
1124 return (NULL);
1125 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1126 (void *)&arginfo, sizeof(arginfo));
1127 if (cnt != sizeof(arginfo))
1128 return (NULL);
1129
1130 (*info)(&arginfo, &addr, &cnt);
1131 if (cnt == 0)
1132 return (NULL);
1133 ap = kvm_argv(kd, p, addr, cnt, nchr);
1134 /*
1135 * For live kernels, make sure this process didn't go away.
1136 */
1137 if (ap != NULL && ISALIVE(kd) &&
1138 !proc_verify(kd, (u_long)p->p_paddr, p))
1139 ap = NULL;
1140 return (ap);
1141 }
1142
1143 /*
1144 * Get the command args. This code is now machine independent.
1145 */
1146 char **
1147 kvm_getargv(kd, kp, nchr)
1148 kvm_t *kd;
1149 const struct kinfo_proc *kp;
1150 int nchr;
1151 {
1152 struct miniproc p;
1153
1154 KPTOMINI(kp, &p);
1155 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1156 }
1157
1158 char **
1159 kvm_getenvv(kd, kp, nchr)
1160 kvm_t *kd;
1161 const struct kinfo_proc *kp;
1162 int nchr;
1163 {
1164 struct miniproc p;
1165
1166 KPTOMINI(kp, &p);
1167 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1168 }
1169
1170 static char **
1171 kvm_doargv2(kd, pid, type, nchr)
1172 kvm_t *kd;
1173 pid_t pid;
1174 int type;
1175 int nchr;
1176 {
1177 size_t bufs;
1178 int narg, mib[4];
1179 size_t newargspc_len;
1180 char **ap, *bp, *endp;
1181
1182 /*
1183 * Check that there aren't an unreasonable number of arguments.
1184 */
1185 if (nchr > ARG_MAX)
1186 return (NULL);
1187
1188 if (nchr == 0)
1189 nchr = ARG_MAX;
1190
1191 /* Get number of strings in argv */
1192 mib[0] = CTL_KERN;
1193 mib[1] = KERN_PROC_ARGS;
1194 mib[2] = pid;
1195 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1196 bufs = sizeof(narg);
1197 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1198 return (NULL);
1199
1200 if (kd->argv == NULL) {
1201 /*
1202 * Try to avoid reallocs.
1203 */
1204 kd->argc = MAX(narg + 1, 32);
1205 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1206 if (kd->argv == NULL)
1207 return (NULL);
1208 } else if (narg + 1 > kd->argc) {
1209 kd->argc = MAX(2 * kd->argc, narg + 1);
1210 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1211 sizeof(*kd->argv));
1212 if (kd->argv == NULL)
1213 return (NULL);
1214 }
1215
1216 newargspc_len = MIN(nchr, ARG_MAX);
1217 KVM_ALLOC(kd, argspc, newargspc_len);
1218 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1219
1220 mib[0] = CTL_KERN;
1221 mib[1] = KERN_PROC_ARGS;
1222 mib[2] = pid;
1223 mib[3] = type;
1224 bufs = kd->argspc_len;
1225 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1226 return (NULL);
1227
1228 bp = kd->argspc;
1229 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1230 ap = kd->argv;
1231 endp = bp + MIN(nchr, bufs);
1232
1233 while (bp < endp) {
1234 *ap++ = bp;
1235 /*
1236 * XXX: don't need following anymore, or stick check
1237 * for max argc in above while loop?
1238 */
1239 if (ap >= kd->argv + kd->argc) {
1240 kd->argc *= 2;
1241 kd->argv = _kvm_realloc(kd, kd->argv,
1242 kd->argc * sizeof(*kd->argv));
1243 ap = kd->argv;
1244 }
1245 bp += strlen(bp) + 1;
1246 }
1247 *ap = NULL;
1248
1249 return (kd->argv);
1250 }
1251
1252 char **
1253 kvm_getargv2(kd, kp, nchr)
1254 kvm_t *kd;
1255 const struct kinfo_proc2 *kp;
1256 int nchr;
1257 {
1258
1259 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1260 }
1261
1262 char **
1263 kvm_getenvv2(kd, kp, nchr)
1264 kvm_t *kd;
1265 const struct kinfo_proc2 *kp;
1266 int nchr;
1267 {
1268
1269 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1270 }
1271
1272 /*
1273 * Read from user space. The user context is given by p.
1274 */
1275 static ssize_t
1276 kvm_ureadm(kd, p, uva, buf, len)
1277 kvm_t *kd;
1278 const struct miniproc *p;
1279 u_long uva;
1280 char *buf;
1281 size_t len;
1282 {
1283 char *cp;
1284
1285 cp = buf;
1286 while (len > 0) {
1287 size_t cc;
1288 char *dp;
1289 u_long cnt;
1290
1291 dp = _kvm_ureadm(kd, p, uva, &cnt);
1292 if (dp == NULL) {
1293 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1294 return (0);
1295 }
1296 cc = (size_t)MIN(cnt, len);
1297 memcpy(cp, dp, cc);
1298 cp += cc;
1299 uva += cc;
1300 len -= cc;
1301 }
1302 return (ssize_t)(cp - buf);
1303 }
1304
1305 ssize_t
1306 kvm_uread(kd, p, uva, buf, len)
1307 kvm_t *kd;
1308 const struct proc *p;
1309 u_long uva;
1310 char *buf;
1311 size_t len;
1312 {
1313 struct miniproc mp;
1314
1315 PTOMINI(p, &mp);
1316 return (kvm_ureadm(kd, &mp, uva, buf, len));
1317 }
1318