kvm_proc.c revision 1.85 1 /* $NetBSD: kvm_proc.c,v 1.85 2010/09/19 02:07:00 jym Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1989, 1992, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * This code is derived from software developed by the Computer Systems
37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38 * BG 91-66 and contributed to Berkeley.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 #if defined(LIBC_SCCS) && !defined(lint)
67 #if 0
68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
69 #else
70 __RCSID("$NetBSD: kvm_proc.c,v 1.85 2010/09/19 02:07:00 jym Exp $");
71 #endif
72 #endif /* LIBC_SCCS and not lint */
73
74 /*
75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
76 * users of this code, so we've factored it out into a separate module.
77 * Thus, we keep this grunge out of the other kvm applications (i.e.,
78 * most other applications are interested only in open/close/read/nlist).
79 */
80
81 #include <sys/param.h>
82 #include <sys/user.h>
83 #include <sys/lwp.h>
84 #include <sys/proc.h>
85 #include <sys/exec.h>
86 #include <sys/stat.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/resourcevar.h>
90 #include <sys/mutex.h>
91 #include <sys/specificdata.h>
92
93 #include <errno.h>
94 #include <stdlib.h>
95 #include <stddef.h>
96 #include <string.h>
97 #include <unistd.h>
98 #include <nlist.h>
99 #include <kvm.h>
100
101 #include <uvm/uvm_extern.h>
102 #include <uvm/uvm_param.h>
103 #include <uvm/uvm_amap.h>
104
105 #include <sys/sysctl.h>
106
107 #include <limits.h>
108 #include <db.h>
109 #include <paths.h>
110
111 #include "kvm_private.h"
112
113 /*
114 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
115 */
116 struct miniproc {
117 struct vmspace *p_vmspace;
118 char p_stat;
119 struct proc *p_paddr;
120 pid_t p_pid;
121 };
122
123 /*
124 * Convert from struct proc and kinfo_proc{,2} to miniproc.
125 */
126 #define PTOMINI(kp, p) \
127 do { \
128 (p)->p_stat = (kp)->p_stat; \
129 (p)->p_pid = (kp)->p_pid; \
130 (p)->p_paddr = NULL; \
131 (p)->p_vmspace = (kp)->p_vmspace; \
132 } while (/*CONSTCOND*/0);
133
134 #define KPTOMINI(kp, p) \
135 do { \
136 (p)->p_stat = (kp)->kp_proc.p_stat; \
137 (p)->p_pid = (kp)->kp_proc.p_pid; \
138 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
139 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
140 } while (/*CONSTCOND*/0);
141
142 #define KP2TOMINI(kp, p) \
143 do { \
144 (p)->p_stat = (kp)->p_stat; \
145 (p)->p_pid = (kp)->p_pid; \
146 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
147 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
148 } while (/*CONSTCOND*/0);
149
150 /*
151 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
152 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
153 * kvm(3) so dumps can be read properly.
154 *
155 * Whenever NetBSD starts exporting credentials to userland consistently (using
156 * 'struct uucred', or something) this will have to be updated again.
157 */
158 struct kvm_kauth_cred {
159 u_int cr_refcnt; /* reference count */
160 uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
161 uid_t cr_uid; /* user id */
162 uid_t cr_euid; /* effective user id */
163 uid_t cr_svuid; /* saved effective user id */
164 gid_t cr_gid; /* group id */
165 gid_t cr_egid; /* effective group id */
166 gid_t cr_svgid; /* saved effective group id */
167 u_int cr_ngroups; /* number of groups */
168 gid_t cr_groups[NGROUPS]; /* group memberships */
169 specificdata_reference cr_sd; /* specific data */
170 };
171
172 #define KREAD(kd, addr, obj) \
173 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
174
175 /* XXX: What uses these two functions? */
176 char *_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *);
177 ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *,
178 size_t);
179
180 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
181 u_long *);
182 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
183 char *, size_t);
184
185 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
186 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
187 static char **kvm_doargv(kvm_t *, const struct miniproc *, int,
188 void (*)(struct ps_strings *, u_long *, int *));
189 static char **kvm_doargv2(kvm_t *, pid_t, int, int);
190 static int kvm_proclist(kvm_t *, int, int, struct proc *,
191 struct kinfo_proc *, int);
192 static int proc_verify(kvm_t *, u_long, const struct miniproc *);
193 static void ps_str_a(struct ps_strings *, u_long *, int *);
194 static void ps_str_e(struct ps_strings *, u_long *, int *);
195
196
197 static char *
198 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
199 {
200 u_long addr, head;
201 u_long offset;
202 struct vm_map_entry vme;
203 struct vm_amap amap;
204 struct vm_anon *anonp, anon;
205 struct vm_page pg;
206 u_long slot;
207
208 if (kd->swapspc == NULL) {
209 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
210 if (kd->swapspc == NULL)
211 return (NULL);
212 }
213
214 /*
215 * Look through the address map for the memory object
216 * that corresponds to the given virtual address.
217 * The header just has the entire valid range.
218 */
219 head = (u_long)&p->p_vmspace->vm_map.header;
220 addr = head;
221 for (;;) {
222 if (KREAD(kd, addr, &vme))
223 return (NULL);
224
225 if (va >= vme.start && va < vme.end &&
226 vme.aref.ar_amap != NULL)
227 break;
228
229 addr = (u_long)vme.next;
230 if (addr == head)
231 return (NULL);
232 }
233
234 /*
235 * we found the map entry, now to find the object...
236 */
237 if (vme.aref.ar_amap == NULL)
238 return (NULL);
239
240 addr = (u_long)vme.aref.ar_amap;
241 if (KREAD(kd, addr, &amap))
242 return (NULL);
243
244 offset = va - vme.start;
245 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
246 /* sanity-check slot number */
247 if (slot > amap.am_nslot)
248 return (NULL);
249
250 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
251 if (KREAD(kd, addr, &anonp))
252 return (NULL);
253
254 addr = (u_long)anonp;
255 if (KREAD(kd, addr, &anon))
256 return (NULL);
257
258 addr = (u_long)anon.an_page;
259 if (addr) {
260 if (KREAD(kd, addr, &pg))
261 return (NULL);
262
263 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
264 (off_t)pg.phys_addr) != kd->nbpg)
265 return (NULL);
266 } else {
267 if (kd->swfd < 0 ||
268 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
269 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
270 return (NULL);
271 }
272
273 /* Found the page. */
274 offset %= kd->nbpg;
275 *cnt = kd->nbpg - offset;
276 return (&kd->swapspc[(size_t)offset]);
277 }
278
279 char *
280 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
281 {
282 struct miniproc mp;
283
284 PTOMINI(p, &mp);
285 return (_kvm_ureadm(kd, &mp, va, cnt));
286 }
287
288 /*
289 * Convert credentials located in kernel space address 'cred' and store
290 * them in the appropriate members of 'eproc'.
291 */
292 static int
293 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
294 {
295 struct kvm_kauth_cred kauthcred;
296 struct ki_pcred *pc = &eproc->e_pcred;
297 struct ki_ucred *uc = &eproc->e_ucred;
298
299 if (KREAD(kd, cred, &kauthcred) != 0)
300 return (-1);
301
302 /* inlined version of kauth_cred_to_pcred, see kauth(9). */
303 pc->p_ruid = kauthcred.cr_uid;
304 pc->p_svuid = kauthcred.cr_svuid;
305 pc->p_rgid = kauthcred.cr_gid;
306 pc->p_svgid = kauthcred.cr_svgid;
307 pc->p_refcnt = kauthcred.cr_refcnt;
308 pc->p_pad = NULL;
309
310 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
311 uc->cr_ref = kauthcred.cr_refcnt;
312 uc->cr_uid = kauthcred.cr_euid;
313 uc->cr_gid = kauthcred.cr_egid;
314 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
315 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
316 memcpy(uc->cr_groups, kauthcred.cr_groups,
317 uc->cr_ngroups * sizeof(uc->cr_groups[0]));
318
319 return (0);
320 }
321
322 /*
323 * Read proc's from memory file into buffer bp, which has space to hold
324 * at most maxcnt procs.
325 */
326 static int
327 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
328 struct kinfo_proc *bp, int maxcnt)
329 {
330 int cnt = 0;
331 int nlwps;
332 struct kinfo_lwp *kl;
333 struct eproc eproc;
334 struct pgrp pgrp;
335 struct session sess;
336 struct tty tty;
337 struct proc proc;
338
339 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
340 if (KREAD(kd, (u_long)p, &proc)) {
341 _kvm_err(kd, kd->program, "can't read proc at %p", p);
342 return (-1);
343 }
344 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
345 _kvm_err(kd, kd->program,
346 "can't read proc credentials at %p", p);
347 return (-1);
348 }
349
350 switch (what) {
351
352 case KERN_PROC_PID:
353 if (proc.p_pid != (pid_t)arg)
354 continue;
355 break;
356
357 case KERN_PROC_UID:
358 if (eproc.e_ucred.cr_uid != (uid_t)arg)
359 continue;
360 break;
361
362 case KERN_PROC_RUID:
363 if (eproc.e_pcred.p_ruid != (uid_t)arg)
364 continue;
365 break;
366 }
367 /*
368 * We're going to add another proc to the set. If this
369 * will overflow the buffer, assume the reason is because
370 * nprocs (or the proc list) is corrupt and declare an error.
371 */
372 if (cnt >= maxcnt) {
373 _kvm_err(kd, kd->program, "nprocs corrupt");
374 return (-1);
375 }
376 /*
377 * gather eproc
378 */
379 eproc.e_paddr = p;
380 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
381 _kvm_err(kd, kd->program, "can't read pgrp at %p",
382 proc.p_pgrp);
383 return (-1);
384 }
385 eproc.e_sess = pgrp.pg_session;
386 eproc.e_pgid = pgrp.pg_id;
387 eproc.e_jobc = pgrp.pg_jobc;
388 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
389 _kvm_err(kd, kd->program, "can't read session at %p",
390 pgrp.pg_session);
391 return (-1);
392 }
393 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
394 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
395 _kvm_err(kd, kd->program,
396 "can't read tty at %p", sess.s_ttyp);
397 return (-1);
398 }
399 eproc.e_tdev = (uint32_t)tty.t_dev;
400 eproc.e_tsess = tty.t_session;
401 if (tty.t_pgrp != NULL) {
402 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
403 _kvm_err(kd, kd->program,
404 "can't read tpgrp at %p",
405 tty.t_pgrp);
406 return (-1);
407 }
408 eproc.e_tpgid = pgrp.pg_id;
409 } else
410 eproc.e_tpgid = -1;
411 } else
412 eproc.e_tdev = (uint32_t)NODEV;
413 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
414 eproc.e_sid = sess.s_sid;
415 if (sess.s_leader == p)
416 eproc.e_flag |= EPROC_SLEADER;
417 /*
418 * Fill in the old-style proc.p_wmesg by copying the wmesg
419 * from the first available LWP.
420 */
421 kl = kvm_getlwps(kd, proc.p_pid,
422 (u_long)PTRTOUINT64(eproc.e_paddr),
423 sizeof(struct kinfo_lwp), &nlwps);
424 if (kl) {
425 if (nlwps > 0) {
426 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
427 }
428 }
429 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
430 sizeof(eproc.e_vm));
431
432 eproc.e_xsize = eproc.e_xrssize = 0;
433 eproc.e_xccount = eproc.e_xswrss = 0;
434
435 switch (what) {
436
437 case KERN_PROC_PGRP:
438 if (eproc.e_pgid != (pid_t)arg)
439 continue;
440 break;
441
442 case KERN_PROC_TTY:
443 if ((proc.p_lflag & PL_CONTROLT) == 0 ||
444 eproc.e_tdev != (dev_t)arg)
445 continue;
446 break;
447 }
448 memcpy(&bp->kp_proc, &proc, sizeof(proc));
449 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
450 ++bp;
451 ++cnt;
452 }
453 return (cnt);
454 }
455
456 /*
457 * Build proc info array by reading in proc list from a crash dump.
458 * Return number of procs read. maxcnt is the max we will read.
459 */
460 static int
461 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
462 u_long a_zombproc, int maxcnt)
463 {
464 struct kinfo_proc *bp = kd->procbase;
465 int acnt, zcnt;
466 struct proc *p;
467
468 if (KREAD(kd, a_allproc, &p)) {
469 _kvm_err(kd, kd->program, "cannot read allproc");
470 return (-1);
471 }
472 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
473 if (acnt < 0)
474 return (acnt);
475
476 if (KREAD(kd, a_zombproc, &p)) {
477 _kvm_err(kd, kd->program, "cannot read zombproc");
478 return (-1);
479 }
480 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
481 maxcnt - acnt);
482 if (zcnt < 0)
483 zcnt = 0;
484
485 return (acnt + zcnt);
486 }
487
488 struct kinfo_proc2 *
489 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
490 {
491 size_t size;
492 int mib[6], st, nprocs;
493 struct pstats pstats;
494
495 if (ISSYSCTL(kd)) {
496 size = 0;
497 mib[0] = CTL_KERN;
498 mib[1] = KERN_PROC2;
499 mib[2] = op;
500 mib[3] = arg;
501 mib[4] = (int)esize;
502 again:
503 mib[5] = 0;
504 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
505 if (st == -1) {
506 _kvm_syserr(kd, kd->program, "kvm_getproc2");
507 return (NULL);
508 }
509
510 mib[5] = (int) (size / esize);
511 KVM_ALLOC(kd, procbase2, size);
512 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
513 if (st == -1) {
514 if (errno == ENOMEM) {
515 goto again;
516 }
517 _kvm_syserr(kd, kd->program, "kvm_getproc2");
518 return (NULL);
519 }
520 nprocs = (int) (size / esize);
521 } else {
522 char *kp2c;
523 struct kinfo_proc *kp;
524 struct kinfo_proc2 kp2, *kp2p;
525 struct kinfo_lwp *kl;
526 int i, nlwps;
527
528 kp = kvm_getprocs(kd, op, arg, &nprocs);
529 if (kp == NULL)
530 return (NULL);
531
532 size = nprocs * esize;
533 KVM_ALLOC(kd, procbase2, size);
534 kp2c = (char *)(void *)kd->procbase2;
535 kp2p = &kp2;
536 for (i = 0; i < nprocs; i++, kp++) {
537 struct timeval tv;
538
539 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
540 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
541 sizeof(struct kinfo_lwp), &nlwps);
542
543 if (kl == NULL) {
544 _kvm_syserr(kd, NULL,
545 "kvm_getlwps() failed on process %u\n",
546 kp->kp_proc.p_pid);
547 if (nlwps == 0)
548 return NULL;
549 else
550 continue;
551 }
552
553 /* We use kl[0] as the "representative" LWP */
554 memset(kp2p, 0, sizeof(kp2));
555 kp2p->p_forw = kl[0].l_forw;
556 kp2p->p_back = kl[0].l_back;
557 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
558 kp2p->p_addr = kl[0].l_addr;
559 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
560 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
561 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
562 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
563 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
564 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
565 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
566 kp2p->p_tsess = 0;
567 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
568 kp2p->p_ru = 0;
569 #else
570 kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
571 #endif
572
573 kp2p->p_eflag = 0;
574 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
575 kp2p->p_flag = kp->kp_proc.p_flag;
576
577 kp2p->p_pid = kp->kp_proc.p_pid;
578
579 kp2p->p_ppid = kp->kp_eproc.e_ppid;
580 kp2p->p_sid = kp->kp_eproc.e_sid;
581 kp2p->p__pgid = kp->kp_eproc.e_pgid;
582
583 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
584
585 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
586 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
587 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
588 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
589 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
590 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
591
592 /*CONSTCOND*/
593 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
594 MIN(sizeof(kp2p->p_groups),
595 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
596 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
597
598 kp2p->p_jobc = kp->kp_eproc.e_jobc;
599 kp2p->p_tdev = kp->kp_eproc.e_tdev;
600 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
601 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
602
603 kp2p->p_estcpu = 0;
604 bintime2timeval(&kp->kp_proc.p_rtime, &tv);
605 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
606 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
607 kp2p->p_cpticks = kl[0].l_cpticks;
608 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
609 kp2p->p_swtime = kl[0].l_swtime;
610 kp2p->p_slptime = kl[0].l_slptime;
611 #if 0 /* XXX thorpej */
612 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
613 #else
614 kp2p->p_schedflags = 0;
615 #endif
616
617 kp2p->p_uticks = kp->kp_proc.p_uticks;
618 kp2p->p_sticks = kp->kp_proc.p_sticks;
619 kp2p->p_iticks = kp->kp_proc.p_iticks;
620
621 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
622 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
623
624 kp2p->p_holdcnt = kl[0].l_holdcnt;
625
626 memcpy(&kp2p->p_siglist,
627 &kp->kp_proc.p_sigpend.sp_set,
628 sizeof(ki_sigset_t));
629 memset(&kp2p->p_sigmask, 0,
630 sizeof(ki_sigset_t));
631 memcpy(&kp2p->p_sigignore,
632 &kp->kp_proc.p_sigctx.ps_sigignore,
633 sizeof(ki_sigset_t));
634 memcpy(&kp2p->p_sigcatch,
635 &kp->kp_proc.p_sigctx.ps_sigcatch,
636 sizeof(ki_sigset_t));
637
638 kp2p->p_stat = kl[0].l_stat;
639 kp2p->p_priority = kl[0].l_priority;
640 kp2p->p_usrpri = kl[0].l_priority;
641 kp2p->p_nice = kp->kp_proc.p_nice;
642
643 kp2p->p_xstat = kp->kp_proc.p_xstat;
644 kp2p->p_acflag = kp->kp_proc.p_acflag;
645
646 /*CONSTCOND*/
647 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
648 MIN(sizeof(kp2p->p_comm),
649 sizeof(kp->kp_proc.p_comm)));
650
651 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
652 sizeof(kp2p->p_wmesg));
653 kp2p->p_wchan = kl[0].l_wchan;
654 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
655 sizeof(kp2p->p_login));
656
657 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
658 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
659 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
660 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
661 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size;
662 /* Adjust mapped size */
663 kp2p->p_vm_msize =
664 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
665 kp->kp_eproc.e_vm.vm_issize +
666 kp->kp_eproc.e_vm.vm_ssize;
667
668 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
669
670 kp2p->p_realflag = kp->kp_proc.p_flag;
671 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
672 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
673 kp2p->p_realstat = kp->kp_proc.p_stat;
674
675 if (P_ZOMBIE(&kp->kp_proc) ||
676 kp->kp_proc.p_stats == NULL ||
677 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
678 kp2p->p_uvalid = 0;
679 } else {
680 kp2p->p_uvalid = 1;
681
682 kp2p->p_ustart_sec = (u_int32_t)
683 pstats.p_start.tv_sec;
684 kp2p->p_ustart_usec = (u_int32_t)
685 pstats.p_start.tv_usec;
686
687 kp2p->p_uutime_sec = (u_int32_t)
688 pstats.p_ru.ru_utime.tv_sec;
689 kp2p->p_uutime_usec = (u_int32_t)
690 pstats.p_ru.ru_utime.tv_usec;
691 kp2p->p_ustime_sec = (u_int32_t)
692 pstats.p_ru.ru_stime.tv_sec;
693 kp2p->p_ustime_usec = (u_int32_t)
694 pstats.p_ru.ru_stime.tv_usec;
695
696 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
697 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
698 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
699 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
700 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
701 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
702 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
703 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
704 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
705 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
706 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
707 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
708 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
709 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
710
711 kp2p->p_uctime_sec = (u_int32_t)
712 (pstats.p_cru.ru_utime.tv_sec +
713 pstats.p_cru.ru_stime.tv_sec);
714 kp2p->p_uctime_usec = (u_int32_t)
715 (pstats.p_cru.ru_utime.tv_usec +
716 pstats.p_cru.ru_stime.tv_usec);
717 }
718
719 memcpy(kp2c, &kp2, esize);
720 kp2c += esize;
721 }
722 }
723 *cnt = nprocs;
724 return (kd->procbase2);
725 }
726
727 struct kinfo_lwp *
728 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
729 {
730 size_t size;
731 int mib[5], nlwps;
732 ssize_t st;
733 struct kinfo_lwp *kl;
734
735 if (ISSYSCTL(kd)) {
736 size = 0;
737 mib[0] = CTL_KERN;
738 mib[1] = KERN_LWP;
739 mib[2] = pid;
740 mib[3] = (int)esize;
741 mib[4] = 0;
742 again:
743 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
744 if (st == -1) {
745 switch (errno) {
746 case ESRCH: /* Treat this as a soft error; see kvm.c */
747 _kvm_syserr(kd, NULL, "kvm_getlwps");
748 return NULL;
749 default:
750 _kvm_syserr(kd, kd->program, "kvm_getlwps");
751 return NULL;
752 }
753 }
754 mib[4] = (int) (size / esize);
755 KVM_ALLOC(kd, lwpbase, size);
756 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
757 if (st == -1) {
758 switch (errno) {
759 case ESRCH: /* Treat this as a soft error; see kvm.c */
760 _kvm_syserr(kd, NULL, "kvm_getlwps");
761 return NULL;
762 case ENOMEM:
763 goto again;
764 default:
765 _kvm_syserr(kd, kd->program, "kvm_getlwps");
766 return NULL;
767 }
768 }
769 nlwps = (int) (size / esize);
770 } else {
771 /* grovel through the memory image */
772 struct proc p;
773 struct lwp l;
774 u_long laddr;
775 void *back;
776 int i;
777
778 st = kvm_read(kd, paddr, &p, sizeof(p));
779 if (st == -1) {
780 _kvm_syserr(kd, kd->program, "kvm_getlwps");
781 return (NULL);
782 }
783
784 nlwps = p.p_nlwps;
785 size = nlwps * sizeof(*kd->lwpbase);
786 KVM_ALLOC(kd, lwpbase, size);
787 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
788 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
789 st = kvm_read(kd, laddr, &l, sizeof(l));
790 if (st == -1) {
791 _kvm_syserr(kd, kd->program, "kvm_getlwps");
792 return (NULL);
793 }
794 kl = &kd->lwpbase[i];
795 kl->l_laddr = laddr;
796 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
797 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
798 st = kvm_read(kd, laddr, &back, sizeof(back));
799 if (st == -1) {
800 _kvm_syserr(kd, kd->program, "kvm_getlwps");
801 return (NULL);
802 }
803 kl->l_back = PTRTOUINT64(back);
804 kl->l_addr = PTRTOUINT64(l.l_addr);
805 kl->l_lid = l.l_lid;
806 kl->l_flag = l.l_flag;
807 kl->l_swtime = l.l_swtime;
808 kl->l_slptime = l.l_slptime;
809 kl->l_schedflags = 0; /* XXX */
810 kl->l_holdcnt = 0;
811 kl->l_priority = l.l_priority;
812 kl->l_usrpri = l.l_priority;
813 kl->l_stat = l.l_stat;
814 kl->l_wchan = PTRTOUINT64(l.l_wchan);
815 if (l.l_wmesg)
816 (void)kvm_read(kd, (u_long)l.l_wmesg,
817 kl->l_wmesg, (size_t)WMESGLEN);
818 kl->l_cpuid = KI_NOCPU;
819 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
820 }
821 }
822
823 *cnt = nlwps;
824 return (kd->lwpbase);
825 }
826
827 struct kinfo_proc *
828 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
829 {
830 size_t size;
831 int mib[4], st, nprocs;
832
833 if (ISALIVE(kd)) {
834 size = 0;
835 mib[0] = CTL_KERN;
836 mib[1] = KERN_PROC;
837 mib[2] = op;
838 mib[3] = arg;
839 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
840 if (st == -1) {
841 _kvm_syserr(kd, kd->program, "kvm_getprocs");
842 return (NULL);
843 }
844 KVM_ALLOC(kd, procbase, size);
845 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
846 if (st == -1) {
847 _kvm_syserr(kd, kd->program, "kvm_getprocs");
848 return (NULL);
849 }
850 if (size % sizeof(struct kinfo_proc) != 0) {
851 _kvm_err(kd, kd->program,
852 "proc size mismatch (%lu total, %lu chunks)",
853 (u_long)size, (u_long)sizeof(struct kinfo_proc));
854 return (NULL);
855 }
856 nprocs = (int) (size / sizeof(struct kinfo_proc));
857 } else {
858 struct nlist nl[4], *p;
859
860 (void)memset(nl, 0, sizeof(nl));
861 nl[0].n_name = "_nprocs";
862 nl[1].n_name = "_allproc";
863 nl[2].n_name = "_zombproc";
864 nl[3].n_name = NULL;
865
866 if (kvm_nlist(kd, nl) != 0) {
867 for (p = nl; p->n_type != 0; ++p)
868 continue;
869 _kvm_err(kd, kd->program,
870 "%s: no such symbol", p->n_name);
871 return (NULL);
872 }
873 if (KREAD(kd, nl[0].n_value, &nprocs)) {
874 _kvm_err(kd, kd->program, "can't read nprocs");
875 return (NULL);
876 }
877 size = nprocs * sizeof(*kd->procbase);
878 KVM_ALLOC(kd, procbase, size);
879 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
880 nl[2].n_value, nprocs);
881 if (nprocs < 0)
882 return (NULL);
883 #ifdef notdef
884 size = nprocs * sizeof(struct kinfo_proc);
885 (void)realloc(kd->procbase, size);
886 #endif
887 }
888 *cnt = nprocs;
889 return (kd->procbase);
890 }
891
892 void *
893 _kvm_realloc(kvm_t *kd, void *p, size_t n)
894 {
895 void *np = realloc(p, n);
896
897 if (np == NULL)
898 _kvm_err(kd, kd->program, "out of memory");
899 return (np);
900 }
901
902 /*
903 * Read in an argument vector from the user address space of process p.
904 * addr if the user-space base address of narg null-terminated contiguous
905 * strings. This is used to read in both the command arguments and
906 * environment strings. Read at most maxcnt characters of strings.
907 */
908 static char **
909 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
910 int maxcnt)
911 {
912 char *np, *cp, *ep, *ap;
913 u_long oaddr = (u_long)~0L;
914 u_long len;
915 size_t cc;
916 char **argv;
917
918 /*
919 * Check that there aren't an unreasonable number of arguments,
920 * and that the address is in user space.
921 */
922 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
923 return (NULL);
924
925 if (kd->argv == NULL) {
926 /*
927 * Try to avoid reallocs.
928 */
929 kd->argc = MAX(narg + 1, 32);
930 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
931 if (kd->argv == NULL)
932 return (NULL);
933 } else if (narg + 1 > kd->argc) {
934 kd->argc = MAX(2 * kd->argc, narg + 1);
935 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
936 sizeof(*kd->argv));
937 if (kd->argv == NULL)
938 return (NULL);
939 }
940 if (kd->argspc == NULL) {
941 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
942 if (kd->argspc == NULL)
943 return (NULL);
944 kd->argspc_len = kd->nbpg;
945 }
946 if (kd->argbuf == NULL) {
947 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
948 if (kd->argbuf == NULL)
949 return (NULL);
950 }
951 cc = sizeof(char *) * narg;
952 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
953 return (NULL);
954 ap = np = kd->argspc;
955 argv = kd->argv;
956 len = 0;
957 /*
958 * Loop over pages, filling in the argument vector.
959 */
960 while (argv < kd->argv + narg && *argv != NULL) {
961 addr = (u_long)*argv & ~(kd->nbpg - 1);
962 if (addr != oaddr) {
963 if (kvm_ureadm(kd, p, addr, kd->argbuf,
964 (size_t)kd->nbpg) != kd->nbpg)
965 return (NULL);
966 oaddr = addr;
967 }
968 addr = (u_long)*argv & (kd->nbpg - 1);
969 cp = kd->argbuf + (size_t)addr;
970 cc = kd->nbpg - (size_t)addr;
971 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
972 cc = (size_t)(maxcnt - len);
973 ep = memchr(cp, '\0', cc);
974 if (ep != NULL)
975 cc = ep - cp + 1;
976 if (len + cc > kd->argspc_len) {
977 ptrdiff_t off;
978 char **pp;
979 char *op = kd->argspc;
980
981 kd->argspc_len *= 2;
982 kd->argspc = _kvm_realloc(kd, kd->argspc,
983 kd->argspc_len);
984 if (kd->argspc == NULL)
985 return (NULL);
986 /*
987 * Adjust argv pointers in case realloc moved
988 * the string space.
989 */
990 off = kd->argspc - op;
991 for (pp = kd->argv; pp < argv; pp++)
992 *pp += off;
993 ap += off;
994 np += off;
995 }
996 memcpy(np, cp, cc);
997 np += cc;
998 len += cc;
999 if (ep != NULL) {
1000 *argv++ = ap;
1001 ap = np;
1002 } else
1003 *argv += cc;
1004 if (maxcnt > 0 && len >= maxcnt) {
1005 /*
1006 * We're stopping prematurely. Terminate the
1007 * current string.
1008 */
1009 if (ep == NULL) {
1010 *np = '\0';
1011 *argv++ = ap;
1012 }
1013 break;
1014 }
1015 }
1016 /* Make sure argv is terminated. */
1017 *argv = NULL;
1018 return (kd->argv);
1019 }
1020
1021 static void
1022 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
1023 {
1024
1025 *addr = (u_long)p->ps_argvstr;
1026 *n = p->ps_nargvstr;
1027 }
1028
1029 static void
1030 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
1031 {
1032
1033 *addr = (u_long)p->ps_envstr;
1034 *n = p->ps_nenvstr;
1035 }
1036
1037 /*
1038 * Determine if the proc indicated by p is still active.
1039 * This test is not 100% foolproof in theory, but chances of
1040 * being wrong are very low.
1041 */
1042 static int
1043 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
1044 {
1045 struct proc kernproc;
1046
1047 /*
1048 * Just read in the whole proc. It's not that big relative
1049 * to the cost of the read system call.
1050 */
1051 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1052 sizeof(kernproc))
1053 return (0);
1054 return (p->p_pid == kernproc.p_pid &&
1055 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1056 }
1057
1058 static char **
1059 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
1060 void (*info)(struct ps_strings *, u_long *, int *))
1061 {
1062 char **ap;
1063 u_long addr;
1064 int cnt;
1065 struct ps_strings arginfo;
1066
1067 /*
1068 * Pointers are stored at the top of the user stack.
1069 */
1070 if (p->p_stat == SZOMB)
1071 return (NULL);
1072 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1073 (void *)&arginfo, sizeof(arginfo));
1074 if (cnt != sizeof(arginfo))
1075 return (NULL);
1076
1077 (*info)(&arginfo, &addr, &cnt);
1078 if (cnt == 0)
1079 return (NULL);
1080 ap = kvm_argv(kd, p, addr, cnt, nchr);
1081 /*
1082 * For live kernels, make sure this process didn't go away.
1083 */
1084 if (ap != NULL && ISALIVE(kd) &&
1085 !proc_verify(kd, (u_long)p->p_paddr, p))
1086 ap = NULL;
1087 return (ap);
1088 }
1089
1090 /*
1091 * Get the command args. This code is now machine independent.
1092 */
1093 char **
1094 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1095 {
1096 struct miniproc p;
1097
1098 KPTOMINI(kp, &p);
1099 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1100 }
1101
1102 char **
1103 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1104 {
1105 struct miniproc p;
1106
1107 KPTOMINI(kp, &p);
1108 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1109 }
1110
1111 static char **
1112 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
1113 {
1114 size_t bufs;
1115 int narg, mib[4];
1116 size_t newargspc_len;
1117 char **ap, *bp, *endp;
1118
1119 /*
1120 * Check that there aren't an unreasonable number of arguments.
1121 */
1122 if (nchr > ARG_MAX)
1123 return (NULL);
1124
1125 if (nchr == 0)
1126 nchr = ARG_MAX;
1127
1128 /* Get number of strings in argv */
1129 mib[0] = CTL_KERN;
1130 mib[1] = KERN_PROC_ARGS;
1131 mib[2] = pid;
1132 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1133 bufs = sizeof(narg);
1134 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1135 return (NULL);
1136
1137 if (kd->argv == NULL) {
1138 /*
1139 * Try to avoid reallocs.
1140 */
1141 kd->argc = MAX(narg + 1, 32);
1142 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1143 if (kd->argv == NULL)
1144 return (NULL);
1145 } else if (narg + 1 > kd->argc) {
1146 kd->argc = MAX(2 * kd->argc, narg + 1);
1147 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1148 sizeof(*kd->argv));
1149 if (kd->argv == NULL)
1150 return (NULL);
1151 }
1152
1153 newargspc_len = MIN(nchr, ARG_MAX);
1154 KVM_ALLOC(kd, argspc, newargspc_len);
1155 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1156
1157 mib[0] = CTL_KERN;
1158 mib[1] = KERN_PROC_ARGS;
1159 mib[2] = pid;
1160 mib[3] = type;
1161 bufs = kd->argspc_len;
1162 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1163 return (NULL);
1164
1165 bp = kd->argspc;
1166 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1167 ap = kd->argv;
1168 endp = bp + MIN(nchr, bufs);
1169
1170 while (bp < endp) {
1171 *ap++ = bp;
1172 /*
1173 * XXX: don't need following anymore, or stick check
1174 * for max argc in above while loop?
1175 */
1176 if (ap >= kd->argv + kd->argc) {
1177 kd->argc *= 2;
1178 kd->argv = _kvm_realloc(kd, kd->argv,
1179 kd->argc * sizeof(*kd->argv));
1180 ap = kd->argv;
1181 }
1182 bp += strlen(bp) + 1;
1183 }
1184 *ap = NULL;
1185
1186 return (kd->argv);
1187 }
1188
1189 char **
1190 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1191 {
1192
1193 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1194 }
1195
1196 char **
1197 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1198 {
1199
1200 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1201 }
1202
1203 /*
1204 * Read from user space. The user context is given by p.
1205 */
1206 static ssize_t
1207 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
1208 char *buf, size_t len)
1209 {
1210 char *cp;
1211
1212 cp = buf;
1213 while (len > 0) {
1214 size_t cc;
1215 char *dp;
1216 u_long cnt;
1217
1218 dp = _kvm_ureadm(kd, p, uva, &cnt);
1219 if (dp == NULL) {
1220 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1221 return (0);
1222 }
1223 cc = (size_t)MIN(cnt, len);
1224 memcpy(cp, dp, cc);
1225 cp += cc;
1226 uva += cc;
1227 len -= cc;
1228 }
1229 return (ssize_t)(cp - buf);
1230 }
1231
1232 ssize_t
1233 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len)
1234 {
1235 struct miniproc mp;
1236
1237 PTOMINI(p, &mp);
1238 return (kvm_ureadm(kd, &mp, uva, buf, len));
1239 }
1240