Home | History | Annotate | Line # | Download | only in libkvm
kvm_proc.c revision 1.86
      1 /*	$NetBSD: kvm_proc.c,v 1.86 2010/09/20 23:23:16 jym Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1989, 1992, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * This code is derived from software developed by the Computer Systems
     37  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
     38  * BG 91-66 and contributed to Berkeley.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. Neither the name of the University nor the names of its contributors
     49  *    may be used to endorse or promote products derived from this software
     50  *    without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62  * SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 #if defined(LIBC_SCCS) && !defined(lint)
     67 #if 0
     68 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
     69 #else
     70 __RCSID("$NetBSD: kvm_proc.c,v 1.86 2010/09/20 23:23:16 jym Exp $");
     71 #endif
     72 #endif /* LIBC_SCCS and not lint */
     73 
     74 /*
     75  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
     76  * users of this code, so we've factored it out into a separate module.
     77  * Thus, we keep this grunge out of the other kvm applications (i.e.,
     78  * most other applications are interested only in open/close/read/nlist).
     79  */
     80 
     81 #include <sys/param.h>
     82 #include <sys/user.h>
     83 #include <sys/lwp.h>
     84 #include <sys/proc.h>
     85 #include <sys/exec.h>
     86 #include <sys/stat.h>
     87 #include <sys/ioctl.h>
     88 #include <sys/tty.h>
     89 #include <sys/resourcevar.h>
     90 #include <sys/mutex.h>
     91 #include <sys/specificdata.h>
     92 #include <sys/types.h>
     93 
     94 #include <errno.h>
     95 #include <stdlib.h>
     96 #include <stddef.h>
     97 #include <string.h>
     98 #include <unistd.h>
     99 #include <nlist.h>
    100 #include <kvm.h>
    101 
    102 #include <uvm/uvm_extern.h>
    103 #include <uvm/uvm_param.h>
    104 #include <uvm/uvm_amap.h>
    105 
    106 #include <sys/sysctl.h>
    107 
    108 #include <limits.h>
    109 #include <db.h>
    110 #include <paths.h>
    111 
    112 #include "kvm_private.h"
    113 
    114 /*
    115  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
    116  */
    117 struct miniproc {
    118 	struct	vmspace *p_vmspace;
    119 	char	p_stat;
    120 	struct	proc *p_paddr;
    121 	pid_t	p_pid;
    122 };
    123 
    124 /*
    125  * Convert from struct proc and kinfo_proc{,2} to miniproc.
    126  */
    127 #define PTOMINI(kp, p) \
    128 	do { \
    129 		(p)->p_stat = (kp)->p_stat; \
    130 		(p)->p_pid = (kp)->p_pid; \
    131 		(p)->p_paddr = NULL; \
    132 		(p)->p_vmspace = (kp)->p_vmspace; \
    133 	} while (/*CONSTCOND*/0);
    134 
    135 #define KPTOMINI(kp, p) \
    136 	do { \
    137 		(p)->p_stat = (kp)->kp_proc.p_stat; \
    138 		(p)->p_pid = (kp)->kp_proc.p_pid; \
    139 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
    140 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
    141 	} while (/*CONSTCOND*/0);
    142 
    143 #define KP2TOMINI(kp, p) \
    144 	do { \
    145 		(p)->p_stat = (kp)->p_stat; \
    146 		(p)->p_pid = (kp)->p_pid; \
    147 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
    148 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
    149 	} while (/*CONSTCOND*/0);
    150 
    151 /*
    152  * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
    153  * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
    154  * kvm(3) so dumps can be read properly.
    155  *
    156  * Whenever NetBSD starts exporting credentials to userland consistently (using
    157  * 'struct uucred', or something) this will have to be updated again.
    158  */
    159 struct kvm_kauth_cred {
    160 	u_int cr_refcnt;		/* reference count */
    161 	uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
    162 	uid_t cr_uid;			/* user id */
    163 	uid_t cr_euid;			/* effective user id */
    164 	uid_t cr_svuid;			/* saved effective user id */
    165 	gid_t cr_gid;			/* group id */
    166 	gid_t cr_egid;			/* effective group id */
    167 	gid_t cr_svgid;			/* saved effective group id */
    168 	u_int cr_ngroups;		/* number of groups */
    169 	gid_t cr_groups[NGROUPS];	/* group memberships */
    170 	specificdata_reference cr_sd;	/* specific data */
    171 };
    172 
    173 #define KREAD(kd, addr, obj) \
    174 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
    175 
    176 /* XXX: What uses these two functions? */
    177 char		*_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *);
    178 ssize_t		kvm_uread(kvm_t *, const struct proc *, u_long, char *,
    179 		    size_t);
    180 
    181 static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
    182 		    u_long *);
    183 static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
    184 		    char *, size_t);
    185 
    186 static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
    187 static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
    188 static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
    189 		    void (*)(struct ps_strings *, u_long *, int *));
    190 static char	**kvm_doargv2(kvm_t *, pid_t, int, int);
    191 static int	kvm_proclist(kvm_t *, int, int, struct proc *,
    192 		    struct kinfo_proc *, int);
    193 static int	proc_verify(kvm_t *, u_long, const struct miniproc *);
    194 static void	ps_str_a(struct ps_strings *, u_long *, int *);
    195 static void	ps_str_e(struct ps_strings *, u_long *, int *);
    196 
    197 
    198 static char *
    199 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
    200 {
    201 	u_long addr, head;
    202 	u_long offset;
    203 	struct vm_map_entry vme;
    204 	struct vm_amap amap;
    205 	struct vm_anon *anonp, anon;
    206 	struct vm_page pg;
    207 	u_long slot;
    208 
    209 	if (kd->swapspc == NULL) {
    210 		kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    211 		if (kd->swapspc == NULL)
    212 			return (NULL);
    213 	}
    214 
    215 	/*
    216 	 * Look through the address map for the memory object
    217 	 * that corresponds to the given virtual address.
    218 	 * The header just has the entire valid range.
    219 	 */
    220 	head = (u_long)&p->p_vmspace->vm_map.header;
    221 	addr = head;
    222 	for (;;) {
    223 		if (KREAD(kd, addr, &vme))
    224 			return (NULL);
    225 
    226 		if (va >= vme.start && va < vme.end &&
    227 		    vme.aref.ar_amap != NULL)
    228 			break;
    229 
    230 		addr = (u_long)vme.next;
    231 		if (addr == head)
    232 			return (NULL);
    233 	}
    234 
    235 	/*
    236 	 * we found the map entry, now to find the object...
    237 	 */
    238 	if (vme.aref.ar_amap == NULL)
    239 		return (NULL);
    240 
    241 	addr = (u_long)vme.aref.ar_amap;
    242 	if (KREAD(kd, addr, &amap))
    243 		return (NULL);
    244 
    245 	offset = va - vme.start;
    246 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
    247 	/* sanity-check slot number */
    248 	if (slot > amap.am_nslot)
    249 		return (NULL);
    250 
    251 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
    252 	if (KREAD(kd, addr, &anonp))
    253 		return (NULL);
    254 
    255 	addr = (u_long)anonp;
    256 	if (KREAD(kd, addr, &anon))
    257 		return (NULL);
    258 
    259 	addr = (u_long)anon.an_page;
    260 	if (addr) {
    261 		if (KREAD(kd, addr, &pg))
    262 			return (NULL);
    263 
    264 		if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
    265 		    (off_t)pg.phys_addr) != kd->nbpg)
    266 			return (NULL);
    267 	} else {
    268 		if (kd->swfd < 0 ||
    269 		    _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
    270 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
    271 			return (NULL);
    272 	}
    273 
    274 	/* Found the page. */
    275 	offset %= kd->nbpg;
    276 	*cnt = kd->nbpg - offset;
    277 	return (&kd->swapspc[(size_t)offset]);
    278 }
    279 
    280 char *
    281 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
    282 {
    283 	struct miniproc mp;
    284 
    285 	PTOMINI(p, &mp);
    286 	return (_kvm_ureadm(kd, &mp, va, cnt));
    287 }
    288 
    289 /*
    290  * Convert credentials located in kernel space address 'cred' and store
    291  * them in the appropriate members of 'eproc'.
    292  */
    293 static int
    294 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
    295 {
    296 	struct kvm_kauth_cred kauthcred;
    297 	struct ki_pcred *pc = &eproc->e_pcred;
    298 	struct ki_ucred *uc = &eproc->e_ucred;
    299 
    300 	if (KREAD(kd, cred, &kauthcred) != 0)
    301 		return (-1);
    302 
    303 	/* inlined version of kauth_cred_to_pcred, see kauth(9). */
    304 	pc->p_ruid = kauthcred.cr_uid;
    305 	pc->p_svuid = kauthcred.cr_svuid;
    306 	pc->p_rgid = kauthcred.cr_gid;
    307 	pc->p_svgid = kauthcred.cr_svgid;
    308 	pc->p_refcnt = kauthcred.cr_refcnt;
    309 	pc->p_pad = NULL;
    310 
    311 	/* inlined version of kauth_cred_to_ucred(), see kauth(9). */
    312 	uc->cr_ref = kauthcred.cr_refcnt;
    313 	uc->cr_uid = kauthcred.cr_euid;
    314 	uc->cr_gid = kauthcred.cr_egid;
    315 	uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
    316 	    sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
    317 	memcpy(uc->cr_groups, kauthcred.cr_groups,
    318 	    uc->cr_ngroups * sizeof(uc->cr_groups[0]));
    319 
    320 	return (0);
    321 }
    322 
    323 /*
    324  * Read proc's from memory file into buffer bp, which has space to hold
    325  * at most maxcnt procs.
    326  */
    327 static int
    328 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
    329 	     struct kinfo_proc *bp, int maxcnt)
    330 {
    331 	int cnt = 0;
    332 	int nlwps;
    333 	struct kinfo_lwp *kl;
    334 	struct eproc eproc;
    335 	struct pgrp pgrp;
    336 	struct session sess;
    337 	struct tty tty;
    338 	struct proc proc;
    339 
    340 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
    341 		if (KREAD(kd, (u_long)p, &proc)) {
    342 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
    343 			return (-1);
    344 		}
    345 		if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
    346 			_kvm_err(kd, kd->program,
    347 			    "can't read proc credentials at %p", p);
    348 			return (-1);
    349 		}
    350 
    351 		switch (what) {
    352 
    353 		case KERN_PROC_PID:
    354 			if (proc.p_pid != (pid_t)arg)
    355 				continue;
    356 			break;
    357 
    358 		case KERN_PROC_UID:
    359 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
    360 				continue;
    361 			break;
    362 
    363 		case KERN_PROC_RUID:
    364 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
    365 				continue;
    366 			break;
    367 		}
    368 		/*
    369 		 * We're going to add another proc to the set.  If this
    370 		 * will overflow the buffer, assume the reason is because
    371 		 * nprocs (or the proc list) is corrupt and declare an error.
    372 		 */
    373 		if (cnt >= maxcnt) {
    374 			_kvm_err(kd, kd->program, "nprocs corrupt");
    375 			return (-1);
    376 		}
    377 		/*
    378 		 * gather eproc
    379 		 */
    380 		eproc.e_paddr = p;
    381 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
    382 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
    383 			    proc.p_pgrp);
    384 			return (-1);
    385 		}
    386 		eproc.e_sess = pgrp.pg_session;
    387 		eproc.e_pgid = pgrp.pg_id;
    388 		eproc.e_jobc = pgrp.pg_jobc;
    389 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
    390 			_kvm_err(kd, kd->program, "can't read session at %p",
    391 			    pgrp.pg_session);
    392 			return (-1);
    393 		}
    394 		if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
    395 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
    396 				_kvm_err(kd, kd->program,
    397 				    "can't read tty at %p", sess.s_ttyp);
    398 				return (-1);
    399 			}
    400 			eproc.e_tdev = (uint32_t)tty.t_dev;
    401 			eproc.e_tsess = tty.t_session;
    402 			if (tty.t_pgrp != NULL) {
    403 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
    404 					_kvm_err(kd, kd->program,
    405 					    "can't read tpgrp at %p",
    406 					    tty.t_pgrp);
    407 					return (-1);
    408 				}
    409 				eproc.e_tpgid = pgrp.pg_id;
    410 			} else
    411 				eproc.e_tpgid = -1;
    412 		} else
    413 			eproc.e_tdev = (uint32_t)NODEV;
    414 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
    415 		eproc.e_sid = sess.s_sid;
    416 		if (sess.s_leader == p)
    417 			eproc.e_flag |= EPROC_SLEADER;
    418 		/*
    419 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
    420 		 * from the first available LWP.
    421 		 */
    422 		kl = kvm_getlwps(kd, proc.p_pid,
    423 		    (u_long)PTRTOUINT64(eproc.e_paddr),
    424 		    sizeof(struct kinfo_lwp), &nlwps);
    425 		if (kl) {
    426 			if (nlwps > 0) {
    427 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
    428 			}
    429 		}
    430 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
    431 		    sizeof(eproc.e_vm));
    432 
    433 		eproc.e_xsize = eproc.e_xrssize = 0;
    434 		eproc.e_xccount = eproc.e_xswrss = 0;
    435 
    436 		switch (what) {
    437 
    438 		case KERN_PROC_PGRP:
    439 			if (eproc.e_pgid != (pid_t)arg)
    440 				continue;
    441 			break;
    442 
    443 		case KERN_PROC_TTY:
    444 			if ((proc.p_lflag & PL_CONTROLT) == 0 ||
    445 			    eproc.e_tdev != (dev_t)arg)
    446 				continue;
    447 			break;
    448 		}
    449 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
    450 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
    451 		++bp;
    452 		++cnt;
    453 	}
    454 	return (cnt);
    455 }
    456 
    457 /*
    458  * Build proc info array by reading in proc list from a crash dump.
    459  * Return number of procs read.  maxcnt is the max we will read.
    460  */
    461 static int
    462 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
    463 	      u_long a_zombproc, int maxcnt)
    464 {
    465 	struct kinfo_proc *bp = kd->procbase;
    466 	int acnt, zcnt;
    467 	struct proc *p;
    468 
    469 	if (KREAD(kd, a_allproc, &p)) {
    470 		_kvm_err(kd, kd->program, "cannot read allproc");
    471 		return (-1);
    472 	}
    473 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
    474 	if (acnt < 0)
    475 		return (acnt);
    476 
    477 	if (KREAD(kd, a_zombproc, &p)) {
    478 		_kvm_err(kd, kd->program, "cannot read zombproc");
    479 		return (-1);
    480 	}
    481 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
    482 	    maxcnt - acnt);
    483 	if (zcnt < 0)
    484 		zcnt = 0;
    485 
    486 	return (acnt + zcnt);
    487 }
    488 
    489 struct kinfo_proc2 *
    490 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
    491 {
    492 	size_t size;
    493 	int mib[6], st, nprocs;
    494 	struct pstats pstats;
    495 
    496 	if (ISSYSCTL(kd)) {
    497 		size = 0;
    498 		mib[0] = CTL_KERN;
    499 		mib[1] = KERN_PROC2;
    500 		mib[2] = op;
    501 		mib[3] = arg;
    502 		mib[4] = (int)esize;
    503 again:
    504 		mib[5] = 0;
    505 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
    506 		if (st == -1) {
    507 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    508 			return (NULL);
    509 		}
    510 
    511 		mib[5] = (int) (size / esize);
    512 		KVM_ALLOC(kd, procbase2, size);
    513 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
    514 		if (st == -1) {
    515 			if (errno == ENOMEM) {
    516 				goto again;
    517 			}
    518 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
    519 			return (NULL);
    520 		}
    521 		nprocs = (int) (size / esize);
    522 	} else {
    523 		char *kp2c;
    524 		struct kinfo_proc *kp;
    525 		struct kinfo_proc2 kp2, *kp2p;
    526 		struct kinfo_lwp *kl;
    527 		int i, nlwps;
    528 
    529 		kp = kvm_getprocs(kd, op, arg, &nprocs);
    530 		if (kp == NULL)
    531 			return (NULL);
    532 
    533 		size = nprocs * esize;
    534 		KVM_ALLOC(kd, procbase2, size);
    535 		kp2c = (char *)(void *)kd->procbase2;
    536 		kp2p = &kp2;
    537 		for (i = 0; i < nprocs; i++, kp++) {
    538 			struct timeval tv;
    539 
    540 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
    541 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
    542 			    sizeof(struct kinfo_lwp), &nlwps);
    543 
    544 			if (kl == NULL) {
    545 				_kvm_syserr(kd, NULL,
    546 					"kvm_getlwps() failed on process %u\n",
    547 					kp->kp_proc.p_pid);
    548 				if (nlwps == 0)
    549 					return NULL;
    550 				else
    551 					continue;
    552 			}
    553 
    554 			/* We use kl[0] as the "representative" LWP */
    555 			memset(kp2p, 0, sizeof(kp2));
    556 			kp2p->p_forw = kl[0].l_forw;
    557 			kp2p->p_back = kl[0].l_back;
    558 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
    559 			kp2p->p_addr = kl[0].l_addr;
    560 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
    561 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
    562 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
    563 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
    564 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
    565 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
    566 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
    567 			kp2p->p_tsess = 0;
    568 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
    569 			kp2p->p_ru = 0;
    570 #else
    571 			kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
    572 #endif
    573 
    574 			kp2p->p_eflag = 0;
    575 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
    576 			kp2p->p_flag = kp->kp_proc.p_flag;
    577 
    578 			kp2p->p_pid = kp->kp_proc.p_pid;
    579 
    580 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
    581 			kp2p->p_sid = kp->kp_eproc.e_sid;
    582 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
    583 
    584 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
    585 
    586 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
    587 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
    588 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
    589 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
    590 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
    591 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
    592 
    593 			/*CONSTCOND*/
    594 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
    595 			    MIN(sizeof(kp2p->p_groups),
    596 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
    597 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
    598 
    599 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
    600 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
    601 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
    602 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
    603 
    604 			kp2p->p_estcpu = 0;
    605 			bintime2timeval(&kp->kp_proc.p_rtime, &tv);
    606 			kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
    607 			kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
    608 			kp2p->p_cpticks = kl[0].l_cpticks;
    609 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
    610 			kp2p->p_swtime = kl[0].l_swtime;
    611 			kp2p->p_slptime = kl[0].l_slptime;
    612 #if 0 /* XXX thorpej */
    613 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
    614 #else
    615 			kp2p->p_schedflags = 0;
    616 #endif
    617 
    618 			kp2p->p_uticks = kp->kp_proc.p_uticks;
    619 			kp2p->p_sticks = kp->kp_proc.p_sticks;
    620 			kp2p->p_iticks = kp->kp_proc.p_iticks;
    621 
    622 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
    623 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
    624 
    625 			kp2p->p_holdcnt = kl[0].l_holdcnt;
    626 
    627 			memcpy(&kp2p->p_siglist,
    628 			    &kp->kp_proc.p_sigpend.sp_set,
    629 			    sizeof(ki_sigset_t));
    630 			memset(&kp2p->p_sigmask, 0,
    631 			    sizeof(ki_sigset_t));
    632 			memcpy(&kp2p->p_sigignore,
    633 			    &kp->kp_proc.p_sigctx.ps_sigignore,
    634 			    sizeof(ki_sigset_t));
    635 			memcpy(&kp2p->p_sigcatch,
    636 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
    637 			    sizeof(ki_sigset_t));
    638 
    639 			kp2p->p_stat = kl[0].l_stat;
    640 			kp2p->p_priority = kl[0].l_priority;
    641 			kp2p->p_usrpri = kl[0].l_priority;
    642 			kp2p->p_nice = kp->kp_proc.p_nice;
    643 
    644 			kp2p->p_xstat = kp->kp_proc.p_xstat;
    645 			kp2p->p_acflag = kp->kp_proc.p_acflag;
    646 
    647 			/*CONSTCOND*/
    648 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
    649 			    MIN(sizeof(kp2p->p_comm),
    650 			    sizeof(kp->kp_proc.p_comm)));
    651 
    652 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
    653 			    sizeof(kp2p->p_wmesg));
    654 			kp2p->p_wchan = kl[0].l_wchan;
    655 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
    656 			    sizeof(kp2p->p_login));
    657 
    658 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
    659 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
    660 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
    661 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
    662 			kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size;
    663 			/* Adjust mapped size */
    664 			kp2p->p_vm_msize =
    665 			    (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
    666 			    kp->kp_eproc.e_vm.vm_issize +
    667 			    kp->kp_eproc.e_vm.vm_ssize;
    668 
    669 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
    670 
    671 			kp2p->p_realflag = kp->kp_proc.p_flag;
    672 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
    673 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
    674 			kp2p->p_realstat = kp->kp_proc.p_stat;
    675 
    676 			if (P_ZOMBIE(&kp->kp_proc) ||
    677 			    kp->kp_proc.p_stats == NULL ||
    678 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
    679 				kp2p->p_uvalid = 0;
    680 			} else {
    681 				kp2p->p_uvalid = 1;
    682 
    683 				kp2p->p_ustart_sec = (u_int32_t)
    684 				    pstats.p_start.tv_sec;
    685 				kp2p->p_ustart_usec = (u_int32_t)
    686 				    pstats.p_start.tv_usec;
    687 
    688 				kp2p->p_uutime_sec = (u_int32_t)
    689 				    pstats.p_ru.ru_utime.tv_sec;
    690 				kp2p->p_uutime_usec = (u_int32_t)
    691 				    pstats.p_ru.ru_utime.tv_usec;
    692 				kp2p->p_ustime_sec = (u_int32_t)
    693 				    pstats.p_ru.ru_stime.tv_sec;
    694 				kp2p->p_ustime_usec = (u_int32_t)
    695 				    pstats.p_ru.ru_stime.tv_usec;
    696 
    697 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
    698 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
    699 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
    700 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
    701 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
    702 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
    703 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
    704 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
    705 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
    706 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
    707 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
    708 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
    709 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
    710 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
    711 
    712 				kp2p->p_uctime_sec = (u_int32_t)
    713 				    (pstats.p_cru.ru_utime.tv_sec +
    714 				    pstats.p_cru.ru_stime.tv_sec);
    715 				kp2p->p_uctime_usec = (u_int32_t)
    716 				    (pstats.p_cru.ru_utime.tv_usec +
    717 				    pstats.p_cru.ru_stime.tv_usec);
    718 			}
    719 
    720 			memcpy(kp2c, &kp2, esize);
    721 			kp2c += esize;
    722 		}
    723 	}
    724 	*cnt = nprocs;
    725 	return (kd->procbase2);
    726 }
    727 
    728 struct kinfo_lwp *
    729 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
    730 {
    731 	size_t size;
    732 	int mib[5], nlwps;
    733 	ssize_t st;
    734 	struct kinfo_lwp *kl;
    735 
    736 	if (ISSYSCTL(kd)) {
    737 		size = 0;
    738 		mib[0] = CTL_KERN;
    739 		mib[1] = KERN_LWP;
    740 		mib[2] = pid;
    741 		mib[3] = (int)esize;
    742 		mib[4] = 0;
    743 again:
    744 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
    745 		if (st == -1) {
    746 			switch (errno) {
    747 			case ESRCH: /* Treat this as a soft error; see kvm.c */
    748 				_kvm_syserr(kd, NULL, "kvm_getlwps");
    749 				return NULL;
    750 			default:
    751 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    752 				return NULL;
    753 			}
    754 		}
    755 		mib[4] = (int) (size / esize);
    756 		KVM_ALLOC(kd, lwpbase, size);
    757 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
    758 		if (st == -1) {
    759 			switch (errno) {
    760 			case ESRCH: /* Treat this as a soft error; see kvm.c */
    761 				_kvm_syserr(kd, NULL, "kvm_getlwps");
    762 				return NULL;
    763 			case ENOMEM:
    764 				goto again;
    765 			default:
    766 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    767 				return NULL;
    768 			}
    769 		}
    770 		nlwps = (int) (size / esize);
    771 	} else {
    772 		/* grovel through the memory image */
    773 		struct proc p;
    774 		struct lwp l;
    775 		u_long laddr;
    776 		void *back;
    777 		int i;
    778 
    779 		st = kvm_read(kd, paddr, &p, sizeof(p));
    780 		if (st == -1) {
    781 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
    782 			return (NULL);
    783 		}
    784 
    785 		nlwps = p.p_nlwps;
    786 		size = nlwps * sizeof(*kd->lwpbase);
    787 		KVM_ALLOC(kd, lwpbase, size);
    788 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
    789 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
    790 			st = kvm_read(kd, laddr, &l, sizeof(l));
    791 			if (st == -1) {
    792 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    793 				return (NULL);
    794 			}
    795 			kl = &kd->lwpbase[i];
    796 			kl->l_laddr = laddr;
    797 			kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
    798 			laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
    799 			st = kvm_read(kd, laddr, &back, sizeof(back));
    800 			if (st == -1) {
    801 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
    802 				return (NULL);
    803 			}
    804 			kl->l_back = PTRTOUINT64(back);
    805 			kl->l_addr = PTRTOUINT64(l.l_addr);
    806 			kl->l_lid = l.l_lid;
    807 			kl->l_flag = l.l_flag;
    808 			kl->l_swtime = l.l_swtime;
    809 			kl->l_slptime = l.l_slptime;
    810 			kl->l_schedflags = 0; /* XXX */
    811 			kl->l_holdcnt = 0;
    812 			kl->l_priority = l.l_priority;
    813 			kl->l_usrpri = l.l_priority;
    814 			kl->l_stat = l.l_stat;
    815 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
    816 			if (l.l_wmesg)
    817 				(void)kvm_read(kd, (u_long)l.l_wmesg,
    818 				    kl->l_wmesg, (size_t)WMESGLEN);
    819 			kl->l_cpuid = KI_NOCPU;
    820 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
    821 		}
    822 	}
    823 
    824 	*cnt = nlwps;
    825 	return (kd->lwpbase);
    826 }
    827 
    828 struct kinfo_proc *
    829 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
    830 {
    831 	size_t size;
    832 	int mib[4], st, nprocs;
    833 
    834 	if (ISALIVE(kd)) {
    835 		size = 0;
    836 		mib[0] = CTL_KERN;
    837 		mib[1] = KERN_PROC;
    838 		mib[2] = op;
    839 		mib[3] = arg;
    840 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
    841 		if (st == -1) {
    842 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    843 			return (NULL);
    844 		}
    845 		KVM_ALLOC(kd, procbase, size);
    846 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
    847 		if (st == -1) {
    848 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
    849 			return (NULL);
    850 		}
    851 		if (size % sizeof(struct kinfo_proc) != 0) {
    852 			_kvm_err(kd, kd->program,
    853 			    "proc size mismatch (%lu total, %lu chunks)",
    854 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
    855 			return (NULL);
    856 		}
    857 		nprocs = (int) (size / sizeof(struct kinfo_proc));
    858 	} else {
    859 		struct nlist nl[4], *p;
    860 
    861 		(void)memset(nl, 0, sizeof(nl));
    862 		nl[0].n_name = "_nprocs";
    863 		nl[1].n_name = "_allproc";
    864 		nl[2].n_name = "_zombproc";
    865 		nl[3].n_name = NULL;
    866 
    867 		if (kvm_nlist(kd, nl) != 0) {
    868 			for (p = nl; p->n_type != 0; ++p)
    869 				continue;
    870 			_kvm_err(kd, kd->program,
    871 			    "%s: no such symbol", p->n_name);
    872 			return (NULL);
    873 		}
    874 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
    875 			_kvm_err(kd, kd->program, "can't read nprocs");
    876 			return (NULL);
    877 		}
    878 		size = nprocs * sizeof(*kd->procbase);
    879 		KVM_ALLOC(kd, procbase, size);
    880 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
    881 		    nl[2].n_value, nprocs);
    882 		if (nprocs < 0)
    883 			return (NULL);
    884 #ifdef notdef
    885 		size = nprocs * sizeof(struct kinfo_proc);
    886 		(void)realloc(kd->procbase, size);
    887 #endif
    888 	}
    889 	*cnt = nprocs;
    890 	return (kd->procbase);
    891 }
    892 
    893 void *
    894 _kvm_realloc(kvm_t *kd, void *p, size_t n)
    895 {
    896 	void *np = realloc(p, n);
    897 
    898 	if (np == NULL)
    899 		_kvm_err(kd, kd->program, "out of memory");
    900 	return (np);
    901 }
    902 
    903 /*
    904  * Read in an argument vector from the user address space of process p.
    905  * addr if the user-space base address of narg null-terminated contiguous
    906  * strings.  This is used to read in both the command arguments and
    907  * environment strings.  Read at most maxcnt characters of strings.
    908  */
    909 static char **
    910 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
    911 	 int maxcnt)
    912 {
    913 	char *np, *cp, *ep, *ap;
    914 	u_long oaddr = (u_long)~0L;
    915 	u_long len;
    916 	size_t cc;
    917 	char **argv;
    918 
    919 	/*
    920 	 * Check that there aren't an unreasonable number of arguments,
    921 	 * and that the address is in user space.
    922 	 */
    923 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
    924 		return (NULL);
    925 
    926 	if (kd->argv == NULL) {
    927 		/*
    928 		 * Try to avoid reallocs.
    929 		 */
    930 		kd->argc = MAX(narg + 1, 32);
    931 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
    932 		if (kd->argv == NULL)
    933 			return (NULL);
    934 	} else if (narg + 1 > kd->argc) {
    935 		kd->argc = MAX(2 * kd->argc, narg + 1);
    936 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
    937 		    sizeof(*kd->argv));
    938 		if (kd->argv == NULL)
    939 			return (NULL);
    940 	}
    941 	if (kd->argspc == NULL) {
    942 		kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
    943 		if (kd->argspc == NULL)
    944 			return (NULL);
    945 		kd->argspc_len = kd->nbpg;
    946 	}
    947 	if (kd->argbuf == NULL) {
    948 		kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
    949 		if (kd->argbuf == NULL)
    950 			return (NULL);
    951 	}
    952 	cc = sizeof(char *) * narg;
    953 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
    954 		return (NULL);
    955 	ap = np = kd->argspc;
    956 	argv = kd->argv;
    957 	len = 0;
    958 	/*
    959 	 * Loop over pages, filling in the argument vector.
    960 	 */
    961 	while (argv < kd->argv + narg && *argv != NULL) {
    962 		addr = (u_long)*argv & ~(kd->nbpg - 1);
    963 		if (addr != oaddr) {
    964 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
    965 			    (size_t)kd->nbpg) != kd->nbpg)
    966 				return (NULL);
    967 			oaddr = addr;
    968 		}
    969 		addr = (u_long)*argv & (kd->nbpg - 1);
    970 		cp = kd->argbuf + (size_t)addr;
    971 		cc = kd->nbpg - (size_t)addr;
    972 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
    973 			cc = (size_t)(maxcnt - len);
    974 		ep = memchr(cp, '\0', cc);
    975 		if (ep != NULL)
    976 			cc = ep - cp + 1;
    977 		if (len + cc > kd->argspc_len) {
    978 			ptrdiff_t off;
    979 			char **pp;
    980 			char *op = kd->argspc;
    981 
    982 			kd->argspc_len *= 2;
    983 			kd->argspc = _kvm_realloc(kd, kd->argspc,
    984 			    kd->argspc_len);
    985 			if (kd->argspc == NULL)
    986 				return (NULL);
    987 			/*
    988 			 * Adjust argv pointers in case realloc moved
    989 			 * the string space.
    990 			 */
    991 			off = kd->argspc - op;
    992 			for (pp = kd->argv; pp < argv; pp++)
    993 				*pp += off;
    994 			ap += off;
    995 			np += off;
    996 		}
    997 		memcpy(np, cp, cc);
    998 		np += cc;
    999 		len += cc;
   1000 		if (ep != NULL) {
   1001 			*argv++ = ap;
   1002 			ap = np;
   1003 		} else
   1004 			*argv += cc;
   1005 		if (maxcnt > 0 && len >= maxcnt) {
   1006 			/*
   1007 			 * We're stopping prematurely.  Terminate the
   1008 			 * current string.
   1009 			 */
   1010 			if (ep == NULL) {
   1011 				*np = '\0';
   1012 				*argv++ = ap;
   1013 			}
   1014 			break;
   1015 		}
   1016 	}
   1017 	/* Make sure argv is terminated. */
   1018 	*argv = NULL;
   1019 	return (kd->argv);
   1020 }
   1021 
   1022 static void
   1023 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
   1024 {
   1025 
   1026 	*addr = (u_long)p->ps_argvstr;
   1027 	*n = p->ps_nargvstr;
   1028 }
   1029 
   1030 static void
   1031 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
   1032 {
   1033 
   1034 	*addr = (u_long)p->ps_envstr;
   1035 	*n = p->ps_nenvstr;
   1036 }
   1037 
   1038 /*
   1039  * Determine if the proc indicated by p is still active.
   1040  * This test is not 100% foolproof in theory, but chances of
   1041  * being wrong are very low.
   1042  */
   1043 static int
   1044 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
   1045 {
   1046 	struct proc kernproc;
   1047 
   1048 	/*
   1049 	 * Just read in the whole proc.  It's not that big relative
   1050 	 * to the cost of the read system call.
   1051 	 */
   1052 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
   1053 	    sizeof(kernproc))
   1054 		return (0);
   1055 	return (p->p_pid == kernproc.p_pid &&
   1056 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
   1057 }
   1058 
   1059 static char **
   1060 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
   1061 	   void (*info)(struct ps_strings *, u_long *, int *))
   1062 {
   1063 	char **ap;
   1064 	u_long addr;
   1065 	int cnt;
   1066 	struct ps_strings arginfo;
   1067 
   1068 	/*
   1069 	 * Pointers are stored at the top of the user stack.
   1070 	 */
   1071 	if (p->p_stat == SZOMB)
   1072 		return (NULL);
   1073 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
   1074 	    (void *)&arginfo, sizeof(arginfo));
   1075 	if (cnt != sizeof(arginfo))
   1076 		return (NULL);
   1077 
   1078 	(*info)(&arginfo, &addr, &cnt);
   1079 	if (cnt == 0)
   1080 		return (NULL);
   1081 	ap = kvm_argv(kd, p, addr, cnt, nchr);
   1082 	/*
   1083 	 * For live kernels, make sure this process didn't go away.
   1084 	 */
   1085 	if (ap != NULL && ISALIVE(kd) &&
   1086 	    !proc_verify(kd, (u_long)p->p_paddr, p))
   1087 		ap = NULL;
   1088 	return (ap);
   1089 }
   1090 
   1091 /*
   1092  * Get the command args.  This code is now machine independent.
   1093  */
   1094 char **
   1095 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
   1096 {
   1097 	struct miniproc p;
   1098 
   1099 	KPTOMINI(kp, &p);
   1100 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
   1101 }
   1102 
   1103 char **
   1104 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
   1105 {
   1106 	struct miniproc p;
   1107 
   1108 	KPTOMINI(kp, &p);
   1109 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
   1110 }
   1111 
   1112 static char **
   1113 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
   1114 {
   1115 	size_t bufs;
   1116 	int narg, mib[4];
   1117 	size_t newargspc_len;
   1118 	char **ap, *bp, *endp;
   1119 
   1120 	/*
   1121 	 * Check that there aren't an unreasonable number of arguments.
   1122 	 */
   1123 	if (nchr > ARG_MAX)
   1124 		return (NULL);
   1125 
   1126 	if (nchr == 0)
   1127 		nchr = ARG_MAX;
   1128 
   1129 	/* Get number of strings in argv */
   1130 	mib[0] = CTL_KERN;
   1131 	mib[1] = KERN_PROC_ARGS;
   1132 	mib[2] = pid;
   1133 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
   1134 	bufs = sizeof(narg);
   1135 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
   1136 		return (NULL);
   1137 
   1138 	if (kd->argv == NULL) {
   1139 		/*
   1140 		 * Try to avoid reallocs.
   1141 		 */
   1142 		kd->argc = MAX(narg + 1, 32);
   1143 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
   1144 		if (kd->argv == NULL)
   1145 			return (NULL);
   1146 	} else if (narg + 1 > kd->argc) {
   1147 		kd->argc = MAX(2 * kd->argc, narg + 1);
   1148 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
   1149 		    sizeof(*kd->argv));
   1150 		if (kd->argv == NULL)
   1151 			return (NULL);
   1152 	}
   1153 
   1154 	newargspc_len = MIN(nchr, ARG_MAX);
   1155 	KVM_ALLOC(kd, argspc, newargspc_len);
   1156 	memset(kd->argspc, 0, (size_t)kd->argspc_len);	/* XXX necessary? */
   1157 
   1158 	mib[0] = CTL_KERN;
   1159 	mib[1] = KERN_PROC_ARGS;
   1160 	mib[2] = pid;
   1161 	mib[3] = type;
   1162 	bufs = kd->argspc_len;
   1163 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
   1164 		return (NULL);
   1165 
   1166 	bp = kd->argspc;
   1167 	bp[kd->argspc_len-1] = '\0';	/* make sure the string ends with nul */
   1168 	ap = kd->argv;
   1169 	endp = bp + MIN(nchr, bufs);
   1170 
   1171 	while (bp < endp) {
   1172 		*ap++ = bp;
   1173 		/*
   1174 		 * XXX: don't need following anymore, or stick check
   1175 		 * for max argc in above while loop?
   1176 		 */
   1177 		if (ap >= kd->argv + kd->argc) {
   1178 			kd->argc *= 2;
   1179 			kd->argv = _kvm_realloc(kd, kd->argv,
   1180 			    kd->argc * sizeof(*kd->argv));
   1181 			ap = kd->argv;
   1182 		}
   1183 		bp += strlen(bp) + 1;
   1184 	}
   1185 	*ap = NULL;
   1186 
   1187 	return (kd->argv);
   1188 }
   1189 
   1190 char **
   1191 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
   1192 {
   1193 
   1194 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
   1195 }
   1196 
   1197 char **
   1198 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
   1199 {
   1200 
   1201 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
   1202 }
   1203 
   1204 /*
   1205  * Read from user space.  The user context is given by p.
   1206  */
   1207 static ssize_t
   1208 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
   1209 	   char *buf, size_t len)
   1210 {
   1211 	char *cp;
   1212 
   1213 	cp = buf;
   1214 	while (len > 0) {
   1215 		size_t cc;
   1216 		char *dp;
   1217 		u_long cnt;
   1218 
   1219 		dp = _kvm_ureadm(kd, p, uva, &cnt);
   1220 		if (dp == NULL) {
   1221 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
   1222 			return (0);
   1223 		}
   1224 		cc = (size_t)MIN(cnt, len);
   1225 		memcpy(cp, dp, cc);
   1226 		cp += cc;
   1227 		uva += cc;
   1228 		len -= cc;
   1229 	}
   1230 	return (ssize_t)(cp - buf);
   1231 }
   1232 
   1233 ssize_t
   1234 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len)
   1235 {
   1236 	struct miniproc mp;
   1237 
   1238 	PTOMINI(p, &mp);
   1239 	return (kvm_ureadm(kd, &mp, uva, buf, len));
   1240 }
   1241