kvm_proc.c revision 1.86 1 /* $NetBSD: kvm_proc.c,v 1.86 2010/09/20 23:23:16 jym Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1989, 1992, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * This code is derived from software developed by the Computer Systems
37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38 * BG 91-66 and contributed to Berkeley.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 #if defined(LIBC_SCCS) && !defined(lint)
67 #if 0
68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
69 #else
70 __RCSID("$NetBSD: kvm_proc.c,v 1.86 2010/09/20 23:23:16 jym Exp $");
71 #endif
72 #endif /* LIBC_SCCS and not lint */
73
74 /*
75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
76 * users of this code, so we've factored it out into a separate module.
77 * Thus, we keep this grunge out of the other kvm applications (i.e.,
78 * most other applications are interested only in open/close/read/nlist).
79 */
80
81 #include <sys/param.h>
82 #include <sys/user.h>
83 #include <sys/lwp.h>
84 #include <sys/proc.h>
85 #include <sys/exec.h>
86 #include <sys/stat.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/resourcevar.h>
90 #include <sys/mutex.h>
91 #include <sys/specificdata.h>
92 #include <sys/types.h>
93
94 #include <errno.h>
95 #include <stdlib.h>
96 #include <stddef.h>
97 #include <string.h>
98 #include <unistd.h>
99 #include <nlist.h>
100 #include <kvm.h>
101
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_param.h>
104 #include <uvm/uvm_amap.h>
105
106 #include <sys/sysctl.h>
107
108 #include <limits.h>
109 #include <db.h>
110 #include <paths.h>
111
112 #include "kvm_private.h"
113
114 /*
115 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
116 */
117 struct miniproc {
118 struct vmspace *p_vmspace;
119 char p_stat;
120 struct proc *p_paddr;
121 pid_t p_pid;
122 };
123
124 /*
125 * Convert from struct proc and kinfo_proc{,2} to miniproc.
126 */
127 #define PTOMINI(kp, p) \
128 do { \
129 (p)->p_stat = (kp)->p_stat; \
130 (p)->p_pid = (kp)->p_pid; \
131 (p)->p_paddr = NULL; \
132 (p)->p_vmspace = (kp)->p_vmspace; \
133 } while (/*CONSTCOND*/0);
134
135 #define KPTOMINI(kp, p) \
136 do { \
137 (p)->p_stat = (kp)->kp_proc.p_stat; \
138 (p)->p_pid = (kp)->kp_proc.p_pid; \
139 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
140 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
141 } while (/*CONSTCOND*/0);
142
143 #define KP2TOMINI(kp, p) \
144 do { \
145 (p)->p_stat = (kp)->p_stat; \
146 (p)->p_pid = (kp)->p_pid; \
147 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
148 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
149 } while (/*CONSTCOND*/0);
150
151 /*
152 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
153 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
154 * kvm(3) so dumps can be read properly.
155 *
156 * Whenever NetBSD starts exporting credentials to userland consistently (using
157 * 'struct uucred', or something) this will have to be updated again.
158 */
159 struct kvm_kauth_cred {
160 u_int cr_refcnt; /* reference count */
161 uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
162 uid_t cr_uid; /* user id */
163 uid_t cr_euid; /* effective user id */
164 uid_t cr_svuid; /* saved effective user id */
165 gid_t cr_gid; /* group id */
166 gid_t cr_egid; /* effective group id */
167 gid_t cr_svgid; /* saved effective group id */
168 u_int cr_ngroups; /* number of groups */
169 gid_t cr_groups[NGROUPS]; /* group memberships */
170 specificdata_reference cr_sd; /* specific data */
171 };
172
173 #define KREAD(kd, addr, obj) \
174 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
175
176 /* XXX: What uses these two functions? */
177 char *_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *);
178 ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *,
179 size_t);
180
181 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
182 u_long *);
183 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
184 char *, size_t);
185
186 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
187 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
188 static char **kvm_doargv(kvm_t *, const struct miniproc *, int,
189 void (*)(struct ps_strings *, u_long *, int *));
190 static char **kvm_doargv2(kvm_t *, pid_t, int, int);
191 static int kvm_proclist(kvm_t *, int, int, struct proc *,
192 struct kinfo_proc *, int);
193 static int proc_verify(kvm_t *, u_long, const struct miniproc *);
194 static void ps_str_a(struct ps_strings *, u_long *, int *);
195 static void ps_str_e(struct ps_strings *, u_long *, int *);
196
197
198 static char *
199 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
200 {
201 u_long addr, head;
202 u_long offset;
203 struct vm_map_entry vme;
204 struct vm_amap amap;
205 struct vm_anon *anonp, anon;
206 struct vm_page pg;
207 u_long slot;
208
209 if (kd->swapspc == NULL) {
210 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
211 if (kd->swapspc == NULL)
212 return (NULL);
213 }
214
215 /*
216 * Look through the address map for the memory object
217 * that corresponds to the given virtual address.
218 * The header just has the entire valid range.
219 */
220 head = (u_long)&p->p_vmspace->vm_map.header;
221 addr = head;
222 for (;;) {
223 if (KREAD(kd, addr, &vme))
224 return (NULL);
225
226 if (va >= vme.start && va < vme.end &&
227 vme.aref.ar_amap != NULL)
228 break;
229
230 addr = (u_long)vme.next;
231 if (addr == head)
232 return (NULL);
233 }
234
235 /*
236 * we found the map entry, now to find the object...
237 */
238 if (vme.aref.ar_amap == NULL)
239 return (NULL);
240
241 addr = (u_long)vme.aref.ar_amap;
242 if (KREAD(kd, addr, &amap))
243 return (NULL);
244
245 offset = va - vme.start;
246 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
247 /* sanity-check slot number */
248 if (slot > amap.am_nslot)
249 return (NULL);
250
251 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
252 if (KREAD(kd, addr, &anonp))
253 return (NULL);
254
255 addr = (u_long)anonp;
256 if (KREAD(kd, addr, &anon))
257 return (NULL);
258
259 addr = (u_long)anon.an_page;
260 if (addr) {
261 if (KREAD(kd, addr, &pg))
262 return (NULL);
263
264 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
265 (off_t)pg.phys_addr) != kd->nbpg)
266 return (NULL);
267 } else {
268 if (kd->swfd < 0 ||
269 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
270 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
271 return (NULL);
272 }
273
274 /* Found the page. */
275 offset %= kd->nbpg;
276 *cnt = kd->nbpg - offset;
277 return (&kd->swapspc[(size_t)offset]);
278 }
279
280 char *
281 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
282 {
283 struct miniproc mp;
284
285 PTOMINI(p, &mp);
286 return (_kvm_ureadm(kd, &mp, va, cnt));
287 }
288
289 /*
290 * Convert credentials located in kernel space address 'cred' and store
291 * them in the appropriate members of 'eproc'.
292 */
293 static int
294 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
295 {
296 struct kvm_kauth_cred kauthcred;
297 struct ki_pcred *pc = &eproc->e_pcred;
298 struct ki_ucred *uc = &eproc->e_ucred;
299
300 if (KREAD(kd, cred, &kauthcred) != 0)
301 return (-1);
302
303 /* inlined version of kauth_cred_to_pcred, see kauth(9). */
304 pc->p_ruid = kauthcred.cr_uid;
305 pc->p_svuid = kauthcred.cr_svuid;
306 pc->p_rgid = kauthcred.cr_gid;
307 pc->p_svgid = kauthcred.cr_svgid;
308 pc->p_refcnt = kauthcred.cr_refcnt;
309 pc->p_pad = NULL;
310
311 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
312 uc->cr_ref = kauthcred.cr_refcnt;
313 uc->cr_uid = kauthcred.cr_euid;
314 uc->cr_gid = kauthcred.cr_egid;
315 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
316 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
317 memcpy(uc->cr_groups, kauthcred.cr_groups,
318 uc->cr_ngroups * sizeof(uc->cr_groups[0]));
319
320 return (0);
321 }
322
323 /*
324 * Read proc's from memory file into buffer bp, which has space to hold
325 * at most maxcnt procs.
326 */
327 static int
328 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
329 struct kinfo_proc *bp, int maxcnt)
330 {
331 int cnt = 0;
332 int nlwps;
333 struct kinfo_lwp *kl;
334 struct eproc eproc;
335 struct pgrp pgrp;
336 struct session sess;
337 struct tty tty;
338 struct proc proc;
339
340 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
341 if (KREAD(kd, (u_long)p, &proc)) {
342 _kvm_err(kd, kd->program, "can't read proc at %p", p);
343 return (-1);
344 }
345 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
346 _kvm_err(kd, kd->program,
347 "can't read proc credentials at %p", p);
348 return (-1);
349 }
350
351 switch (what) {
352
353 case KERN_PROC_PID:
354 if (proc.p_pid != (pid_t)arg)
355 continue;
356 break;
357
358 case KERN_PROC_UID:
359 if (eproc.e_ucred.cr_uid != (uid_t)arg)
360 continue;
361 break;
362
363 case KERN_PROC_RUID:
364 if (eproc.e_pcred.p_ruid != (uid_t)arg)
365 continue;
366 break;
367 }
368 /*
369 * We're going to add another proc to the set. If this
370 * will overflow the buffer, assume the reason is because
371 * nprocs (or the proc list) is corrupt and declare an error.
372 */
373 if (cnt >= maxcnt) {
374 _kvm_err(kd, kd->program, "nprocs corrupt");
375 return (-1);
376 }
377 /*
378 * gather eproc
379 */
380 eproc.e_paddr = p;
381 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
382 _kvm_err(kd, kd->program, "can't read pgrp at %p",
383 proc.p_pgrp);
384 return (-1);
385 }
386 eproc.e_sess = pgrp.pg_session;
387 eproc.e_pgid = pgrp.pg_id;
388 eproc.e_jobc = pgrp.pg_jobc;
389 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
390 _kvm_err(kd, kd->program, "can't read session at %p",
391 pgrp.pg_session);
392 return (-1);
393 }
394 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
395 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
396 _kvm_err(kd, kd->program,
397 "can't read tty at %p", sess.s_ttyp);
398 return (-1);
399 }
400 eproc.e_tdev = (uint32_t)tty.t_dev;
401 eproc.e_tsess = tty.t_session;
402 if (tty.t_pgrp != NULL) {
403 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
404 _kvm_err(kd, kd->program,
405 "can't read tpgrp at %p",
406 tty.t_pgrp);
407 return (-1);
408 }
409 eproc.e_tpgid = pgrp.pg_id;
410 } else
411 eproc.e_tpgid = -1;
412 } else
413 eproc.e_tdev = (uint32_t)NODEV;
414 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
415 eproc.e_sid = sess.s_sid;
416 if (sess.s_leader == p)
417 eproc.e_flag |= EPROC_SLEADER;
418 /*
419 * Fill in the old-style proc.p_wmesg by copying the wmesg
420 * from the first available LWP.
421 */
422 kl = kvm_getlwps(kd, proc.p_pid,
423 (u_long)PTRTOUINT64(eproc.e_paddr),
424 sizeof(struct kinfo_lwp), &nlwps);
425 if (kl) {
426 if (nlwps > 0) {
427 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
428 }
429 }
430 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
431 sizeof(eproc.e_vm));
432
433 eproc.e_xsize = eproc.e_xrssize = 0;
434 eproc.e_xccount = eproc.e_xswrss = 0;
435
436 switch (what) {
437
438 case KERN_PROC_PGRP:
439 if (eproc.e_pgid != (pid_t)arg)
440 continue;
441 break;
442
443 case KERN_PROC_TTY:
444 if ((proc.p_lflag & PL_CONTROLT) == 0 ||
445 eproc.e_tdev != (dev_t)arg)
446 continue;
447 break;
448 }
449 memcpy(&bp->kp_proc, &proc, sizeof(proc));
450 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
451 ++bp;
452 ++cnt;
453 }
454 return (cnt);
455 }
456
457 /*
458 * Build proc info array by reading in proc list from a crash dump.
459 * Return number of procs read. maxcnt is the max we will read.
460 */
461 static int
462 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
463 u_long a_zombproc, int maxcnt)
464 {
465 struct kinfo_proc *bp = kd->procbase;
466 int acnt, zcnt;
467 struct proc *p;
468
469 if (KREAD(kd, a_allproc, &p)) {
470 _kvm_err(kd, kd->program, "cannot read allproc");
471 return (-1);
472 }
473 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
474 if (acnt < 0)
475 return (acnt);
476
477 if (KREAD(kd, a_zombproc, &p)) {
478 _kvm_err(kd, kd->program, "cannot read zombproc");
479 return (-1);
480 }
481 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
482 maxcnt - acnt);
483 if (zcnt < 0)
484 zcnt = 0;
485
486 return (acnt + zcnt);
487 }
488
489 struct kinfo_proc2 *
490 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
491 {
492 size_t size;
493 int mib[6], st, nprocs;
494 struct pstats pstats;
495
496 if (ISSYSCTL(kd)) {
497 size = 0;
498 mib[0] = CTL_KERN;
499 mib[1] = KERN_PROC2;
500 mib[2] = op;
501 mib[3] = arg;
502 mib[4] = (int)esize;
503 again:
504 mib[5] = 0;
505 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
506 if (st == -1) {
507 _kvm_syserr(kd, kd->program, "kvm_getproc2");
508 return (NULL);
509 }
510
511 mib[5] = (int) (size / esize);
512 KVM_ALLOC(kd, procbase2, size);
513 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
514 if (st == -1) {
515 if (errno == ENOMEM) {
516 goto again;
517 }
518 _kvm_syserr(kd, kd->program, "kvm_getproc2");
519 return (NULL);
520 }
521 nprocs = (int) (size / esize);
522 } else {
523 char *kp2c;
524 struct kinfo_proc *kp;
525 struct kinfo_proc2 kp2, *kp2p;
526 struct kinfo_lwp *kl;
527 int i, nlwps;
528
529 kp = kvm_getprocs(kd, op, arg, &nprocs);
530 if (kp == NULL)
531 return (NULL);
532
533 size = nprocs * esize;
534 KVM_ALLOC(kd, procbase2, size);
535 kp2c = (char *)(void *)kd->procbase2;
536 kp2p = &kp2;
537 for (i = 0; i < nprocs; i++, kp++) {
538 struct timeval tv;
539
540 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
541 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
542 sizeof(struct kinfo_lwp), &nlwps);
543
544 if (kl == NULL) {
545 _kvm_syserr(kd, NULL,
546 "kvm_getlwps() failed on process %u\n",
547 kp->kp_proc.p_pid);
548 if (nlwps == 0)
549 return NULL;
550 else
551 continue;
552 }
553
554 /* We use kl[0] as the "representative" LWP */
555 memset(kp2p, 0, sizeof(kp2));
556 kp2p->p_forw = kl[0].l_forw;
557 kp2p->p_back = kl[0].l_back;
558 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
559 kp2p->p_addr = kl[0].l_addr;
560 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
561 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
562 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
563 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
564 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
565 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
566 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
567 kp2p->p_tsess = 0;
568 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
569 kp2p->p_ru = 0;
570 #else
571 kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
572 #endif
573
574 kp2p->p_eflag = 0;
575 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
576 kp2p->p_flag = kp->kp_proc.p_flag;
577
578 kp2p->p_pid = kp->kp_proc.p_pid;
579
580 kp2p->p_ppid = kp->kp_eproc.e_ppid;
581 kp2p->p_sid = kp->kp_eproc.e_sid;
582 kp2p->p__pgid = kp->kp_eproc.e_pgid;
583
584 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
585
586 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
587 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
588 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
589 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
590 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
591 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
592
593 /*CONSTCOND*/
594 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
595 MIN(sizeof(kp2p->p_groups),
596 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
597 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
598
599 kp2p->p_jobc = kp->kp_eproc.e_jobc;
600 kp2p->p_tdev = kp->kp_eproc.e_tdev;
601 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
602 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
603
604 kp2p->p_estcpu = 0;
605 bintime2timeval(&kp->kp_proc.p_rtime, &tv);
606 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
607 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
608 kp2p->p_cpticks = kl[0].l_cpticks;
609 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
610 kp2p->p_swtime = kl[0].l_swtime;
611 kp2p->p_slptime = kl[0].l_slptime;
612 #if 0 /* XXX thorpej */
613 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
614 #else
615 kp2p->p_schedflags = 0;
616 #endif
617
618 kp2p->p_uticks = kp->kp_proc.p_uticks;
619 kp2p->p_sticks = kp->kp_proc.p_sticks;
620 kp2p->p_iticks = kp->kp_proc.p_iticks;
621
622 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
623 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
624
625 kp2p->p_holdcnt = kl[0].l_holdcnt;
626
627 memcpy(&kp2p->p_siglist,
628 &kp->kp_proc.p_sigpend.sp_set,
629 sizeof(ki_sigset_t));
630 memset(&kp2p->p_sigmask, 0,
631 sizeof(ki_sigset_t));
632 memcpy(&kp2p->p_sigignore,
633 &kp->kp_proc.p_sigctx.ps_sigignore,
634 sizeof(ki_sigset_t));
635 memcpy(&kp2p->p_sigcatch,
636 &kp->kp_proc.p_sigctx.ps_sigcatch,
637 sizeof(ki_sigset_t));
638
639 kp2p->p_stat = kl[0].l_stat;
640 kp2p->p_priority = kl[0].l_priority;
641 kp2p->p_usrpri = kl[0].l_priority;
642 kp2p->p_nice = kp->kp_proc.p_nice;
643
644 kp2p->p_xstat = kp->kp_proc.p_xstat;
645 kp2p->p_acflag = kp->kp_proc.p_acflag;
646
647 /*CONSTCOND*/
648 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
649 MIN(sizeof(kp2p->p_comm),
650 sizeof(kp->kp_proc.p_comm)));
651
652 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
653 sizeof(kp2p->p_wmesg));
654 kp2p->p_wchan = kl[0].l_wchan;
655 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
656 sizeof(kp2p->p_login));
657
658 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
659 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
660 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
661 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
662 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size;
663 /* Adjust mapped size */
664 kp2p->p_vm_msize =
665 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
666 kp->kp_eproc.e_vm.vm_issize +
667 kp->kp_eproc.e_vm.vm_ssize;
668
669 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
670
671 kp2p->p_realflag = kp->kp_proc.p_flag;
672 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
673 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
674 kp2p->p_realstat = kp->kp_proc.p_stat;
675
676 if (P_ZOMBIE(&kp->kp_proc) ||
677 kp->kp_proc.p_stats == NULL ||
678 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
679 kp2p->p_uvalid = 0;
680 } else {
681 kp2p->p_uvalid = 1;
682
683 kp2p->p_ustart_sec = (u_int32_t)
684 pstats.p_start.tv_sec;
685 kp2p->p_ustart_usec = (u_int32_t)
686 pstats.p_start.tv_usec;
687
688 kp2p->p_uutime_sec = (u_int32_t)
689 pstats.p_ru.ru_utime.tv_sec;
690 kp2p->p_uutime_usec = (u_int32_t)
691 pstats.p_ru.ru_utime.tv_usec;
692 kp2p->p_ustime_sec = (u_int32_t)
693 pstats.p_ru.ru_stime.tv_sec;
694 kp2p->p_ustime_usec = (u_int32_t)
695 pstats.p_ru.ru_stime.tv_usec;
696
697 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
698 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
699 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
700 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
701 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
702 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
703 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
704 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
705 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
706 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
707 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
708 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
709 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
710 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
711
712 kp2p->p_uctime_sec = (u_int32_t)
713 (pstats.p_cru.ru_utime.tv_sec +
714 pstats.p_cru.ru_stime.tv_sec);
715 kp2p->p_uctime_usec = (u_int32_t)
716 (pstats.p_cru.ru_utime.tv_usec +
717 pstats.p_cru.ru_stime.tv_usec);
718 }
719
720 memcpy(kp2c, &kp2, esize);
721 kp2c += esize;
722 }
723 }
724 *cnt = nprocs;
725 return (kd->procbase2);
726 }
727
728 struct kinfo_lwp *
729 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
730 {
731 size_t size;
732 int mib[5], nlwps;
733 ssize_t st;
734 struct kinfo_lwp *kl;
735
736 if (ISSYSCTL(kd)) {
737 size = 0;
738 mib[0] = CTL_KERN;
739 mib[1] = KERN_LWP;
740 mib[2] = pid;
741 mib[3] = (int)esize;
742 mib[4] = 0;
743 again:
744 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
745 if (st == -1) {
746 switch (errno) {
747 case ESRCH: /* Treat this as a soft error; see kvm.c */
748 _kvm_syserr(kd, NULL, "kvm_getlwps");
749 return NULL;
750 default:
751 _kvm_syserr(kd, kd->program, "kvm_getlwps");
752 return NULL;
753 }
754 }
755 mib[4] = (int) (size / esize);
756 KVM_ALLOC(kd, lwpbase, size);
757 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
758 if (st == -1) {
759 switch (errno) {
760 case ESRCH: /* Treat this as a soft error; see kvm.c */
761 _kvm_syserr(kd, NULL, "kvm_getlwps");
762 return NULL;
763 case ENOMEM:
764 goto again;
765 default:
766 _kvm_syserr(kd, kd->program, "kvm_getlwps");
767 return NULL;
768 }
769 }
770 nlwps = (int) (size / esize);
771 } else {
772 /* grovel through the memory image */
773 struct proc p;
774 struct lwp l;
775 u_long laddr;
776 void *back;
777 int i;
778
779 st = kvm_read(kd, paddr, &p, sizeof(p));
780 if (st == -1) {
781 _kvm_syserr(kd, kd->program, "kvm_getlwps");
782 return (NULL);
783 }
784
785 nlwps = p.p_nlwps;
786 size = nlwps * sizeof(*kd->lwpbase);
787 KVM_ALLOC(kd, lwpbase, size);
788 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
789 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
790 st = kvm_read(kd, laddr, &l, sizeof(l));
791 if (st == -1) {
792 _kvm_syserr(kd, kd->program, "kvm_getlwps");
793 return (NULL);
794 }
795 kl = &kd->lwpbase[i];
796 kl->l_laddr = laddr;
797 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
798 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
799 st = kvm_read(kd, laddr, &back, sizeof(back));
800 if (st == -1) {
801 _kvm_syserr(kd, kd->program, "kvm_getlwps");
802 return (NULL);
803 }
804 kl->l_back = PTRTOUINT64(back);
805 kl->l_addr = PTRTOUINT64(l.l_addr);
806 kl->l_lid = l.l_lid;
807 kl->l_flag = l.l_flag;
808 kl->l_swtime = l.l_swtime;
809 kl->l_slptime = l.l_slptime;
810 kl->l_schedflags = 0; /* XXX */
811 kl->l_holdcnt = 0;
812 kl->l_priority = l.l_priority;
813 kl->l_usrpri = l.l_priority;
814 kl->l_stat = l.l_stat;
815 kl->l_wchan = PTRTOUINT64(l.l_wchan);
816 if (l.l_wmesg)
817 (void)kvm_read(kd, (u_long)l.l_wmesg,
818 kl->l_wmesg, (size_t)WMESGLEN);
819 kl->l_cpuid = KI_NOCPU;
820 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
821 }
822 }
823
824 *cnt = nlwps;
825 return (kd->lwpbase);
826 }
827
828 struct kinfo_proc *
829 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
830 {
831 size_t size;
832 int mib[4], st, nprocs;
833
834 if (ISALIVE(kd)) {
835 size = 0;
836 mib[0] = CTL_KERN;
837 mib[1] = KERN_PROC;
838 mib[2] = op;
839 mib[3] = arg;
840 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
841 if (st == -1) {
842 _kvm_syserr(kd, kd->program, "kvm_getprocs");
843 return (NULL);
844 }
845 KVM_ALLOC(kd, procbase, size);
846 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
847 if (st == -1) {
848 _kvm_syserr(kd, kd->program, "kvm_getprocs");
849 return (NULL);
850 }
851 if (size % sizeof(struct kinfo_proc) != 0) {
852 _kvm_err(kd, kd->program,
853 "proc size mismatch (%lu total, %lu chunks)",
854 (u_long)size, (u_long)sizeof(struct kinfo_proc));
855 return (NULL);
856 }
857 nprocs = (int) (size / sizeof(struct kinfo_proc));
858 } else {
859 struct nlist nl[4], *p;
860
861 (void)memset(nl, 0, sizeof(nl));
862 nl[0].n_name = "_nprocs";
863 nl[1].n_name = "_allproc";
864 nl[2].n_name = "_zombproc";
865 nl[3].n_name = NULL;
866
867 if (kvm_nlist(kd, nl) != 0) {
868 for (p = nl; p->n_type != 0; ++p)
869 continue;
870 _kvm_err(kd, kd->program,
871 "%s: no such symbol", p->n_name);
872 return (NULL);
873 }
874 if (KREAD(kd, nl[0].n_value, &nprocs)) {
875 _kvm_err(kd, kd->program, "can't read nprocs");
876 return (NULL);
877 }
878 size = nprocs * sizeof(*kd->procbase);
879 KVM_ALLOC(kd, procbase, size);
880 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
881 nl[2].n_value, nprocs);
882 if (nprocs < 0)
883 return (NULL);
884 #ifdef notdef
885 size = nprocs * sizeof(struct kinfo_proc);
886 (void)realloc(kd->procbase, size);
887 #endif
888 }
889 *cnt = nprocs;
890 return (kd->procbase);
891 }
892
893 void *
894 _kvm_realloc(kvm_t *kd, void *p, size_t n)
895 {
896 void *np = realloc(p, n);
897
898 if (np == NULL)
899 _kvm_err(kd, kd->program, "out of memory");
900 return (np);
901 }
902
903 /*
904 * Read in an argument vector from the user address space of process p.
905 * addr if the user-space base address of narg null-terminated contiguous
906 * strings. This is used to read in both the command arguments and
907 * environment strings. Read at most maxcnt characters of strings.
908 */
909 static char **
910 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
911 int maxcnt)
912 {
913 char *np, *cp, *ep, *ap;
914 u_long oaddr = (u_long)~0L;
915 u_long len;
916 size_t cc;
917 char **argv;
918
919 /*
920 * Check that there aren't an unreasonable number of arguments,
921 * and that the address is in user space.
922 */
923 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
924 return (NULL);
925
926 if (kd->argv == NULL) {
927 /*
928 * Try to avoid reallocs.
929 */
930 kd->argc = MAX(narg + 1, 32);
931 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
932 if (kd->argv == NULL)
933 return (NULL);
934 } else if (narg + 1 > kd->argc) {
935 kd->argc = MAX(2 * kd->argc, narg + 1);
936 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
937 sizeof(*kd->argv));
938 if (kd->argv == NULL)
939 return (NULL);
940 }
941 if (kd->argspc == NULL) {
942 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
943 if (kd->argspc == NULL)
944 return (NULL);
945 kd->argspc_len = kd->nbpg;
946 }
947 if (kd->argbuf == NULL) {
948 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
949 if (kd->argbuf == NULL)
950 return (NULL);
951 }
952 cc = sizeof(char *) * narg;
953 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
954 return (NULL);
955 ap = np = kd->argspc;
956 argv = kd->argv;
957 len = 0;
958 /*
959 * Loop over pages, filling in the argument vector.
960 */
961 while (argv < kd->argv + narg && *argv != NULL) {
962 addr = (u_long)*argv & ~(kd->nbpg - 1);
963 if (addr != oaddr) {
964 if (kvm_ureadm(kd, p, addr, kd->argbuf,
965 (size_t)kd->nbpg) != kd->nbpg)
966 return (NULL);
967 oaddr = addr;
968 }
969 addr = (u_long)*argv & (kd->nbpg - 1);
970 cp = kd->argbuf + (size_t)addr;
971 cc = kd->nbpg - (size_t)addr;
972 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
973 cc = (size_t)(maxcnt - len);
974 ep = memchr(cp, '\0', cc);
975 if (ep != NULL)
976 cc = ep - cp + 1;
977 if (len + cc > kd->argspc_len) {
978 ptrdiff_t off;
979 char **pp;
980 char *op = kd->argspc;
981
982 kd->argspc_len *= 2;
983 kd->argspc = _kvm_realloc(kd, kd->argspc,
984 kd->argspc_len);
985 if (kd->argspc == NULL)
986 return (NULL);
987 /*
988 * Adjust argv pointers in case realloc moved
989 * the string space.
990 */
991 off = kd->argspc - op;
992 for (pp = kd->argv; pp < argv; pp++)
993 *pp += off;
994 ap += off;
995 np += off;
996 }
997 memcpy(np, cp, cc);
998 np += cc;
999 len += cc;
1000 if (ep != NULL) {
1001 *argv++ = ap;
1002 ap = np;
1003 } else
1004 *argv += cc;
1005 if (maxcnt > 0 && len >= maxcnt) {
1006 /*
1007 * We're stopping prematurely. Terminate the
1008 * current string.
1009 */
1010 if (ep == NULL) {
1011 *np = '\0';
1012 *argv++ = ap;
1013 }
1014 break;
1015 }
1016 }
1017 /* Make sure argv is terminated. */
1018 *argv = NULL;
1019 return (kd->argv);
1020 }
1021
1022 static void
1023 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
1024 {
1025
1026 *addr = (u_long)p->ps_argvstr;
1027 *n = p->ps_nargvstr;
1028 }
1029
1030 static void
1031 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
1032 {
1033
1034 *addr = (u_long)p->ps_envstr;
1035 *n = p->ps_nenvstr;
1036 }
1037
1038 /*
1039 * Determine if the proc indicated by p is still active.
1040 * This test is not 100% foolproof in theory, but chances of
1041 * being wrong are very low.
1042 */
1043 static int
1044 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
1045 {
1046 struct proc kernproc;
1047
1048 /*
1049 * Just read in the whole proc. It's not that big relative
1050 * to the cost of the read system call.
1051 */
1052 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1053 sizeof(kernproc))
1054 return (0);
1055 return (p->p_pid == kernproc.p_pid &&
1056 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1057 }
1058
1059 static char **
1060 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
1061 void (*info)(struct ps_strings *, u_long *, int *))
1062 {
1063 char **ap;
1064 u_long addr;
1065 int cnt;
1066 struct ps_strings arginfo;
1067
1068 /*
1069 * Pointers are stored at the top of the user stack.
1070 */
1071 if (p->p_stat == SZOMB)
1072 return (NULL);
1073 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1074 (void *)&arginfo, sizeof(arginfo));
1075 if (cnt != sizeof(arginfo))
1076 return (NULL);
1077
1078 (*info)(&arginfo, &addr, &cnt);
1079 if (cnt == 0)
1080 return (NULL);
1081 ap = kvm_argv(kd, p, addr, cnt, nchr);
1082 /*
1083 * For live kernels, make sure this process didn't go away.
1084 */
1085 if (ap != NULL && ISALIVE(kd) &&
1086 !proc_verify(kd, (u_long)p->p_paddr, p))
1087 ap = NULL;
1088 return (ap);
1089 }
1090
1091 /*
1092 * Get the command args. This code is now machine independent.
1093 */
1094 char **
1095 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1096 {
1097 struct miniproc p;
1098
1099 KPTOMINI(kp, &p);
1100 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1101 }
1102
1103 char **
1104 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1105 {
1106 struct miniproc p;
1107
1108 KPTOMINI(kp, &p);
1109 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1110 }
1111
1112 static char **
1113 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
1114 {
1115 size_t bufs;
1116 int narg, mib[4];
1117 size_t newargspc_len;
1118 char **ap, *bp, *endp;
1119
1120 /*
1121 * Check that there aren't an unreasonable number of arguments.
1122 */
1123 if (nchr > ARG_MAX)
1124 return (NULL);
1125
1126 if (nchr == 0)
1127 nchr = ARG_MAX;
1128
1129 /* Get number of strings in argv */
1130 mib[0] = CTL_KERN;
1131 mib[1] = KERN_PROC_ARGS;
1132 mib[2] = pid;
1133 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1134 bufs = sizeof(narg);
1135 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1136 return (NULL);
1137
1138 if (kd->argv == NULL) {
1139 /*
1140 * Try to avoid reallocs.
1141 */
1142 kd->argc = MAX(narg + 1, 32);
1143 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1144 if (kd->argv == NULL)
1145 return (NULL);
1146 } else if (narg + 1 > kd->argc) {
1147 kd->argc = MAX(2 * kd->argc, narg + 1);
1148 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1149 sizeof(*kd->argv));
1150 if (kd->argv == NULL)
1151 return (NULL);
1152 }
1153
1154 newargspc_len = MIN(nchr, ARG_MAX);
1155 KVM_ALLOC(kd, argspc, newargspc_len);
1156 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1157
1158 mib[0] = CTL_KERN;
1159 mib[1] = KERN_PROC_ARGS;
1160 mib[2] = pid;
1161 mib[3] = type;
1162 bufs = kd->argspc_len;
1163 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1164 return (NULL);
1165
1166 bp = kd->argspc;
1167 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1168 ap = kd->argv;
1169 endp = bp + MIN(nchr, bufs);
1170
1171 while (bp < endp) {
1172 *ap++ = bp;
1173 /*
1174 * XXX: don't need following anymore, or stick check
1175 * for max argc in above while loop?
1176 */
1177 if (ap >= kd->argv + kd->argc) {
1178 kd->argc *= 2;
1179 kd->argv = _kvm_realloc(kd, kd->argv,
1180 kd->argc * sizeof(*kd->argv));
1181 ap = kd->argv;
1182 }
1183 bp += strlen(bp) + 1;
1184 }
1185 *ap = NULL;
1186
1187 return (kd->argv);
1188 }
1189
1190 char **
1191 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1192 {
1193
1194 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1195 }
1196
1197 char **
1198 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1199 {
1200
1201 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1202 }
1203
1204 /*
1205 * Read from user space. The user context is given by p.
1206 */
1207 static ssize_t
1208 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
1209 char *buf, size_t len)
1210 {
1211 char *cp;
1212
1213 cp = buf;
1214 while (len > 0) {
1215 size_t cc;
1216 char *dp;
1217 u_long cnt;
1218
1219 dp = _kvm_ureadm(kd, p, uva, &cnt);
1220 if (dp == NULL) {
1221 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1222 return (0);
1223 }
1224 cc = (size_t)MIN(cnt, len);
1225 memcpy(cp, dp, cc);
1226 cp += cc;
1227 uva += cc;
1228 len -= cc;
1229 }
1230 return (ssize_t)(cp - buf);
1231 }
1232
1233 ssize_t
1234 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len)
1235 {
1236 struct miniproc mp;
1237
1238 PTOMINI(p, &mp);
1239 return (kvm_ureadm(kd, &mp, uva, buf, len));
1240 }
1241