kvm_proc.c revision 1.88 1 /* $NetBSD: kvm_proc.c,v 1.88 2010/11/12 04:52:08 uebayasi Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1989, 1992, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * This code is derived from software developed by the Computer Systems
37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38 * BG 91-66 and contributed to Berkeley.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 #if defined(LIBC_SCCS) && !defined(lint)
67 #if 0
68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
69 #else
70 __RCSID("$NetBSD: kvm_proc.c,v 1.88 2010/11/12 04:52:08 uebayasi Exp $");
71 #endif
72 #endif /* LIBC_SCCS and not lint */
73
74 /*
75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
76 * users of this code, so we've factored it out into a separate module.
77 * Thus, we keep this grunge out of the other kvm applications (i.e.,
78 * most other applications are interested only in open/close/read/nlist).
79 */
80
81 #include <sys/param.h>
82 #include <sys/user.h>
83 #include <sys/lwp.h>
84 #include <sys/proc.h>
85 #include <sys/exec.h>
86 #include <sys/stat.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/resourcevar.h>
90 #include <sys/mutex.h>
91 #include <sys/specificdata.h>
92 #include <sys/types.h>
93
94 #include <errno.h>
95 #include <stdlib.h>
96 #include <stddef.h>
97 #include <string.h>
98 #include <unistd.h>
99 #include <nlist.h>
100 #include <kvm.h>
101
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_param.h>
104 #include <uvm/uvm_amap.h>
105 #include <uvm/uvm_page.h>
106
107 #include <sys/sysctl.h>
108
109 #include <limits.h>
110 #include <db.h>
111 #include <paths.h>
112
113 #include "kvm_private.h"
114
115 /*
116 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
117 */
118 struct miniproc {
119 struct vmspace *p_vmspace;
120 char p_stat;
121 struct proc *p_paddr;
122 pid_t p_pid;
123 };
124
125 /*
126 * Convert from struct proc and kinfo_proc{,2} to miniproc.
127 */
128 #define PTOMINI(kp, p) \
129 do { \
130 (p)->p_stat = (kp)->p_stat; \
131 (p)->p_pid = (kp)->p_pid; \
132 (p)->p_paddr = NULL; \
133 (p)->p_vmspace = (kp)->p_vmspace; \
134 } while (/*CONSTCOND*/0);
135
136 #define KPTOMINI(kp, p) \
137 do { \
138 (p)->p_stat = (kp)->kp_proc.p_stat; \
139 (p)->p_pid = (kp)->kp_proc.p_pid; \
140 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
141 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
142 } while (/*CONSTCOND*/0);
143
144 #define KP2TOMINI(kp, p) \
145 do { \
146 (p)->p_stat = (kp)->p_stat; \
147 (p)->p_pid = (kp)->p_pid; \
148 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
149 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
150 } while (/*CONSTCOND*/0);
151
152 /*
153 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
154 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
155 * kvm(3) so dumps can be read properly.
156 *
157 * Whenever NetBSD starts exporting credentials to userland consistently (using
158 * 'struct uucred', or something) this will have to be updated again.
159 */
160 struct kvm_kauth_cred {
161 u_int cr_refcnt; /* reference count */
162 uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
163 uid_t cr_uid; /* user id */
164 uid_t cr_euid; /* effective user id */
165 uid_t cr_svuid; /* saved effective user id */
166 gid_t cr_gid; /* group id */
167 gid_t cr_egid; /* effective group id */
168 gid_t cr_svgid; /* saved effective group id */
169 u_int cr_ngroups; /* number of groups */
170 gid_t cr_groups[NGROUPS]; /* group memberships */
171 specificdata_reference cr_sd; /* specific data */
172 };
173
174 /* XXX: What uses these two functions? */
175 char *_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *);
176 ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *,
177 size_t);
178
179 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
180 u_long *);
181 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
182 char *, size_t);
183
184 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
185 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
186 static char **kvm_doargv(kvm_t *, const struct miniproc *, int,
187 void (*)(struct ps_strings *, u_long *, int *));
188 static char **kvm_doargv2(kvm_t *, pid_t, int, int);
189 static int kvm_proclist(kvm_t *, int, int, struct proc *,
190 struct kinfo_proc *, int);
191 static int proc_verify(kvm_t *, u_long, const struct miniproc *);
192 static void ps_str_a(struct ps_strings *, u_long *, int *);
193 static void ps_str_e(struct ps_strings *, u_long *, int *);
194
195
196 static char *
197 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
198 {
199 u_long addr, head;
200 u_long offset;
201 struct vm_map_entry vme;
202 struct vm_amap amap;
203 struct vm_anon *anonp, anon;
204 struct vm_page pg;
205 u_long slot;
206
207 if (kd->swapspc == NULL) {
208 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
209 if (kd->swapspc == NULL)
210 return (NULL);
211 }
212
213 /*
214 * Look through the address map for the memory object
215 * that corresponds to the given virtual address.
216 * The header just has the entire valid range.
217 */
218 head = (u_long)&p->p_vmspace->vm_map.header;
219 addr = head;
220 for (;;) {
221 if (KREAD(kd, addr, &vme))
222 return (NULL);
223
224 if (va >= vme.start && va < vme.end &&
225 vme.aref.ar_amap != NULL)
226 break;
227
228 addr = (u_long)vme.next;
229 if (addr == head)
230 return (NULL);
231 }
232
233 /*
234 * we found the map entry, now to find the object...
235 */
236 if (vme.aref.ar_amap == NULL)
237 return (NULL);
238
239 addr = (u_long)vme.aref.ar_amap;
240 if (KREAD(kd, addr, &amap))
241 return (NULL);
242
243 offset = va - vme.start;
244 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
245 /* sanity-check slot number */
246 if (slot > amap.am_nslot)
247 return (NULL);
248
249 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
250 if (KREAD(kd, addr, &anonp))
251 return (NULL);
252
253 addr = (u_long)anonp;
254 if (KREAD(kd, addr, &anon))
255 return (NULL);
256
257 addr = (u_long)anon.an_page;
258 if (addr) {
259 if (KREAD(kd, addr, &pg))
260 return (NULL);
261
262 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
263 (off_t)pg.phys_addr) != kd->nbpg)
264 return (NULL);
265 } else {
266 if (kd->swfd < 0 ||
267 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
268 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
269 return (NULL);
270 }
271
272 /* Found the page. */
273 offset %= kd->nbpg;
274 *cnt = kd->nbpg - offset;
275 return (&kd->swapspc[(size_t)offset]);
276 }
277
278 char *
279 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
280 {
281 struct miniproc mp;
282
283 PTOMINI(p, &mp);
284 return (_kvm_ureadm(kd, &mp, va, cnt));
285 }
286
287 /*
288 * Convert credentials located in kernel space address 'cred' and store
289 * them in the appropriate members of 'eproc'.
290 */
291 static int
292 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
293 {
294 struct kvm_kauth_cred kauthcred;
295 struct ki_pcred *pc = &eproc->e_pcred;
296 struct ki_ucred *uc = &eproc->e_ucred;
297
298 if (KREAD(kd, cred, &kauthcred) != 0)
299 return (-1);
300
301 /* inlined version of kauth_cred_to_pcred, see kauth(9). */
302 pc->p_ruid = kauthcred.cr_uid;
303 pc->p_svuid = kauthcred.cr_svuid;
304 pc->p_rgid = kauthcred.cr_gid;
305 pc->p_svgid = kauthcred.cr_svgid;
306 pc->p_refcnt = kauthcred.cr_refcnt;
307 pc->p_pad = NULL;
308
309 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
310 uc->cr_ref = kauthcred.cr_refcnt;
311 uc->cr_uid = kauthcred.cr_euid;
312 uc->cr_gid = kauthcred.cr_egid;
313 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
314 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
315 memcpy(uc->cr_groups, kauthcred.cr_groups,
316 uc->cr_ngroups * sizeof(uc->cr_groups[0]));
317
318 return (0);
319 }
320
321 /*
322 * Read proc's from memory file into buffer bp, which has space to hold
323 * at most maxcnt procs.
324 */
325 static int
326 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
327 struct kinfo_proc *bp, int maxcnt)
328 {
329 int cnt = 0;
330 int nlwps;
331 struct kinfo_lwp *kl;
332 struct eproc eproc;
333 struct pgrp pgrp;
334 struct session sess;
335 struct tty tty;
336 struct proc proc;
337
338 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
339 if (KREAD(kd, (u_long)p, &proc)) {
340 _kvm_err(kd, kd->program, "can't read proc at %p", p);
341 return (-1);
342 }
343 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
344 _kvm_err(kd, kd->program,
345 "can't read proc credentials at %p", p);
346 return (-1);
347 }
348
349 switch (what) {
350
351 case KERN_PROC_PID:
352 if (proc.p_pid != (pid_t)arg)
353 continue;
354 break;
355
356 case KERN_PROC_UID:
357 if (eproc.e_ucred.cr_uid != (uid_t)arg)
358 continue;
359 break;
360
361 case KERN_PROC_RUID:
362 if (eproc.e_pcred.p_ruid != (uid_t)arg)
363 continue;
364 break;
365 }
366 /*
367 * We're going to add another proc to the set. If this
368 * will overflow the buffer, assume the reason is because
369 * nprocs (or the proc list) is corrupt and declare an error.
370 */
371 if (cnt >= maxcnt) {
372 _kvm_err(kd, kd->program, "nprocs corrupt");
373 return (-1);
374 }
375 /*
376 * gather eproc
377 */
378 eproc.e_paddr = p;
379 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
380 _kvm_err(kd, kd->program, "can't read pgrp at %p",
381 proc.p_pgrp);
382 return (-1);
383 }
384 eproc.e_sess = pgrp.pg_session;
385 eproc.e_pgid = pgrp.pg_id;
386 eproc.e_jobc = pgrp.pg_jobc;
387 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
388 _kvm_err(kd, kd->program, "can't read session at %p",
389 pgrp.pg_session);
390 return (-1);
391 }
392 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
393 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
394 _kvm_err(kd, kd->program,
395 "can't read tty at %p", sess.s_ttyp);
396 return (-1);
397 }
398 eproc.e_tdev = (uint32_t)tty.t_dev;
399 eproc.e_tsess = tty.t_session;
400 if (tty.t_pgrp != NULL) {
401 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
402 _kvm_err(kd, kd->program,
403 "can't read tpgrp at %p",
404 tty.t_pgrp);
405 return (-1);
406 }
407 eproc.e_tpgid = pgrp.pg_id;
408 } else
409 eproc.e_tpgid = -1;
410 } else
411 eproc.e_tdev = (uint32_t)NODEV;
412 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
413 eproc.e_sid = sess.s_sid;
414 if (sess.s_leader == p)
415 eproc.e_flag |= EPROC_SLEADER;
416 /*
417 * Fill in the old-style proc.p_wmesg by copying the wmesg
418 * from the first available LWP.
419 */
420 kl = kvm_getlwps(kd, proc.p_pid,
421 (u_long)PTRTOUINT64(eproc.e_paddr),
422 sizeof(struct kinfo_lwp), &nlwps);
423 if (kl) {
424 if (nlwps > 0) {
425 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
426 }
427 }
428 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
429 sizeof(eproc.e_vm));
430
431 eproc.e_xsize = eproc.e_xrssize = 0;
432 eproc.e_xccount = eproc.e_xswrss = 0;
433
434 switch (what) {
435
436 case KERN_PROC_PGRP:
437 if (eproc.e_pgid != (pid_t)arg)
438 continue;
439 break;
440
441 case KERN_PROC_TTY:
442 if ((proc.p_lflag & PL_CONTROLT) == 0 ||
443 eproc.e_tdev != (dev_t)arg)
444 continue;
445 break;
446 }
447 memcpy(&bp->kp_proc, &proc, sizeof(proc));
448 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
449 ++bp;
450 ++cnt;
451 }
452 return (cnt);
453 }
454
455 /*
456 * Build proc info array by reading in proc list from a crash dump.
457 * Return number of procs read. maxcnt is the max we will read.
458 */
459 static int
460 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
461 u_long a_zombproc, int maxcnt)
462 {
463 struct kinfo_proc *bp = kd->procbase;
464 int acnt, zcnt;
465 struct proc *p;
466
467 if (KREAD(kd, a_allproc, &p)) {
468 _kvm_err(kd, kd->program, "cannot read allproc");
469 return (-1);
470 }
471 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
472 if (acnt < 0)
473 return (acnt);
474
475 if (KREAD(kd, a_zombproc, &p)) {
476 _kvm_err(kd, kd->program, "cannot read zombproc");
477 return (-1);
478 }
479 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
480 maxcnt - acnt);
481 if (zcnt < 0)
482 zcnt = 0;
483
484 return (acnt + zcnt);
485 }
486
487 struct kinfo_proc2 *
488 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
489 {
490 size_t size;
491 int mib[6], st, nprocs;
492 struct pstats pstats;
493
494 if (ISSYSCTL(kd)) {
495 size = 0;
496 mib[0] = CTL_KERN;
497 mib[1] = KERN_PROC2;
498 mib[2] = op;
499 mib[3] = arg;
500 mib[4] = (int)esize;
501 again:
502 mib[5] = 0;
503 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
504 if (st == -1) {
505 _kvm_syserr(kd, kd->program, "kvm_getproc2");
506 return (NULL);
507 }
508
509 mib[5] = (int) (size / esize);
510 KVM_ALLOC(kd, procbase2, size);
511 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
512 if (st == -1) {
513 if (errno == ENOMEM) {
514 goto again;
515 }
516 _kvm_syserr(kd, kd->program, "kvm_getproc2");
517 return (NULL);
518 }
519 nprocs = (int) (size / esize);
520 } else {
521 char *kp2c;
522 struct kinfo_proc *kp;
523 struct kinfo_proc2 kp2, *kp2p;
524 struct kinfo_lwp *kl;
525 int i, nlwps;
526
527 kp = kvm_getprocs(kd, op, arg, &nprocs);
528 if (kp == NULL)
529 return (NULL);
530
531 size = nprocs * esize;
532 KVM_ALLOC(kd, procbase2, size);
533 kp2c = (char *)(void *)kd->procbase2;
534 kp2p = &kp2;
535 for (i = 0; i < nprocs; i++, kp++) {
536 struct timeval tv;
537
538 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
539 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
540 sizeof(struct kinfo_lwp), &nlwps);
541
542 if (kl == NULL) {
543 _kvm_syserr(kd, NULL,
544 "kvm_getlwps() failed on process %u\n",
545 kp->kp_proc.p_pid);
546 if (nlwps == 0)
547 return NULL;
548 else
549 continue;
550 }
551
552 /* We use kl[0] as the "representative" LWP */
553 memset(kp2p, 0, sizeof(kp2));
554 kp2p->p_forw = kl[0].l_forw;
555 kp2p->p_back = kl[0].l_back;
556 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
557 kp2p->p_addr = kl[0].l_addr;
558 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
559 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
560 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
561 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
562 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
563 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
564 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
565 kp2p->p_tsess = 0;
566 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
567 kp2p->p_ru = 0;
568 #else
569 kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
570 #endif
571
572 kp2p->p_eflag = 0;
573 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
574 kp2p->p_flag = kp->kp_proc.p_flag;
575
576 kp2p->p_pid = kp->kp_proc.p_pid;
577
578 kp2p->p_ppid = kp->kp_eproc.e_ppid;
579 kp2p->p_sid = kp->kp_eproc.e_sid;
580 kp2p->p__pgid = kp->kp_eproc.e_pgid;
581
582 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
583
584 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
585 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
586 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
587 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
588 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
589 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
590
591 /*CONSTCOND*/
592 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
593 MIN(sizeof(kp2p->p_groups),
594 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
595 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
596
597 kp2p->p_jobc = kp->kp_eproc.e_jobc;
598 kp2p->p_tdev = kp->kp_eproc.e_tdev;
599 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
600 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
601
602 kp2p->p_estcpu = 0;
603 bintime2timeval(&kp->kp_proc.p_rtime, &tv);
604 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
605 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
606 kp2p->p_cpticks = kl[0].l_cpticks;
607 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
608 kp2p->p_swtime = kl[0].l_swtime;
609 kp2p->p_slptime = kl[0].l_slptime;
610 #if 0 /* XXX thorpej */
611 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
612 #else
613 kp2p->p_schedflags = 0;
614 #endif
615
616 kp2p->p_uticks = kp->kp_proc.p_uticks;
617 kp2p->p_sticks = kp->kp_proc.p_sticks;
618 kp2p->p_iticks = kp->kp_proc.p_iticks;
619
620 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
621 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
622
623 kp2p->p_holdcnt = kl[0].l_holdcnt;
624
625 memcpy(&kp2p->p_siglist,
626 &kp->kp_proc.p_sigpend.sp_set,
627 sizeof(ki_sigset_t));
628 memset(&kp2p->p_sigmask, 0,
629 sizeof(ki_sigset_t));
630 memcpy(&kp2p->p_sigignore,
631 &kp->kp_proc.p_sigctx.ps_sigignore,
632 sizeof(ki_sigset_t));
633 memcpy(&kp2p->p_sigcatch,
634 &kp->kp_proc.p_sigctx.ps_sigcatch,
635 sizeof(ki_sigset_t));
636
637 kp2p->p_stat = kl[0].l_stat;
638 kp2p->p_priority = kl[0].l_priority;
639 kp2p->p_usrpri = kl[0].l_priority;
640 kp2p->p_nice = kp->kp_proc.p_nice;
641
642 kp2p->p_xstat = kp->kp_proc.p_xstat;
643 kp2p->p_acflag = kp->kp_proc.p_acflag;
644
645 /*CONSTCOND*/
646 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
647 MIN(sizeof(kp2p->p_comm),
648 sizeof(kp->kp_proc.p_comm)));
649
650 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
651 sizeof(kp2p->p_wmesg));
652 kp2p->p_wchan = kl[0].l_wchan;
653 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
654 sizeof(kp2p->p_login));
655
656 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
657 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
658 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
659 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
660 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size;
661 /* Adjust mapped size */
662 kp2p->p_vm_msize =
663 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
664 kp->kp_eproc.e_vm.vm_issize +
665 kp->kp_eproc.e_vm.vm_ssize;
666
667 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
668
669 kp2p->p_realflag = kp->kp_proc.p_flag;
670 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
671 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
672 kp2p->p_realstat = kp->kp_proc.p_stat;
673
674 if (P_ZOMBIE(&kp->kp_proc) ||
675 kp->kp_proc.p_stats == NULL ||
676 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
677 kp2p->p_uvalid = 0;
678 } else {
679 kp2p->p_uvalid = 1;
680
681 kp2p->p_ustart_sec = (u_int32_t)
682 pstats.p_start.tv_sec;
683 kp2p->p_ustart_usec = (u_int32_t)
684 pstats.p_start.tv_usec;
685
686 kp2p->p_uutime_sec = (u_int32_t)
687 pstats.p_ru.ru_utime.tv_sec;
688 kp2p->p_uutime_usec = (u_int32_t)
689 pstats.p_ru.ru_utime.tv_usec;
690 kp2p->p_ustime_sec = (u_int32_t)
691 pstats.p_ru.ru_stime.tv_sec;
692 kp2p->p_ustime_usec = (u_int32_t)
693 pstats.p_ru.ru_stime.tv_usec;
694
695 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
696 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
697 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
698 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
699 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
700 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
701 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
702 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
703 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
704 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
705 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
706 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
707 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
708 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
709
710 kp2p->p_uctime_sec = (u_int32_t)
711 (pstats.p_cru.ru_utime.tv_sec +
712 pstats.p_cru.ru_stime.tv_sec);
713 kp2p->p_uctime_usec = (u_int32_t)
714 (pstats.p_cru.ru_utime.tv_usec +
715 pstats.p_cru.ru_stime.tv_usec);
716 }
717
718 memcpy(kp2c, &kp2, esize);
719 kp2c += esize;
720 }
721 }
722 *cnt = nprocs;
723 return (kd->procbase2);
724 }
725
726 struct kinfo_lwp *
727 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
728 {
729 size_t size;
730 int mib[5], nlwps;
731 ssize_t st;
732 struct kinfo_lwp *kl;
733
734 if (ISSYSCTL(kd)) {
735 size = 0;
736 mib[0] = CTL_KERN;
737 mib[1] = KERN_LWP;
738 mib[2] = pid;
739 mib[3] = (int)esize;
740 mib[4] = 0;
741 again:
742 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
743 if (st == -1) {
744 switch (errno) {
745 case ESRCH: /* Treat this as a soft error; see kvm.c */
746 _kvm_syserr(kd, NULL, "kvm_getlwps");
747 return NULL;
748 default:
749 _kvm_syserr(kd, kd->program, "kvm_getlwps");
750 return NULL;
751 }
752 }
753 mib[4] = (int) (size / esize);
754 KVM_ALLOC(kd, lwpbase, size);
755 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
756 if (st == -1) {
757 switch (errno) {
758 case ESRCH: /* Treat this as a soft error; see kvm.c */
759 _kvm_syserr(kd, NULL, "kvm_getlwps");
760 return NULL;
761 case ENOMEM:
762 goto again;
763 default:
764 _kvm_syserr(kd, kd->program, "kvm_getlwps");
765 return NULL;
766 }
767 }
768 nlwps = (int) (size / esize);
769 } else {
770 /* grovel through the memory image */
771 struct proc p;
772 struct lwp l;
773 u_long laddr;
774 void *back;
775 int i;
776
777 st = kvm_read(kd, paddr, &p, sizeof(p));
778 if (st == -1) {
779 _kvm_syserr(kd, kd->program, "kvm_getlwps");
780 return (NULL);
781 }
782
783 nlwps = p.p_nlwps;
784 size = nlwps * sizeof(*kd->lwpbase);
785 KVM_ALLOC(kd, lwpbase, size);
786 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
787 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
788 st = kvm_read(kd, laddr, &l, sizeof(l));
789 if (st == -1) {
790 _kvm_syserr(kd, kd->program, "kvm_getlwps");
791 return (NULL);
792 }
793 kl = &kd->lwpbase[i];
794 kl->l_laddr = laddr;
795 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
796 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
797 st = kvm_read(kd, laddr, &back, sizeof(back));
798 if (st == -1) {
799 _kvm_syserr(kd, kd->program, "kvm_getlwps");
800 return (NULL);
801 }
802 kl->l_back = PTRTOUINT64(back);
803 kl->l_addr = PTRTOUINT64(l.l_addr);
804 kl->l_lid = l.l_lid;
805 kl->l_flag = l.l_flag;
806 kl->l_swtime = l.l_swtime;
807 kl->l_slptime = l.l_slptime;
808 kl->l_schedflags = 0; /* XXX */
809 kl->l_holdcnt = 0;
810 kl->l_priority = l.l_priority;
811 kl->l_usrpri = l.l_priority;
812 kl->l_stat = l.l_stat;
813 kl->l_wchan = PTRTOUINT64(l.l_wchan);
814 if (l.l_wmesg)
815 (void)kvm_read(kd, (u_long)l.l_wmesg,
816 kl->l_wmesg, (size_t)WMESGLEN);
817 kl->l_cpuid = KI_NOCPU;
818 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
819 }
820 }
821
822 *cnt = nlwps;
823 return (kd->lwpbase);
824 }
825
826 struct kinfo_proc *
827 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
828 {
829 size_t size;
830 int mib[4], st, nprocs;
831
832 if (ISALIVE(kd)) {
833 size = 0;
834 mib[0] = CTL_KERN;
835 mib[1] = KERN_PROC;
836 mib[2] = op;
837 mib[3] = arg;
838 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
839 if (st == -1) {
840 _kvm_syserr(kd, kd->program, "kvm_getprocs");
841 return (NULL);
842 }
843 KVM_ALLOC(kd, procbase, size);
844 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
845 if (st == -1) {
846 _kvm_syserr(kd, kd->program, "kvm_getprocs");
847 return (NULL);
848 }
849 if (size % sizeof(struct kinfo_proc) != 0) {
850 _kvm_err(kd, kd->program,
851 "proc size mismatch (%lu total, %lu chunks)",
852 (u_long)size, (u_long)sizeof(struct kinfo_proc));
853 return (NULL);
854 }
855 nprocs = (int) (size / sizeof(struct kinfo_proc));
856 } else {
857 struct nlist nl[4], *p;
858
859 (void)memset(nl, 0, sizeof(nl));
860 nl[0].n_name = "_nprocs";
861 nl[1].n_name = "_allproc";
862 nl[2].n_name = "_zombproc";
863 nl[3].n_name = NULL;
864
865 if (kvm_nlist(kd, nl) != 0) {
866 for (p = nl; p->n_type != 0; ++p)
867 continue;
868 _kvm_err(kd, kd->program,
869 "%s: no such symbol", p->n_name);
870 return (NULL);
871 }
872 if (KREAD(kd, nl[0].n_value, &nprocs)) {
873 _kvm_err(kd, kd->program, "can't read nprocs");
874 return (NULL);
875 }
876 size = nprocs * sizeof(*kd->procbase);
877 KVM_ALLOC(kd, procbase, size);
878 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
879 nl[2].n_value, nprocs);
880 if (nprocs < 0)
881 return (NULL);
882 #ifdef notdef
883 size = nprocs * sizeof(struct kinfo_proc);
884 (void)realloc(kd->procbase, size);
885 #endif
886 }
887 *cnt = nprocs;
888 return (kd->procbase);
889 }
890
891 void *
892 _kvm_realloc(kvm_t *kd, void *p, size_t n)
893 {
894 void *np = realloc(p, n);
895
896 if (np == NULL)
897 _kvm_err(kd, kd->program, "out of memory");
898 return (np);
899 }
900
901 /*
902 * Read in an argument vector from the user address space of process p.
903 * addr if the user-space base address of narg null-terminated contiguous
904 * strings. This is used to read in both the command arguments and
905 * environment strings. Read at most maxcnt characters of strings.
906 */
907 static char **
908 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
909 int maxcnt)
910 {
911 char *np, *cp, *ep, *ap;
912 u_long oaddr = (u_long)~0L;
913 u_long len;
914 size_t cc;
915 char **argv;
916
917 /*
918 * Check that there aren't an unreasonable number of arguments,
919 * and that the address is in user space.
920 */
921 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
922 return (NULL);
923
924 if (kd->argv == NULL) {
925 /*
926 * Try to avoid reallocs.
927 */
928 kd->argc = MAX(narg + 1, 32);
929 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
930 if (kd->argv == NULL)
931 return (NULL);
932 } else if (narg + 1 > kd->argc) {
933 kd->argc = MAX(2 * kd->argc, narg + 1);
934 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
935 sizeof(*kd->argv));
936 if (kd->argv == NULL)
937 return (NULL);
938 }
939 if (kd->argspc == NULL) {
940 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
941 if (kd->argspc == NULL)
942 return (NULL);
943 kd->argspc_len = kd->nbpg;
944 }
945 if (kd->argbuf == NULL) {
946 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
947 if (kd->argbuf == NULL)
948 return (NULL);
949 }
950 cc = sizeof(char *) * narg;
951 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
952 return (NULL);
953 ap = np = kd->argspc;
954 argv = kd->argv;
955 len = 0;
956 /*
957 * Loop over pages, filling in the argument vector.
958 */
959 while (argv < kd->argv + narg && *argv != NULL) {
960 addr = (u_long)*argv & ~(kd->nbpg - 1);
961 if (addr != oaddr) {
962 if (kvm_ureadm(kd, p, addr, kd->argbuf,
963 (size_t)kd->nbpg) != kd->nbpg)
964 return (NULL);
965 oaddr = addr;
966 }
967 addr = (u_long)*argv & (kd->nbpg - 1);
968 cp = kd->argbuf + (size_t)addr;
969 cc = kd->nbpg - (size_t)addr;
970 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
971 cc = (size_t)(maxcnt - len);
972 ep = memchr(cp, '\0', cc);
973 if (ep != NULL)
974 cc = ep - cp + 1;
975 if (len + cc > kd->argspc_len) {
976 ptrdiff_t off;
977 char **pp;
978 char *op = kd->argspc;
979
980 kd->argspc_len *= 2;
981 kd->argspc = _kvm_realloc(kd, kd->argspc,
982 kd->argspc_len);
983 if (kd->argspc == NULL)
984 return (NULL);
985 /*
986 * Adjust argv pointers in case realloc moved
987 * the string space.
988 */
989 off = kd->argspc - op;
990 for (pp = kd->argv; pp < argv; pp++)
991 *pp += off;
992 ap += off;
993 np += off;
994 }
995 memcpy(np, cp, cc);
996 np += cc;
997 len += cc;
998 if (ep != NULL) {
999 *argv++ = ap;
1000 ap = np;
1001 } else
1002 *argv += cc;
1003 if (maxcnt > 0 && len >= maxcnt) {
1004 /*
1005 * We're stopping prematurely. Terminate the
1006 * current string.
1007 */
1008 if (ep == NULL) {
1009 *np = '\0';
1010 *argv++ = ap;
1011 }
1012 break;
1013 }
1014 }
1015 /* Make sure argv is terminated. */
1016 *argv = NULL;
1017 return (kd->argv);
1018 }
1019
1020 static void
1021 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
1022 {
1023
1024 *addr = (u_long)p->ps_argvstr;
1025 *n = p->ps_nargvstr;
1026 }
1027
1028 static void
1029 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
1030 {
1031
1032 *addr = (u_long)p->ps_envstr;
1033 *n = p->ps_nenvstr;
1034 }
1035
1036 /*
1037 * Determine if the proc indicated by p is still active.
1038 * This test is not 100% foolproof in theory, but chances of
1039 * being wrong are very low.
1040 */
1041 static int
1042 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
1043 {
1044 struct proc kernproc;
1045
1046 /*
1047 * Just read in the whole proc. It's not that big relative
1048 * to the cost of the read system call.
1049 */
1050 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1051 sizeof(kernproc))
1052 return (0);
1053 return (p->p_pid == kernproc.p_pid &&
1054 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1055 }
1056
1057 static char **
1058 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
1059 void (*info)(struct ps_strings *, u_long *, int *))
1060 {
1061 char **ap;
1062 u_long addr;
1063 int cnt;
1064 struct ps_strings arginfo;
1065
1066 /*
1067 * Pointers are stored at the top of the user stack.
1068 */
1069 if (p->p_stat == SZOMB)
1070 return (NULL);
1071 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1072 (void *)&arginfo, sizeof(arginfo));
1073 if (cnt != sizeof(arginfo))
1074 return (NULL);
1075
1076 (*info)(&arginfo, &addr, &cnt);
1077 if (cnt == 0)
1078 return (NULL);
1079 ap = kvm_argv(kd, p, addr, cnt, nchr);
1080 /*
1081 * For live kernels, make sure this process didn't go away.
1082 */
1083 if (ap != NULL && ISALIVE(kd) &&
1084 !proc_verify(kd, (u_long)p->p_paddr, p))
1085 ap = NULL;
1086 return (ap);
1087 }
1088
1089 /*
1090 * Get the command args. This code is now machine independent.
1091 */
1092 char **
1093 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1094 {
1095 struct miniproc p;
1096
1097 KPTOMINI(kp, &p);
1098 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1099 }
1100
1101 char **
1102 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1103 {
1104 struct miniproc p;
1105
1106 KPTOMINI(kp, &p);
1107 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1108 }
1109
1110 static char **
1111 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
1112 {
1113 size_t bufs;
1114 int narg, mib[4];
1115 size_t newargspc_len;
1116 char **ap, *bp, *endp;
1117
1118 /*
1119 * Check that there aren't an unreasonable number of arguments.
1120 */
1121 if (nchr > ARG_MAX)
1122 return (NULL);
1123
1124 if (nchr == 0)
1125 nchr = ARG_MAX;
1126
1127 /* Get number of strings in argv */
1128 mib[0] = CTL_KERN;
1129 mib[1] = KERN_PROC_ARGS;
1130 mib[2] = pid;
1131 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1132 bufs = sizeof(narg);
1133 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1134 return (NULL);
1135
1136 if (kd->argv == NULL) {
1137 /*
1138 * Try to avoid reallocs.
1139 */
1140 kd->argc = MAX(narg + 1, 32);
1141 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1142 if (kd->argv == NULL)
1143 return (NULL);
1144 } else if (narg + 1 > kd->argc) {
1145 kd->argc = MAX(2 * kd->argc, narg + 1);
1146 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1147 sizeof(*kd->argv));
1148 if (kd->argv == NULL)
1149 return (NULL);
1150 }
1151
1152 newargspc_len = MIN(nchr, ARG_MAX);
1153 KVM_ALLOC(kd, argspc, newargspc_len);
1154 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1155
1156 mib[0] = CTL_KERN;
1157 mib[1] = KERN_PROC_ARGS;
1158 mib[2] = pid;
1159 mib[3] = type;
1160 bufs = kd->argspc_len;
1161 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1162 return (NULL);
1163
1164 bp = kd->argspc;
1165 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1166 ap = kd->argv;
1167 endp = bp + MIN(nchr, bufs);
1168
1169 while (bp < endp) {
1170 *ap++ = bp;
1171 /*
1172 * XXX: don't need following anymore, or stick check
1173 * for max argc in above while loop?
1174 */
1175 if (ap >= kd->argv + kd->argc) {
1176 kd->argc *= 2;
1177 kd->argv = _kvm_realloc(kd, kd->argv,
1178 kd->argc * sizeof(*kd->argv));
1179 ap = kd->argv;
1180 }
1181 bp += strlen(bp) + 1;
1182 }
1183 *ap = NULL;
1184
1185 return (kd->argv);
1186 }
1187
1188 char **
1189 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1190 {
1191
1192 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1193 }
1194
1195 char **
1196 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1197 {
1198
1199 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1200 }
1201
1202 /*
1203 * Read from user space. The user context is given by p.
1204 */
1205 static ssize_t
1206 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
1207 char *buf, size_t len)
1208 {
1209 char *cp;
1210
1211 cp = buf;
1212 while (len > 0) {
1213 size_t cc;
1214 char *dp;
1215 u_long cnt;
1216
1217 dp = _kvm_ureadm(kd, p, uva, &cnt);
1218 if (dp == NULL) {
1219 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1220 return (0);
1221 }
1222 cc = (size_t)MIN(cnt, len);
1223 memcpy(cp, dp, cc);
1224 cp += cc;
1225 uva += cc;
1226 len -= cc;
1227 }
1228 return (ssize_t)(cp - buf);
1229 }
1230
1231 ssize_t
1232 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len)
1233 {
1234 struct miniproc mp;
1235
1236 PTOMINI(p, &mp);
1237 return (kvm_ureadm(kd, &mp, uva, buf, len));
1238 }
1239