kvm_proc.c revision 1.9 1 /*-
2 * Copyright (c) 1994 Charles Hannum.
3 * Copyright (c) 1989, 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software developed by the Computer Systems
7 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
8 * BG 91-66 and contributed to Berkeley.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #if defined(LIBC_SCCS) && !defined(lint)
40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
41 #endif /* LIBC_SCCS and not lint */
42
43 /*
44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
45 * users of this code, so we've factored it out into a separate module.
46 * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 * most other applications are interested only in open/close/read/nlist).
48 */
49
50 #include <sys/param.h>
51 #include <sys/user.h>
52 #include <sys/proc.h>
53 #include <sys/exec.h>
54 #include <sys/stat.h>
55 #include <sys/ioctl.h>
56 #include <sys/tty.h>
57 #include <stdlib.h>
58 #include <unistd.h>
59 #include <nlist.h>
60 #include <kvm.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/swap_pager.h>
65
66 #include <sys/sysctl.h>
67
68 #include <limits.h>
69 #include <db.h>
70 #include <paths.h>
71
72 #include "kvm_private.h"
73
74 #define KREAD(kd, addr, obj) \
75 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
76
77 int _kvm_readfromcore __P((kvm_t *, u_long, u_long));
78 int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long));
79 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, size_t));
80
81 char *
82 _kvm_uread(kd, p, va, cnt)
83 kvm_t *kd;
84 const struct proc *p;
85 u_long va;
86 u_long *cnt;
87 {
88 register u_long addr, head;
89 register u_long offset;
90 struct vm_map_entry vme;
91 struct vm_object vmo;
92 int rv;
93
94 if (kd->swapspc == 0) {
95 kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg);
96 if (kd->swapspc == 0)
97 return (0);
98 }
99
100 /*
101 * Look through the address map for the memory object
102 * that corresponds to the given virtual address.
103 * The header just has the entire valid range.
104 */
105 head = (u_long)&p->p_vmspace->vm_map.header;
106 addr = head;
107 while (1) {
108 if (KREAD(kd, addr, &vme))
109 return (0);
110
111 if (va >= vme.start && va < vme.end &&
112 vme.object.vm_object != 0)
113 break;
114
115 addr = (u_long)vme.next;
116 if (addr == head)
117 return (0);
118 }
119
120 /*
121 * We found the right object -- follow shadow links.
122 */
123 offset = va - vme.start + vme.offset;
124 addr = (u_long)vme.object.vm_object;
125
126 while (1) {
127 /* Try reading the page from core first. */
128 if ((rv = _kvm_readfromcore(kd, addr, offset)))
129 break;
130
131 if (KREAD(kd, addr, &vmo))
132 return (0);
133
134 /* If there is a pager here, see if it has the page. */
135 if (vmo.pager != 0 &&
136 (rv = _kvm_readfrompager(kd, &vmo, offset)))
137 break;
138
139 /* Move down the shadow chain. */
140 addr = (u_long)vmo.shadow;
141 if (addr == 0)
142 return (0);
143 offset += vmo.shadow_offset;
144 }
145
146 if (rv == -1)
147 return (0);
148
149 /* Found the page. */
150 offset %= kd->nbpg;
151 *cnt = kd->nbpg - offset;
152 return (&kd->swapspc[offset]);
153 }
154
155 #define vm_page_hash(kd, object, offset) \
156 (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask)
157
158 int
159 _kvm_coreinit(kd)
160 kvm_t *kd;
161 {
162 struct nlist nlist[3];
163
164 nlist[0].n_name = "_vm_page_buckets";
165 nlist[1].n_name = "_vm_page_hash_mask";
166 nlist[2].n_name = 0;
167 if (kvm_nlist(kd, nlist) != 0)
168 return (-1);
169
170 if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) ||
171 KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask))
172 return (-1);
173
174 return (0);
175 }
176
177 int
178 _kvm_readfromcore(kd, object, offset)
179 kvm_t *kd;
180 u_long object, offset;
181 {
182 u_long addr;
183 struct pglist bucket;
184 struct vm_page mem;
185 off_t seekpoint;
186
187 if (kd->vm_page_buckets == 0 &&
188 _kvm_coreinit(kd))
189 return (-1);
190
191 addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)];
192 if (KREAD(kd, addr, &bucket))
193 return (-1);
194
195 addr = (u_long)bucket.tqh_first;
196 offset &= ~(kd->nbpg -1);
197 while (1) {
198 if (addr == 0)
199 return (0);
200
201 if (KREAD(kd, addr, &mem))
202 return (-1);
203
204 if ((u_long)mem.object == object &&
205 (u_long)mem.offset == offset)
206 break;
207
208 addr = (u_long)mem.hashq.tqe_next;
209 }
210
211 seekpoint = mem.phys_addr;
212
213 if (lseek(kd->pmfd, seekpoint, 0) == -1)
214 return (-1);
215 if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg)
216 return (-1);
217
218 return (1);
219 }
220
221 int
222 _kvm_readfrompager(kd, vmop, offset)
223 kvm_t *kd;
224 struct vm_object *vmop;
225 u_long offset;
226 {
227 u_long addr;
228 struct pager_struct pager;
229 struct swpager swap;
230 int ix;
231 struct swblock swb;
232 off_t seekpoint;
233
234 /* Read in the pager info and make sure it's a swap device. */
235 addr = (u_long)vmop->pager;
236 if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP)
237 return (-1);
238
239 /* Read in the swap_pager private data. */
240 addr = (u_long)pager.pg_data;
241 if (KREAD(kd, addr, &swap))
242 return (-1);
243
244 /*
245 * Calculate the paging offset, and make sure it's within the
246 * bounds of the pager.
247 */
248 offset += vmop->paging_offset;
249 ix = offset / dbtob(swap.sw_bsize);
250 #if 0
251 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
252 return (-1);
253 #else
254 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) {
255 int i;
256 printf("BUG BUG BUG BUG:\n");
257 printf("object %x offset %x pgoffset %x pager %x swpager %x\n",
258 vmop, offset - vmop->paging_offset, vmop->paging_offset,
259 vmop->pager, pager.pg_data);
260 printf("osize %x bsize %x blocks %x nblocks %x\n",
261 swap.sw_osize, swap.sw_bsize, swap.sw_blocks,
262 swap.sw_nblocks);
263 for (ix = 0; ix < swap.sw_nblocks; ix++) {
264 addr = (u_long)&swap.sw_blocks[ix];
265 if (KREAD(kd, addr, &swb))
266 return (0);
267 printf("sw_blocks[%d]: block %x mask %x\n", ix,
268 swb.swb_block, swb.swb_mask);
269 }
270 return (-1);
271 }
272 #endif
273
274 /* Read in the swap records. */
275 addr = (u_long)&swap.sw_blocks[ix];
276 if (KREAD(kd, addr, &swb))
277 return (-1);
278
279 /* Calculate offset within pager. */
280 offset %= dbtob(swap.sw_bsize);
281
282 /* Check that the page is actually present. */
283 if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0)
284 return (0);
285
286 if (!ISALIVE(kd))
287 return (-1);
288
289 /* Calculate the physical address and read the page. */
290 seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1));
291
292 if (lseek(kd->swfd, seekpoint, 0) == -1)
293 return (-1);
294 if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg)
295 return (-1);
296
297 return (1);
298 }
299
300 /*
301 * Read proc's from memory file into buffer bp, which has space to hold
302 * at most maxcnt procs.
303 */
304 static int
305 kvm_proclist(kd, what, arg, p, bp, maxcnt)
306 kvm_t *kd;
307 int what, arg;
308 struct proc *p;
309 struct kinfo_proc *bp;
310 int maxcnt;
311 {
312 register int cnt = 0;
313 struct eproc eproc;
314 struct pgrp pgrp;
315 struct session sess;
316 struct tty tty;
317 struct proc proc;
318
319 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
320 if (KREAD(kd, (u_long)p, &proc)) {
321 _kvm_err(kd, kd->program, "can't read proc at %x", p);
322 return (-1);
323 }
324 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
325 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
326 &eproc.e_ucred);
327
328 switch(what) {
329
330 case KERN_PROC_PID:
331 if (proc.p_pid != (pid_t)arg)
332 continue;
333 break;
334
335 case KERN_PROC_UID:
336 if (eproc.e_ucred.cr_uid != (uid_t)arg)
337 continue;
338 break;
339
340 case KERN_PROC_RUID:
341 if (eproc.e_pcred.p_ruid != (uid_t)arg)
342 continue;
343 break;
344 }
345 /*
346 * We're going to add another proc to the set. If this
347 * will overflow the buffer, assume the reason is because
348 * nprocs (or the proc list) is corrupt and declare an error.
349 */
350 if (cnt >= maxcnt) {
351 _kvm_err(kd, kd->program, "nprocs corrupt");
352 return (-1);
353 }
354 /*
355 * gather eproc
356 */
357 eproc.e_paddr = p;
358 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
359 _kvm_err(kd, kd->program, "can't read pgrp at %x",
360 proc.p_pgrp);
361 return (-1);
362 }
363 eproc.e_sess = pgrp.pg_session;
364 eproc.e_pgid = pgrp.pg_id;
365 eproc.e_jobc = pgrp.pg_jobc;
366 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
367 _kvm_err(kd, kd->program, "can't read session at %x",
368 pgrp.pg_session);
369 return (-1);
370 }
371 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
372 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
373 _kvm_err(kd, kd->program,
374 "can't read tty at %x", sess.s_ttyp);
375 return (-1);
376 }
377 eproc.e_tdev = tty.t_dev;
378 eproc.e_tsess = tty.t_session;
379 if (tty.t_pgrp != NULL) {
380 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
381 _kvm_err(kd, kd->program,
382 "can't read tpgrp at &x",
383 tty.t_pgrp);
384 return (-1);
385 }
386 eproc.e_tpgid = pgrp.pg_id;
387 } else
388 eproc.e_tpgid = -1;
389 } else
390 eproc.e_tdev = NODEV;
391 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
392 if (sess.s_leader == p)
393 eproc.e_flag |= EPROC_SLEADER;
394 if (proc.p_wmesg)
395 (void)kvm_read(kd, (u_long)proc.p_wmesg,
396 eproc.e_wmesg, WMESGLEN);
397
398 (void)kvm_read(kd, (u_long)proc.p_vmspace,
399 (char *)&eproc.e_vm, sizeof(eproc.e_vm));
400
401 eproc.e_xsize = eproc.e_xrssize = 0;
402 eproc.e_xccount = eproc.e_xswrss = 0;
403
404 switch (what) {
405
406 case KERN_PROC_PGRP:
407 if (eproc.e_pgid != (pid_t)arg)
408 continue;
409 break;
410
411 case KERN_PROC_TTY:
412 if ((proc.p_flag & P_CONTROLT) == 0 ||
413 eproc.e_tdev != (dev_t)arg)
414 continue;
415 break;
416 }
417 bcopy(&proc, &bp->kp_proc, sizeof(proc));
418 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
419 ++bp;
420 ++cnt;
421 }
422 return (cnt);
423 }
424
425 /*
426 * Build proc info array by reading in proc list from a crash dump.
427 * Return number of procs read. maxcnt is the max we will read.
428 */
429 static int
430 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
431 kvm_t *kd;
432 int what, arg;
433 u_long a_allproc;
434 u_long a_zombproc;
435 int maxcnt;
436 {
437 register struct kinfo_proc *bp = kd->procbase;
438 register int acnt, zcnt;
439 struct proc *p;
440
441 if (KREAD(kd, a_allproc, &p)) {
442 _kvm_err(kd, kd->program, "cannot read allproc");
443 return (-1);
444 }
445 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
446 if (acnt < 0)
447 return (acnt);
448
449 if (KREAD(kd, a_zombproc, &p)) {
450 _kvm_err(kd, kd->program, "cannot read zombproc");
451 return (-1);
452 }
453 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
454 if (zcnt < 0)
455 zcnt = 0;
456
457 return (acnt + zcnt);
458 }
459
460 struct kinfo_proc *
461 kvm_getprocs(kd, op, arg, cnt)
462 kvm_t *kd;
463 int op, arg;
464 int *cnt;
465 {
466 size_t size;
467 int mib[4], st, nprocs;
468
469 if (kd->procbase != 0) {
470 free((void *)kd->procbase);
471 /*
472 * Clear this pointer in case this call fails. Otherwise,
473 * kvm_close() will free it again.
474 */
475 kd->procbase = 0;
476 }
477 if (ISALIVE(kd)) {
478 size = 0;
479 mib[0] = CTL_KERN;
480 mib[1] = KERN_PROC;
481 mib[2] = op;
482 mib[3] = arg;
483 st = sysctl(mib, 4, NULL, &size, NULL, 0);
484 if (st == -1) {
485 _kvm_syserr(kd, kd->program, "kvm_getprocs");
486 return (0);
487 }
488 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
489 if (kd->procbase == 0)
490 return (0);
491 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
492 if (st == -1) {
493 _kvm_syserr(kd, kd->program, "kvm_getprocs");
494 return (0);
495 }
496 if (size % sizeof(struct kinfo_proc) != 0) {
497 _kvm_err(kd, kd->program,
498 "proc size mismatch (%d total, %d chunks)",
499 size, sizeof(struct kinfo_proc));
500 return (0);
501 }
502 nprocs = size / sizeof(struct kinfo_proc);
503 } else {
504 struct nlist nl[4], *p;
505
506 nl[0].n_name = "_nprocs";
507 nl[1].n_name = "_allproc";
508 nl[2].n_name = "_zombproc";
509 nl[3].n_name = 0;
510
511 if (kvm_nlist(kd, nl) != 0) {
512 for (p = nl; p->n_type != 0; ++p)
513 ;
514 _kvm_err(kd, kd->program,
515 "%s: no such symbol", p->n_name);
516 return (0);
517 }
518 if (KREAD(kd, nl[0].n_value, &nprocs)) {
519 _kvm_err(kd, kd->program, "can't read nprocs");
520 return (0);
521 }
522 size = nprocs * sizeof(struct kinfo_proc);
523 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
524 if (kd->procbase == 0)
525 return (0);
526
527 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
528 nl[2].n_value, nprocs);
529 #ifdef notdef
530 size = nprocs * sizeof(struct kinfo_proc);
531 (void)realloc(kd->procbase, size);
532 #endif
533 }
534 *cnt = nprocs;
535 return (kd->procbase);
536 }
537
538 void
539 _kvm_freeprocs(kd)
540 kvm_t *kd;
541 {
542 if (kd->procbase) {
543 free(kd->procbase);
544 kd->procbase = 0;
545 }
546 }
547
548 void *
549 _kvm_realloc(kd, p, n)
550 kvm_t *kd;
551 void *p;
552 size_t n;
553 {
554 void *np = (void *)realloc(p, n);
555
556 if (np == 0)
557 _kvm_err(kd, kd->program, "out of memory");
558 return (np);
559 }
560
561 #ifndef MAX
562 #define MAX(a, b) ((a) > (b) ? (a) : (b))
563 #endif
564
565 /*
566 * Read in an argument vector from the user address space of process p.
567 * addr if the user-space base address of narg null-terminated contiguous
568 * strings. This is used to read in both the command arguments and
569 * environment strings. Read at most maxcnt characters of strings.
570 */
571 static char **
572 kvm_argv(kd, p, addr, narg, maxcnt)
573 kvm_t *kd;
574 struct proc *p;
575 register u_long addr;
576 register int narg;
577 register int maxcnt;
578 {
579 register char *cp;
580 register int len, cc;
581 register char **argv;
582
583 /*
584 * Check that there aren't an unreasonable number of agruments,
585 * and that the address is in user space.
586 */
587 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
588 return (0);
589
590 if (kd->argv == 0) {
591 /*
592 * Try to avoid reallocs.
593 */
594 kd->argc = MAX(narg + 1, 32);
595 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
596 sizeof(*kd->argv));
597 if (kd->argv == 0)
598 return (0);
599 } else if (narg + 1 > kd->argc) {
600 kd->argc = MAX(2 * kd->argc, narg + 1);
601 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
602 sizeof(*kd->argv));
603 if (kd->argv == 0)
604 return (0);
605 }
606 if (kd->argspc == 0) {
607 kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg);
608 if (kd->argspc == 0)
609 return (0);
610 kd->arglen = kd->nbpg;
611 }
612 cp = kd->argspc;
613 argv = kd->argv;
614 *argv = cp;
615 len = 0;
616 /*
617 * Loop over pages, filling in the argument vector.
618 */
619 while (addr < VM_MAXUSER_ADDRESS) {
620 cc = kd->nbpg - (addr & (kd->nbpg - 1));
621 if (maxcnt > 0 && cc > maxcnt - len)
622 cc = maxcnt - len;;
623 if (len + cc > kd->arglen) {
624 register int off;
625 register char **pp;
626 register char *op = kd->argspc;
627
628 kd->arglen *= 2;
629 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
630 kd->arglen);
631 if (kd->argspc == 0)
632 return (0);
633 cp = &kd->argspc[len];
634 /*
635 * Adjust argv pointers in case realloc moved
636 * the string space.
637 */
638 off = kd->argspc - op;
639 for (pp = kd->argv; pp < argv; ++pp)
640 *pp += off;
641 }
642 if (kvm_uread(kd, p, addr, cp, cc) != cc)
643 /* XXX */
644 return (0);
645 len += cc;
646 addr += cc;
647
648 if (maxcnt == 0 && len > 16 * kd->nbpg)
649 /* sanity */
650 return (0);
651
652 while (--cc >= 0) {
653 if (*cp++ == 0) {
654 if (--narg <= 0) {
655 *++argv = 0;
656 return (kd->argv);
657 } else
658 *++argv = cp;
659 }
660 }
661 if (maxcnt > 0 && len >= maxcnt) {
662 /*
663 * We're stopping prematurely. Terminate the
664 * argv and current string.
665 */
666 *++argv = 0;
667 *cp = 0;
668 return (kd->argv);
669 }
670 }
671 }
672
673 static void
674 ps_str_a(p, addr, n)
675 struct ps_strings *p;
676 u_long *addr;
677 int *n;
678 {
679 *addr = (u_long)p->ps_argvstr;
680 *n = p->ps_nargvstr;
681 }
682
683 static void
684 ps_str_e(p, addr, n)
685 struct ps_strings *p;
686 u_long *addr;
687 int *n;
688 {
689 *addr = (u_long)p->ps_envstr;
690 *n = p->ps_nenvstr;
691 }
692
693 /*
694 * Determine if the proc indicated by p is still active.
695 * This test is not 100% foolproof in theory, but chances of
696 * being wrong are very low.
697 */
698 static int
699 proc_verify(kd, kernp, p)
700 kvm_t *kd;
701 u_long kernp;
702 const struct proc *p;
703 {
704 struct proc kernproc;
705
706 /*
707 * Just read in the whole proc. It's not that big relative
708 * to the cost of the read system call.
709 */
710 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
711 sizeof(kernproc))
712 return (0);
713 return (p->p_pid == kernproc.p_pid &&
714 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
715 }
716
717 static char **
718 kvm_doargv(kd, kp, nchr, info)
719 kvm_t *kd;
720 const struct kinfo_proc *kp;
721 int nchr;
722 int (*info)(struct ps_strings*, u_long *, int *);
723 {
724 register const struct proc *p = &kp->kp_proc;
725 register char **ap;
726 u_long addr;
727 int cnt;
728 struct ps_strings arginfo;
729
730 /*
731 * Pointers are stored at the top of the user stack.
732 */
733 if (p->p_stat == SZOMB ||
734 kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
735 sizeof(arginfo)) != sizeof(arginfo))
736 return (0);
737
738 (*info)(&arginfo, &addr, &cnt);
739 if (cnt == 0)
740 return (0);
741 ap = kvm_argv(kd, p, addr, cnt, nchr);
742 /*
743 * For live kernels, make sure this process didn't go away.
744 */
745 if (ap != 0 && ISALIVE(kd) &&
746 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
747 ap = 0;
748 return (ap);
749 }
750
751 /*
752 * Get the command args. This code is now machine independent.
753 */
754 char **
755 kvm_getargv(kd, kp, nchr)
756 kvm_t *kd;
757 const struct kinfo_proc *kp;
758 int nchr;
759 {
760 return (kvm_doargv(kd, kp, nchr, ps_str_a));
761 }
762
763 char **
764 kvm_getenvv(kd, kp, nchr)
765 kvm_t *kd;
766 const struct kinfo_proc *kp;
767 int nchr;
768 {
769 return (kvm_doargv(kd, kp, nchr, ps_str_e));
770 }
771
772 /*
773 * Read from user space. The user context is given by p.
774 */
775 ssize_t
776 kvm_uread(kd, p, uva, buf, len)
777 kvm_t *kd;
778 register const struct proc *p;
779 register u_long uva;
780 register char *buf;
781 register size_t len;
782 {
783 register char *cp;
784
785 cp = buf;
786 while (len > 0) {
787 register int cc;
788 register char *dp;
789 int cnt;
790
791 dp = _kvm_uread(kd, p, uva, &cnt);
792 if (dp == 0) {
793 _kvm_err(kd, 0, "invalid address (%x)", uva);
794 return (0);
795 }
796 cc = MIN(cnt, len);
797 bcopy(dp, cp, cc);
798
799 cp += cc;
800 uva += cc;
801 len -= cc;
802 }
803 return (ssize_t)(cp - buf);
804 }
805