fenv.c revision 1.1 1 /* $NetBSD: fenv.c,v 1.1 2010/07/31 21:47:53 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2004-2005 David Schultz <das (at) FreeBSD.ORG>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __RCSID("$NetBSD: fenv.c,v 1.1 2010/07/31 21:47:53 joerg Exp $");
31
32 #include <sys/param.h>
33 #include <sys/sysctl.h>
34 #include <assert.h>
35 #include <fenv.h>
36 #include <stddef.h>
37 #include <string.h>
38
39 /* Load x87 Control Word */
40 #define __fldcw(__cw) __asm__ __volatile__ \
41 ("fldcw %0" : : "m" (__cw))
42
43 /* No-Wait Store Control Word */
44 #define __fnstcw(__cw) __asm__ __volatile__ \
45 ("fnstcw %0" : "=m" (*(__cw)))
46
47 /* No-Wait Store Status Word */
48 #define __fnstsw(__sw) __asm__ __volatile__ \
49 ("fnstsw %0" : "=am" (*(__sw)))
50
51 /* No-Wait Clear Exception Flags */
52 #define __fnclex() __asm__ __volatile__ \
53 ("fnclex")
54
55 /* Load x87 Environment */
56 #define __fldenv(__env) __asm__ __volatile__ \
57 ("fldenv %0" : : "m" (__env))
58
59 /* No-Wait Store x87 environment */
60 #define __fnstenv(__env) __asm__ __volatile__ \
61 ("fnstenv %0" : "=m" (*(__env)))
62
63 /* Check for and handle pending unmasked x87 pending FPU exceptions */
64 #define __fwait(__env) __asm__ __volatile__ \
65 ("fwait")
66
67 /* Load the MXCSR register */
68 #define __ldmxcsr(__mxcsr) __asm__ __volatile__ \
69 ("ldmxcsr %0" : : "m" (__mxcsr))
70
71 /* Store the MXCSR register state */
72 #define __stmxcsr(__mxcsr) __asm__ __volatile__ \
73 ("stmxcsr %0" : "=m" (*(__mxcsr)))
74
75 /*
76 * The following constant represents the default floating-point environment
77 * (that is, the one installed at program startup) and has type pointer to
78 * const-qualified fenv_t.
79 *
80 * It can be used as an argument to the functions within the <fenv.h> header
81 * that manage the floating-point environment, namely fesetenv() and
82 * feupdateenv().
83 *
84 * x87 fpu registers are 16bit wide. The upper bits, 31-16, are marked as
85 * RESERVED. We provide a partial floating-point environment, where we
86 * define only the lower bits. The reserved bits are extracted and set by the
87 * consumers of FE_DFL_ENV, during runtime.
88 */
89 fenv_t __fe_dfl_env = {
90 {
91 __NetBSD_NPXCW__, /* Control word register */
92 0x0, /* Unused */
93 0x0000, /* Status word register */
94 0x0, /* Unused */
95 0x0000ffff, /* Tag word register */
96 0x0, /* Unused */
97 {
98 0x0000, 0x0000,
99 0x0000, 0xffff
100 }
101 },
102 __INITIAL_MXCSR__ /* MXCSR register */
103 };
104
105 /*
106 * Test for SSE support on this processor.
107 *
108 * We need to use ldmxcsr/stmxcsr to get correct results if any part
109 * of the program was compiled to use SSE floating-point, but we can't
110 * use SSE on older processors.
111 *
112 * In order to do so, we need to query the processor capabilities via the CPUID
113 * instruction. We can make it even simpler though, by querying the machdep.sse
114 * sysctl.
115 */
116 static int __HAS_SSE = 0;
117
118 static void __test_sse(void) __attribute__ ((constructor));
119
120 static void __test_sse(void)
121 {
122 char machine[64];
123 size_t oldlen;
124 int rv;
125
126 rv = sysctlbyname("machdep.sse", &__HAS_SSE, &oldlen, NULL, 0);
127 _DIAGASSERT(rv != -1);
128 if (rv == -1)
129 __HAS_SSE = 0;
130 }
131
132 /*
133 * The feclearexcept() function clears the supported floating-point exceptions
134 * represented by `excepts'.
135 */
136 int
137 feclearexcept(int excepts)
138 {
139 fenv_t env;
140 uint32_t mxcsr;
141 int ex;
142
143 _DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
144
145 ex = excepts & FE_ALL_EXCEPT;
146
147 /* It's ~3x faster to call fnclex, than store/load fp env */
148 if (ex == FE_ALL_EXCEPT) {
149 __fnclex();
150 } else {
151 __fnstenv(&env);
152 env.x87.status &= ~ex;
153 __fldenv(env);
154 }
155
156 if (__HAS_SSE) {
157 __stmxcsr(&mxcsr);
158 mxcsr &= ~ex;
159 __ldmxcsr(mxcsr);
160 }
161
162 /* Success */
163 return (0);
164 }
165
166 /*
167 * The fegetexceptflag() function stores an implementation-defined
168 * representation of the states of the floating-point status flags indicated by
169 * the argument excepts in the object pointed to by the argument flagp.
170 */
171 int
172 fegetexceptflag(fexcept_t *flagp, int excepts)
173 {
174 uint32_t mxcsr;
175 uint16_t status;
176 int ex;
177
178 _DIAGASSERT(flagp != NULL);
179 _DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
180
181 ex = excepts & FE_ALL_EXCEPT;
182
183 __fnstsw(&status);
184 if (__HAS_SSE)
185 __stmxcsr(&mxcsr);
186 else
187 mxcsr = 0;
188
189 *flagp = (mxcsr | status) & ex;
190
191 /* Success */
192 return (0);
193 }
194
195 /*
196 * The feraiseexcept() function raises the supported floating-point exceptions
197 * represented by the argument `excepts'.
198 *
199 * The standard explicitly allows us to execute an instruction that has the
200 * exception as a side effect, but we choose to manipulate the status register
201 * directly.
202 *
203 * The validation of input is being deferred to fesetexceptflag().
204 */
205 int
206 feraiseexcept(int excepts)
207 {
208 fexcept_t ex;
209
210 _DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
211
212 ex = excepts & FE_ALL_EXCEPT;
213 fesetexceptflag(&ex, excepts);
214 __fwait();
215
216 /* Success */
217 return (0);
218 }
219
220 /*
221 * This function sets the floating-point status flags indicated by the argument
222 * `excepts' to the states stored in the object pointed to by `flagp'. It does
223 * NOT raise any floating-point exceptions, but only sets the state of the flags.
224 */
225 int
226 fesetexceptflag(const fexcept_t *flagp, int excepts)
227 {
228 fenv_t env;
229 uint32_t mxcsr;
230 int ex;
231
232 _DIAGASSERT(flagp != NULL);
233 _DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
234
235 ex = excepts & FE_ALL_EXCEPT;
236
237 __fnstenv(&env);
238 env.x87.status &= ~ex;
239 env.x87.status |= *flagp & ex;
240 __fldenv(env);
241
242 if (__HAS_SSE) {
243 __stmxcsr(&mxcsr);
244 mxcsr &= ~ex;
245 mxcsr |= *flagp & ex;
246 __ldmxcsr(mxcsr);
247 }
248
249 /* Success */
250 return (0);
251 }
252
253 /*
254 * The fetestexcept() function determines which of a specified subset of the
255 * floating-point exception flags are currently set. The `excepts' argument
256 * specifies the floating-point status flags to be queried.
257 */
258 int
259 fetestexcept(int excepts)
260 {
261 uint32_t mxcsr;
262 uint16_t status;
263 int ex;
264
265 _DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
266
267 ex = excepts & FE_ALL_EXCEPT;
268
269 __fnstsw(&status);
270 if (__HAS_SSE)
271 __stmxcsr(&mxcsr);
272 else
273 mxcsr = 0;
274
275 return ((status | mxcsr) & ex);
276 }
277
278 int
279 fegetround(void)
280 {
281 uint16_t control;
282
283 /*
284 * We assume that the x87 and the SSE unit agree on the
285 * rounding mode. Reading the control word on the x87 turns
286 * out to be about 5 times faster than reading it on the SSE
287 * unit on an Opteron 244.
288 */
289 __fnstcw(&control);
290
291 return (control & __X87_ROUND_MASK);
292 }
293
294 /*
295 * The fesetround() function shall establish the rounding direction represented
296 * by its argument round. If the argument is not equal to the value of a
297 * rounding direction macro, the rounding direction is not changed.
298 */
299 int
300 fesetround(int round)
301 {
302 uint32_t mxcsr;
303 uint16_t control;
304
305 if (round & ~__X87_ROUND_MASK) {
306 /* Failure */
307 return (-1);
308 }
309
310 __fnstcw(&control);
311 control &= ~__X87_ROUND_MASK;
312 control |= round;
313 __fldcw(control);
314
315 if (__HAS_SSE) {
316 __stmxcsr(&mxcsr);
317 mxcsr &= ~(__X87_ROUND_MASK << __SSE_ROUND_SHIFT);
318 mxcsr |= round << __SSE_ROUND_SHIFT;
319 __ldmxcsr(mxcsr);
320 }
321
322 /* Success */
323 return (0);
324 }
325
326 /*
327 * The fegetenv() function attempts to store the current floating-point
328 * environment in the object pointed to by envp.
329 */
330 int
331 fegetenv(fenv_t *envp)
332 {
333 uint32_t mxcsr;
334
335 _DIAGASSERT(flagp != NULL);
336
337 /*
338 * fnstenv masks all exceptions, so we need to restore the old control
339 * word to avoid this side effect.
340 */
341 __fnstenv(envp);
342 __fldcw(envp->x87.control);
343 if (__HAS_SSE) {
344 __stmxcsr(&mxcsr);
345 envp->mxcsr = mxcsr;
346 }
347
348 /* Success */
349 return (0);
350 }
351
352 /*
353 * The feholdexcept() function saves the current floating-point environment in
354 * the object pointed to by envp, clears the floating-point status flags, and
355 * then installs a non-stop (continue on floating-point exceptions) mode, if
356 * available, for all floating-point exceptions.
357 */
358 int
359 feholdexcept(fenv_t *envp)
360 {
361 uint32_t mxcsr;
362
363 _DIAGASSERT(envp != NULL);
364
365 __fnstenv(envp);
366 __fnclex();
367 if (__HAS_SSE) {
368 __stmxcsr(&mxcsr);
369 envp->mxcsr = mxcsr;
370 mxcsr &= ~FE_ALL_EXCEPT;
371 mxcsr |= FE_ALL_EXCEPT << __SSE_EMASK_SHIFT;
372 __ldmxcsr(mxcsr);
373 }
374
375 /* Success */
376 return (0);
377 }
378
379 /*
380 * The fesetenv() function attempts to establish the floating-point environment
381 * represented by the object pointed to by envp. The argument `envp' points
382 * to an object set by a call to fegetenv() or feholdexcept(), or equal a
383 * floating-point environment macro. The fesetenv() function does not raise
384 * floating-point exceptions, but only installs the state of the floating-point
385 * status flags represented through its argument.
386 */
387 int
388 fesetenv(const fenv_t *envp)
389 {
390 fenv_t env;
391
392 _DIAGASSERT(envp != NULL);
393
394 /* Store the x87 floating-point environment */
395 memset(&env, 0, sizeof(env));
396 __fnstenv(&env);
397
398 __fe_dfl_env.x87.unused1 = env.x87.unused1;
399 __fe_dfl_env.x87.unused2 = env.x87.unused2;
400 __fe_dfl_env.x87.unused3 = env.x87.unused3;
401 memcpy(__fe_dfl_env.x87.others,
402 env.x87.others,
403 sizeof(__fe_dfl_env.x87.others) / sizeof(uint32_t));
404
405 __fldenv(envp->x87);
406 if (__HAS_SSE)
407 __ldmxcsr(envp->mxcsr);
408
409 /* Success */
410 return (0);
411 }
412
413 /*
414 * The feupdateenv() function saves the currently raised floating-point
415 * exceptions in its automatic storage, installs the floating-point environment
416 * represented by the object pointed to by `envp', and then raises the saved
417 * floating-point exceptions. The argument `envp' shall point to an object set
418 * by a call to feholdexcept() or fegetenv(), or equal a floating-point
419 * environment macro.
420 */
421 int
422 feupdateenv(const fenv_t *envp)
423 {
424 fenv_t env;
425 uint32_t mxcsr;
426 uint16_t status;
427
428 _DIAGASSERT(envp != NULL);
429
430 /* Store the x87 floating-point environment */
431 memset(&env, 0, sizeof(env));
432 __fnstenv(&env);
433
434 __fe_dfl_env.x87.unused1 = env.x87.unused1;
435 __fe_dfl_env.x87.unused2 = env.x87.unused2;
436 __fe_dfl_env.x87.unused3 = env.x87.unused3;
437 memcpy(__fe_dfl_env.x87.others,
438 env.x87.others,
439 sizeof(__fe_dfl_env.x87.others) / sizeof(uint32_t));
440
441 __fnstsw(&status);
442 if (__HAS_SSE)
443 __stmxcsr(&mxcsr);
444 else
445 mxcsr = 0;
446 fesetenv(envp);
447 feraiseexcept((mxcsr | status) & FE_ALL_EXCEPT);
448
449 /* Success */
450 return (0);
451 }
452
453 /*
454 * The following functions are extentions to the standard
455 */
456 int
457 feenableexcept(int mask)
458 {
459 uint32_t mxcsr, omask;
460 uint16_t control;
461
462 mask &= FE_ALL_EXCEPT;
463 __fnstcw(&control);
464 if (__HAS_SSE)
465 __stmxcsr(&mxcsr);
466 else
467 mxcsr = 0;
468
469 omask = (control | mxcsr >> __SSE_EMASK_SHIFT) & FE_ALL_EXCEPT;
470 control &= ~mask;
471 __fldcw(control);
472 if (__HAS_SSE) {
473 mxcsr &= ~(mask << __SSE_EMASK_SHIFT);
474 __ldmxcsr(mxcsr);
475 }
476
477 return (~omask);
478 }
479
480 int
481 fedisableexcept(int mask)
482 {
483 uint32_t mxcsr, omask;
484 uint16_t control;
485
486 mask &= FE_ALL_EXCEPT;
487 __fnstcw(&control);
488 if (__HAS_SSE)
489 __stmxcsr(&mxcsr);
490 else
491 mxcsr = 0;
492
493 omask = (control | mxcsr >> __SSE_EMASK_SHIFT) & FE_ALL_EXCEPT;
494 control |= mask;
495 __fldcw(control);
496 if (__HAS_SSE) {
497 mxcsr |= mask << __SSE_EMASK_SHIFT;
498 __ldmxcsr(mxcsr);
499 }
500
501 return (~omask);
502 }
503
504 int
505 fegetexcept(void)
506 {
507 uint16_t control;
508
509 /*
510 * We assume that the masks for the x87 and the SSE unit are
511 * the same.
512 */
513 __fnstcw(&control);
514
515 return (control & FE_ALL_EXCEPT);
516 }
517