fenv.c revision 1.6 1 /* $NetBSD: fenv.c,v 1.6 2013/11/11 00:31:51 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2004-2005 David Schultz <das (at) FreeBSD.ORG>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __RCSID("$NetBSD: fenv.c,v 1.6 2013/11/11 00:31:51 joerg Exp $");
31
32 #include <sys/param.h>
33 #include <sys/sysctl.h>
34 #include <assert.h>
35 #include <fenv.h>
36 #include <stddef.h>
37 #include <string.h>
38
39 /* Load x87 Control Word */
40 #define __fldcw(__cw) __asm__ __volatile__ \
41 ("fldcw %0" : : "m" (__cw))
42
43 /* No-Wait Store Control Word */
44 #define __fnstcw(__cw) __asm__ __volatile__ \
45 ("fnstcw %0" : "=m" (*(__cw)))
46
47 /* No-Wait Store Status Word */
48 #define __fnstsw(__sw) __asm__ __volatile__ \
49 ("fnstsw %0" : "=am" (*(__sw)))
50
51 /* No-Wait Clear Exception Flags */
52 #define __fnclex() __asm__ __volatile__ \
53 ("fnclex")
54
55 /* Load x87 Environment */
56 #define __fldenv(__env) __asm__ __volatile__ \
57 ("fldenv %0" : : "m" (__env))
58
59 /* No-Wait Store x87 environment */
60 #define __fnstenv(__env) __asm__ __volatile__ \
61 ("fnstenv %0" : "=m" (*(__env)))
62
63 /* Check for and handle pending unmasked x87 pending FPU exceptions */
64 #define __fwait(__env) __asm__ __volatile__ \
65 ("fwait")
66
67 /* Load the MXCSR register */
68 #define __ldmxcsr(__mxcsr) __asm__ __volatile__ \
69 ("ldmxcsr %0" : : "m" (__mxcsr))
70
71 /* Store the MXCSR register state */
72 #define __stmxcsr(__mxcsr) __asm__ __volatile__ \
73 ("stmxcsr %0" : "=m" (*(__mxcsr)))
74
75 /*
76 * The following constant represents the default floating-point environment
77 * (that is, the one installed at program startup) and has type pointer to
78 * const-qualified fenv_t.
79 *
80 * It can be used as an argument to the functions within the <fenv.h> header
81 * that manage the floating-point environment, namely fesetenv() and
82 * feupdateenv().
83 *
84 * x87 fpu registers are 16bit wide. The upper bits, 31-16, are marked as
85 * RESERVED. We provide a partial floating-point environment, where we
86 * define only the lower bits. The reserved bits are extracted and set by the
87 * consumers of FE_DFL_ENV, during runtime.
88 */
89 fenv_t __fe_dfl_env = {
90 {
91 __NetBSD_NPXCW__, /* Control word register */
92 0x0, /* Unused */
93 0x0000, /* Status word register */
94 0x0, /* Unused */
95 0x0000ffff, /* Tag word register */
96 0x0, /* Unused */
97 {
98 0x0000, 0x0000,
99 0x0000, 0xffff
100 }
101 },
102 __INITIAL_MXCSR__ /* MXCSR register */
103 };
104
105 /*
106 * Test for SSE support on this processor.
107 *
108 * We need to use ldmxcsr/stmxcsr to get correct results if any part
109 * of the program was compiled to use SSE floating-point, but we can't
110 * use SSE on older processors.
111 *
112 * In order to do so, we need to query the processor capabilities via the CPUID
113 * instruction. We can make it even simpler though, by querying the machdep.sse
114 * sysctl.
115 */
116 static int __HAS_SSE = 0;
117
118 static void __init_libm(void) __attribute__ ((constructor, used));
119
120 static void __init_libm(void)
121 {
122 size_t oldlen = sizeof(__HAS_SSE);
123 int rv;
124 uint16_t control;
125
126 rv = sysctlbyname("machdep.sse", &__HAS_SSE, &oldlen, NULL, 0);
127 if (rv == -1)
128 __HAS_SSE = 0;
129
130 __fnstcw(&control);
131 __fe_dfl_env.x87.control = control;
132 }
133
134 /*
135 * The feclearexcept() function clears the supported floating-point exceptions
136 * represented by `excepts'.
137 */
138 int
139 feclearexcept(int excepts)
140 {
141 fenv_t env;
142 uint32_t mxcsr;
143 int ex;
144
145 _DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
146
147 ex = excepts & FE_ALL_EXCEPT;
148
149 /* It's ~3x faster to call fnclex, than store/load fp env */
150 if (ex == FE_ALL_EXCEPT) {
151 __fnclex();
152 } else {
153 __fnstenv(&env);
154 env.x87.status &= ~ex;
155 __fldenv(env);
156 }
157
158 if (__HAS_SSE) {
159 __stmxcsr(&mxcsr);
160 mxcsr &= ~ex;
161 __ldmxcsr(mxcsr);
162 }
163
164 /* Success */
165 return (0);
166 }
167
168 /*
169 * The fegetexceptflag() function stores an implementation-defined
170 * representation of the states of the floating-point status flags indicated by
171 * the argument excepts in the object pointed to by the argument flagp.
172 */
173 int
174 fegetexceptflag(fexcept_t *flagp, int excepts)
175 {
176 uint32_t mxcsr;
177 uint16_t status;
178 int ex;
179
180 _DIAGASSERT(flagp != NULL);
181 _DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
182
183 ex = excepts & FE_ALL_EXCEPT;
184
185 __fnstsw(&status);
186 if (__HAS_SSE)
187 __stmxcsr(&mxcsr);
188 else
189 mxcsr = 0;
190
191 *flagp = (mxcsr | status) & ex;
192
193 /* Success */
194 return (0);
195 }
196
197 /*
198 * The feraiseexcept() function raises the supported floating-point exceptions
199 * represented by the argument `excepts'.
200 *
201 * The standard explicitly allows us to execute an instruction that has the
202 * exception as a side effect, but we choose to manipulate the status register
203 * directly.
204 *
205 * The validation of input is being deferred to fesetexceptflag().
206 */
207 int
208 feraiseexcept(int excepts)
209 {
210 fexcept_t ex;
211
212 _DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
213
214 ex = excepts & FE_ALL_EXCEPT;
215 fesetexceptflag(&ex, excepts);
216 __fwait();
217
218 /* Success */
219 return (0);
220 }
221
222 /*
223 * This function sets the floating-point status flags indicated by the argument
224 * `excepts' to the states stored in the object pointed to by `flagp'. It does
225 * NOT raise any floating-point exceptions, but only sets the state of the flags.
226 */
227 int
228 fesetexceptflag(const fexcept_t *flagp, int excepts)
229 {
230 fenv_t env;
231 uint32_t mxcsr;
232 int ex;
233
234 _DIAGASSERT(flagp != NULL);
235 _DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
236
237 ex = excepts & FE_ALL_EXCEPT;
238
239 __fnstenv(&env);
240 env.x87.status &= ~ex;
241 env.x87.status |= *flagp & ex;
242 __fldenv(env);
243
244 if (__HAS_SSE) {
245 __stmxcsr(&mxcsr);
246 mxcsr &= ~ex;
247 mxcsr |= *flagp & ex;
248 __ldmxcsr(mxcsr);
249 }
250
251 /* Success */
252 return (0);
253 }
254
255 /*
256 * The fetestexcept() function determines which of a specified subset of the
257 * floating-point exception flags are currently set. The `excepts' argument
258 * specifies the floating-point status flags to be queried.
259 */
260 int
261 fetestexcept(int excepts)
262 {
263 uint32_t mxcsr;
264 uint16_t status;
265 int ex;
266
267 _DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
268
269 ex = excepts & FE_ALL_EXCEPT;
270
271 __fnstsw(&status);
272 if (__HAS_SSE)
273 __stmxcsr(&mxcsr);
274 else
275 mxcsr = 0;
276
277 return ((status | mxcsr) & ex);
278 }
279
280 int
281 fegetround(void)
282 {
283 uint16_t control;
284
285 /*
286 * We assume that the x87 and the SSE unit agree on the
287 * rounding mode. Reading the control word on the x87 turns
288 * out to be about 5 times faster than reading it on the SSE
289 * unit on an Opteron 244.
290 */
291 __fnstcw(&control);
292
293 return (control & __X87_ROUND_MASK);
294 }
295
296 /*
297 * The fesetround() function shall establish the rounding direction represented
298 * by its argument round. If the argument is not equal to the value of a
299 * rounding direction macro, the rounding direction is not changed.
300 */
301 int
302 fesetround(int round)
303 {
304 uint32_t mxcsr;
305 uint16_t control;
306
307 if (round & ~__X87_ROUND_MASK) {
308 /* Failure */
309 return (-1);
310 }
311
312 __fnstcw(&control);
313 control &= ~__X87_ROUND_MASK;
314 control |= round;
315 __fldcw(control);
316
317 if (__HAS_SSE) {
318 __stmxcsr(&mxcsr);
319 mxcsr &= ~(__X87_ROUND_MASK << __SSE_ROUND_SHIFT);
320 mxcsr |= round << __SSE_ROUND_SHIFT;
321 __ldmxcsr(mxcsr);
322 }
323
324 /* Success */
325 return (0);
326 }
327
328 /*
329 * The fegetenv() function attempts to store the current floating-point
330 * environment in the object pointed to by envp.
331 */
332 int
333 fegetenv(fenv_t *envp)
334 {
335 uint32_t mxcsr;
336
337 _DIAGASSERT(flagp != NULL);
338
339 /*
340 * fnstenv masks all exceptions, so we need to restore the old control
341 * word to avoid this side effect.
342 */
343 __fnstenv(envp);
344 __fldcw(envp->x87.control);
345 if (__HAS_SSE) {
346 __stmxcsr(&mxcsr);
347 envp->mxcsr = mxcsr;
348 }
349
350 /* Success */
351 return (0);
352 }
353
354 /*
355 * The feholdexcept() function saves the current floating-point environment in
356 * the object pointed to by envp, clears the floating-point status flags, and
357 * then installs a non-stop (continue on floating-point exceptions) mode, if
358 * available, for all floating-point exceptions.
359 */
360 int
361 feholdexcept(fenv_t *envp)
362 {
363 uint32_t mxcsr;
364
365 _DIAGASSERT(envp != NULL);
366
367 __fnstenv(envp);
368 __fnclex();
369 if (__HAS_SSE) {
370 __stmxcsr(&mxcsr);
371 envp->mxcsr = mxcsr;
372 mxcsr &= ~FE_ALL_EXCEPT;
373 mxcsr |= FE_ALL_EXCEPT << __SSE_EMASK_SHIFT;
374 __ldmxcsr(mxcsr);
375 }
376
377 /* Success */
378 return (0);
379 }
380
381 /*
382 * The fesetenv() function attempts to establish the floating-point environment
383 * represented by the object pointed to by envp. The argument `envp' points
384 * to an object set by a call to fegetenv() or feholdexcept(), or equal a
385 * floating-point environment macro. The fesetenv() function does not raise
386 * floating-point exceptions, but only installs the state of the floating-point
387 * status flags represented through its argument.
388 */
389 int
390 fesetenv(const fenv_t *envp)
391 {
392 fenv_t env;
393
394 _DIAGASSERT(envp != NULL);
395
396 /* Store the x87 floating-point environment */
397 memset(&env, 0, sizeof(env));
398 __fnstenv(&env);
399
400 __fe_dfl_env.x87.unused1 = env.x87.unused1;
401 __fe_dfl_env.x87.unused2 = env.x87.unused2;
402 __fe_dfl_env.x87.unused3 = env.x87.unused3;
403 memcpy(__fe_dfl_env.x87.others,
404 env.x87.others,
405 sizeof(__fe_dfl_env.x87.others) / sizeof(uint32_t));
406
407 __fldenv(envp->x87);
408 if (__HAS_SSE)
409 __ldmxcsr(envp->mxcsr);
410
411 /* Success */
412 return (0);
413 }
414
415 /*
416 * The feupdateenv() function saves the currently raised floating-point
417 * exceptions in its automatic storage, installs the floating-point environment
418 * represented by the object pointed to by `envp', and then raises the saved
419 * floating-point exceptions. The argument `envp' shall point to an object set
420 * by a call to feholdexcept() or fegetenv(), or equal a floating-point
421 * environment macro.
422 */
423 int
424 feupdateenv(const fenv_t *envp)
425 {
426 fenv_t env;
427 uint32_t mxcsr;
428 uint16_t status;
429
430 _DIAGASSERT(envp != NULL);
431
432 /* Store the x87 floating-point environment */
433 memset(&env, 0, sizeof(env));
434 __fnstenv(&env);
435
436 __fe_dfl_env.x87.unused1 = env.x87.unused1;
437 __fe_dfl_env.x87.unused2 = env.x87.unused2;
438 __fe_dfl_env.x87.unused3 = env.x87.unused3;
439 memcpy(__fe_dfl_env.x87.others,
440 env.x87.others,
441 sizeof(__fe_dfl_env.x87.others) / sizeof(uint32_t));
442
443 __fnstsw(&status);
444 if (__HAS_SSE)
445 __stmxcsr(&mxcsr);
446 else
447 mxcsr = 0;
448 fesetenv(envp);
449 feraiseexcept((mxcsr | status) & FE_ALL_EXCEPT);
450
451 /* Success */
452 return (0);
453 }
454
455 /*
456 * The following functions are extentions to the standard
457 */
458 int
459 feenableexcept(int mask)
460 {
461 uint32_t mxcsr, omask;
462 uint16_t control;
463
464 mask &= FE_ALL_EXCEPT;
465 __fnstcw(&control);
466 if (__HAS_SSE)
467 __stmxcsr(&mxcsr);
468 else
469 mxcsr = 0;
470
471 omask = (control | mxcsr >> __SSE_EMASK_SHIFT) & FE_ALL_EXCEPT;
472 control &= ~mask;
473 __fldcw(control);
474 if (__HAS_SSE) {
475 mxcsr &= ~(mask << __SSE_EMASK_SHIFT);
476 __ldmxcsr(mxcsr);
477 }
478
479 return (FE_ALL_EXCEPT & ~omask);
480 }
481
482 int
483 fedisableexcept(int mask)
484 {
485 uint32_t mxcsr, omask;
486 uint16_t control;
487
488 mask &= FE_ALL_EXCEPT;
489 __fnstcw(&control);
490 if (__HAS_SSE)
491 __stmxcsr(&mxcsr);
492 else
493 mxcsr = 0;
494
495 omask = (control | mxcsr >> __SSE_EMASK_SHIFT) & FE_ALL_EXCEPT;
496 control |= mask;
497 __fldcw(control);
498 if (__HAS_SSE) {
499 mxcsr |= mask << __SSE_EMASK_SHIFT;
500 __ldmxcsr(mxcsr);
501 }
502
503 return (FE_ALL_EXCEPT & ~omask);
504 }
505
506 int
507 fegetexcept(void)
508 {
509 uint16_t control;
510
511 /*
512 * We assume that the masks for the x87 and the SSE unit are
513 * the same.
514 */
515 __fnstcw(&control);
516
517 return (~control & FE_ALL_EXCEPT);
518 }
519