n_argred.S revision 1.1 1 /* $NetBSD: n_argred.S,v 1.1 1995/10/10 23:40:21 ragge Exp $ */
2 /*
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)argred.s 8.1 (Berkeley) 6/4/93
35 */
36
37 /*
38 * libm$argred implements Bob Corbett's argument reduction and
39 * libm$sincos implements Peter Tang's double precision sin/cos.
40 *
41 * Note: The two entry points libm$argred and libm$sincos are meant
42 * to be used only by _sin, _cos and _tan.
43 *
44 * method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett
45 * S. McDonald, April 4, 1985
46 */
47 .globl libm$argred
48 .globl libm$sincos
49 .text
50 .align 1
51
52 libm$argred:
53 /*
54 * Compare the argument with the largest possible that can
55 * be reduced by table lookup. r3 := |x| will be used in table_lookup .
56 */
57 movd r0,r3
58 bgeq abs1
59 mnegd r3,r3
60 abs1:
61 cmpd r3,$0d+4.55530934770520019583e+01
62 blss small_arg
63 jsb trigred
64 rsb
65 small_arg:
66 jsb table_lookup
67 rsb
68 /*
69 * At this point,
70 * r0 contains the quadrant number, 0, 1, 2, or 3;
71 * r2/r1 contains the reduced argument as a D-format number;
72 * r3 contains a F-format extension to the reduced argument;
73 * r4 contains a 0 or 1 corresponding to a sin or cos entry.
74 */
75 libm$sincos:
76 /*
77 * Compensate for a cosine entry by adding one to the quadrant number.
78 */
79 addl2 r4,r0
80 /*
81 * Polyd clobbers r5-r0 ; save X in r7/r6 .
82 * This can be avoided by rewriting trigred .
83 */
84 movd r1,r6
85 /*
86 * Likewise, save alpha in r8 .
87 * This can be avoided by rewriting trigred .
88 */
89 movf r3,r8
90 /*
91 * Odd or even quadrant? cosine if odd, sine otherwise.
92 * Save floor(quadrant/2) in r9 ; it determines the final sign.
93 */
94 rotl $-1,r0,r9
95 blss cosine
96 sine:
97 muld2 r1,r1 # Xsq = X * X
98 cmpw $0x2480,r1 # [zl] Xsq > 2^-56?
99 blss 1f # [zl] yes, go ahead and do polyd
100 clrq r1 # [zl] work around 11/780 FPA polyd bug
101 1:
102 polyd r1,$7,sin_coef # Q = P(Xsq) , of deg 7
103 mulf3 $0f3.0,r8,r4 # beta = 3 * alpha
104 mulf2 r0,r4 # beta = Q * beta
105 addf2 r8,r4 # beta = alpha + beta
106 muld2 r6,r0 # S(X) = X * Q
107 /* cvtfd r4,r4 ... r5 = 0 after a polyd. */
108 addd2 r4,r0 # S(X) = beta + S(X)
109 addd2 r6,r0 # S(X) = X + S(X)
110 brb done
111 cosine:
112 muld2 r6,r6 # Xsq = X * X
113 beql zero_arg
114 mulf2 r1,r8 # beta = X * alpha
115 polyd r6,$7,cos_coef /* Q = P'(Xsq) , of deg 7 */
116 subd3 r0,r8,r0 # beta = beta - Q
117 subw2 $0x80,r6 # Xsq = Xsq / 2
118 addd2 r0,r6 # Xsq = Xsq + beta
119 zero_arg:
120 subd3 r6,$0d1.0,r0 # C(X) = 1 - Xsq
121 done:
122 blbc r9,even
123 mnegd r0,r0
124 even:
125 rsb
126
127 .data
128 .align 2
129
130 sin_coef:
131 .double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8..
132 .double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8..
133 .double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382..
134 .double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278..
135 .double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d..
136 .double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50
137 .double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554
138 .double 0d+0.00000000000000000000e+00 # s0 = 0
139
140 cos_coef:
141 .double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE..
142 .double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA..
143 .double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E..
144 .double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8..
145 .double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE..
146 .double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E
147 .double 0d+0.00000000000000000000e+00 # s1 = 0
148 .double 0d+0.00000000000000000000e+00 # s0 = 0
149
150 /*
151 * Multiples of pi/2 expressed as the sum of three doubles,
152 *
153 * trailing: n * pi/2 , n = 0, 1, 2, ..., 29
154 * trailing[n] ,
155 *
156 * middle: n * pi/2 , n = 0, 1, 2, ..., 29
157 * middle[n] ,
158 *
159 * leading: n * pi/2 , n = 0, 1, 2, ..., 29
160 * leading[n] ,
161 *
162 * where
163 * leading[n] := (n * pi/2) rounded,
164 * middle[n] := (n * pi/2 - leading[n]) rounded,
165 * trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded .
166 */
167 trailing:
168 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing
169 .double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing
170 .double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing
171 .double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing
172 .double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing
173 .double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing
174 .double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing
175 .double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing
176 .double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing
177 .double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing
178 .double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing
179 .double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing
180 .double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing
181 .double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing
182 .double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing
183 .double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing
184 .double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing
185 .double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing
186 .double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing
187 .double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing
188 .double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing
189 .double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing
190 .double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing
191 .double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing
192 .double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing
193 .double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing
194 .double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing
195 .double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing
196 .double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing
197 .double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing
198
199 middle:
200 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle
201 .double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle
202 .double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle
203 .double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle
204 .double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle
205 .double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle
206 .double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle
207 .double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle
208 .double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle
209 .double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle
210 .double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle
211 .double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle
212 .double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle
213 .double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle
214 .double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle
215 .double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle
216 .double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle
217 .double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle
218 .double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle
219 .double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle
220 .double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle
221 .double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle
222 .double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle
223 .double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle
224 .double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle
225 .double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle
226 .double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle
227 .double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle
228 .double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle
229 .double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle
230
231 leading:
232 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading
233 .double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading
234 .double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading
235 .double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading
236 .double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading
237 .double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading
238 .double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading
239 .double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading
240 .double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading
241 .double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading
242 .double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading
243 .double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading
244 .double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading
245 .double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading
246 .double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading
247 .double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading
248 .double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading
249 .double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading
250 .double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading
251 .double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading
252 .double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading
253 .double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading
254 .double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading
255 .double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading
256 .double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading
257 .double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading
258 .double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading
259 .double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading
260 .double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading
261 .double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading
262
263 twoOverPi:
264 .double 0d+6.36619772367581343076e-01
265 .text
266 .align 1
267
268 table_lookup:
269 muld3 r3,twoOverPi,r0
270 cvtrdl r0,r0 # n = nearest int to ((2/pi)*|x|) rnded
271 mull3 $8,r0,r5
272 subd2 leading(r5),r3 # p = (|x| - leading n*pi/2) exactly
273 subd3 middle(r5),r3,r1 # q = (p - middle n*pi/2) rounded
274 subd2 r1,r3 # r = (p - q)
275 subd2 middle(r5),r3 # r = r - middle n*pi/2
276 subd2 trailing(r5),r3 # r = r - trailing n*pi/2 rounded
277 /*
278 * If the original argument was negative,
279 * negate the reduce argument and
280 * adjust the octant/quadrant number.
281 */
282 tstw 4(ap)
283 bgeq abs2
284 mnegf r1,r1
285 mnegf r3,r3
286 /* subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD */
287 subb3 r0,$4,r0
288 abs2:
289 /*
290 * Clear all unneeded octant/quadrant bits.
291 */
292 /* bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD */
293 bicb2 $0xfc,r0
294 rsb
295 /*
296 * p.0
297 */
298 .text
299 .align 2
300 /*
301 * Only 256 (actually 225) bits of 2/pi are needed for VAX double
302 * precision; this was determined by enumerating all the nearest
303 * machine integer multiples of pi/2 using continued fractions.
304 * (8a8d3673775b7ff7 required the most bits.) -S.McD
305 */
306 .long 0
307 .long 0
308 .long 0xaef1586d
309 .long 0x9458eaf7
310 .long 0x10e4107f
311 .long 0xd8a5664f
312 .long 0x4d377036
313 .long 0x09d5f47d
314 .long 0x91054a7f
315 .long 0xbe60db93
316 bits2opi:
317 .long 0x00000028
318 .long 0
319 /*
320 * Note: wherever you see the word `octant', read `quadrant'.
321 * Currently this code is set up for pi/2 argument reduction.
322 * By uncommenting/commenting the appropriate lines, it will
323 * also serve as a pi/4 argument reduction code.
324 */
325
326 /* p.1
327 * Trigred preforms argument reduction
328 * for the trigonometric functions. It
329 * takes one input argument, a D-format
330 * number in r1/r0 . The magnitude of
331 * the input argument must be greater
332 * than or equal to 1/2 . Trigred produces
333 * three results: the number of the octant
334 * occupied by the argument, the reduced
335 * argument, and an extension of the
336 * reduced argument. The octant number is
337 * returned in r0 . The reduced argument
338 * is returned as a D-format number in
339 * r2/r1 . An 8 bit extension of the
340 * reduced argument is returned as an
341 * F-format number in r3.
342 * p.2
343 */
344 trigred:
345 /*
346 * Save the sign of the input argument.
347 */
348 movw r0,-(sp)
349 /*
350 * Extract the exponent field.
351 */
352 extzv $7,$7,r0,r2
353 /*
354 * Convert the fraction part of the input
355 * argument into a quadword integer.
356 */
357 bicw2 $0xff80,r0
358 bisb2 $0x80,r0 # -S.McD
359 rotl $16,r0,r0
360 rotl $16,r1,r1
361 /*
362 * If r1 is negative, add 1 to r0 . This
363 * adjustment is made so that the two's
364 * complement multiplications done later
365 * will produce unsigned results.
366 */
367 bgeq posmid
368 incl r0
369 posmid:
370 /* p.3
371 *
372 * Set r3 to the address of the first quadword
373 * used to obtain the needed portion of 2/pi .
374 * The address is longword aligned to ensure
375 * efficient access.
376 */
377 ashl $-3,r2,r3
378 bicb2 $3,r3
379 subl3 r3,$bits2opi,r3
380 /*
381 * Set r2 to the size of the shift needed to
382 * obtain the correct portion of 2/pi .
383 */
384 bicb2 $0xe0,r2
385 /* p.4
386 *
387 * Move the needed 128 bits of 2/pi into
388 * r11 - r8 . Adjust the numbers to allow
389 * for unsigned multiplication.
390 */
391 ashq r2,(r3),r10
392
393 subl2 $4,r3
394 ashq r2,(r3),r9
395 bgeq signoff1
396 incl r11
397 signoff1:
398 subl2 $4,r3
399 ashq r2,(r3),r8
400 bgeq signoff2
401 incl r10
402 signoff2:
403 subl2 $4,r3
404 ashq r2,(r3),r7
405 bgeq signoff3
406 incl r9
407 signoff3:
408 /* p.5
409 *
410 * Multiply the contents of r0/r1 by the
411 * slice of 2/pi in r11 - r8 .
412 */
413 emul r0,r8,$0,r4
414 emul r0,r9,r5,r5
415 emul r0,r10,r6,r6
416
417 emul r1,r8,$0,r7
418 emul r1,r9,r8,r8
419 emul r1,r10,r9,r9
420 emul r1,r11,r10,r10
421
422 addl2 r4,r8
423 adwc r5,r9
424 adwc r6,r10
425 /* p.6
426 *
427 * If there are more than five leading zeros
428 * after the first two quotient bits or if there
429 * are more than five leading ones after the first
430 * two quotient bits, generate more fraction bits.
431 * Otherwise, branch to code to produce the result.
432 */
433 bicl3 $0xc1ffffff,r10,r4
434 beql more1
435 cmpl $0x3e000000,r4
436 bneq result
437 more1:
438 /* p.7
439 *
440 * generate another 32 result bits.
441 */
442 subl2 $4,r3
443 ashq r2,(r3),r5
444 bgeq signoff4
445
446 emul r1,r6,$0,r4
447 addl2 r1,r5
448 emul r0,r6,r5,r5
449 addl2 r0,r6
450 brb addbits1
451
452 signoff4:
453 emul r1,r6,$0,r4
454 emul r0,r6,r5,r5
455
456 addbits1:
457 addl2 r5,r7
458 adwc r6,r8
459 adwc $0,r9
460 adwc $0,r10
461 /* p.8
462 *
463 * Check for massive cancellation.
464 */
465 bicl3 $0xc0000000,r10,r6
466 /* bneq more2 -S.McD Test was backwards */
467 beql more2
468 cmpl $0x3fffffff,r6
469 bneq result
470 more2:
471 /* p.9
472 *
473 * If massive cancellation has occurred,
474 * generate another 24 result bits.
475 * Testing has shown there will always be
476 * enough bits after this point.
477 */
478 subl2 $4,r3
479 ashq r2,(r3),r5
480 bgeq signoff5
481
482 emul r0,r6,r4,r5
483 addl2 r0,r6
484 brb addbits2
485
486 signoff5:
487 emul r0,r6,r4,r5
488
489 addbits2:
490 addl2 r6,r7
491 adwc $0,r8
492 adwc $0,r9
493 adwc $0,r10
494 /* p.10
495 *
496 * The following code produces the reduced
497 * argument from the product bits contained
498 * in r10 - r7 .
499 */
500 result:
501 /*
502 * Extract the octant number from r10 .
503 */
504 /* extzv $29,$3,r10,r0 ...used for pi/4 reduction -S.McD */
505 extzv $30,$2,r10,r0
506 /*
507 * Clear the octant bits in r10 .
508 */
509 /* bicl2 $0xe0000000,r10 ...used for pi/4 reduction -S.McD */
510 bicl2 $0xc0000000,r10
511 /*
512 * Zero the sign flag.
513 */
514 clrl r5
515 /* p.11
516 *
517 * Check to see if the fraction is greater than
518 * or equal to one-half. If it is, add one
519 * to the octant number, set the sign flag
520 * on, and replace the fraction with 1 minus
521 * the fraction.
522 */
523 /* bitl $0x10000000,r10 ...used for pi/4 reduction -S.McD */
524 bitl $0x20000000,r10
525 beql small
526 incl r0
527 incl r5
528 /* subl3 r10,$0x1fffffff,r10 ...used for pi/4 reduction -S.McD */
529 subl3 r10,$0x3fffffff,r10
530 mcoml r9,r9
531 mcoml r8,r8
532 mcoml r7,r7
533 small:
534 /* p.12
535 *
536 * Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD
537 * Test whether the first 30 bits of the
538 * fraction are zero.
539 */
540 tstl r10
541 beql tiny
542 /*
543 * Find the position of the first one bit in r10 .
544 */
545 cvtld r10,r1
546 extzv $7,$7,r1,r1
547 /*
548 * Compute the size of the shift needed.
549 */
550 subl3 r1,$32,r6
551 /*
552 * Shift up the high order 64 bits of the
553 * product.
554 */
555 ashq r6,r9,r10
556 ashq r6,r8,r9
557 brb mult
558 /* p.13
559 *
560 * Test to see if the sign bit of r9 is on.
561 */
562 tiny:
563 tstl r9
564 bgeq tinier
565 /*
566 * If it is, shift the product bits up 32 bits.
567 */
568 movl $32,r6
569 movq r8,r10
570 tstl r10
571 brb mult
572 /* p.14
573 *
574 * Test whether r9 is zero. It is probably
575 * impossible for both r10 and r9 to be
576 * zero, but until proven to be so, the test
577 * must be made.
578 */
579 tinier:
580 beql zero
581 /*
582 * Find the position of the first one bit in r9 .
583 */
584 cvtld r9,r1
585 extzv $7,$7,r1,r1
586 /*
587 * Compute the size of the shift needed.
588 */
589 subl3 r1,$32,r1
590 addl3 $32,r1,r6
591 /*
592 * Shift up the high order 64 bits of the
593 * product.
594 */
595 ashq r1,r8,r10
596 ashq r1,r7,r9
597 brb mult
598 /* p.15
599 *
600 * The following code sets the reduced
601 * argument to zero.
602 */
603 zero:
604 clrl r1
605 clrl r2
606 clrl r3
607 brw return
608 /* p.16
609 *
610 * At this point, r0 contains the octant number,
611 * r6 indicates the number of bits the fraction
612 * has been shifted, r5 indicates the sign of
613 * the fraction, r11/r10 contain the high order
614 * 64 bits of the fraction, and the condition
615 * codes indicate where the sign bit of r10
616 * is on. The following code multiplies the
617 * fraction by pi/2 .
618 */
619 mult:
620 /*
621 * Save r11/r10 in r4/r1 . -S.McD
622 */
623 movl r11,r4
624 movl r10,r1
625 /*
626 * If the sign bit of r10 is on, add 1 to r11 .
627 */
628 bgeq signoff6
629 incl r11
630 signoff6:
631 /* p.17
632 *
633 * Move pi/2 into r3/r2 .
634 */
635 movq $0xc90fdaa22168c235,r2
636 /*
637 * Multiply the fraction by the portion of pi/2
638 * in r2 .
639 */
640 emul r2,r10,$0,r7
641 emul r2,r11,r8,r7
642 /*
643 * Multiply the fraction by the portion of pi/2
644 * in r3 .
645 */
646 emul r3,r10,$0,r9
647 emul r3,r11,r10,r10
648 /*
649 * Add the product bits together.
650 */
651 addl2 r7,r9
652 adwc r8,r10
653 adwc $0,r11
654 /*
655 * Compensate for not sign extending r8 above.-S.McD
656 */
657 tstl r8
658 bgeq signoff6a
659 decl r11
660 signoff6a:
661 /*
662 * Compensate for r11/r10 being unsigned. -S.McD
663 */
664 addl2 r2,r10
665 adwc r3,r11
666 /*
667 * Compensate for r3/r2 being unsigned. -S.McD
668 */
669 addl2 r1,r10
670 adwc r4,r11
671 /* p.18
672 *
673 * If the sign bit of r11 is zero, shift the
674 * product bits up one bit and increment r6 .
675 */
676 blss signon
677 incl r6
678 ashq $1,r10,r10
679 tstl r9
680 bgeq signoff7
681 incl r10
682 signoff7:
683 signon:
684 /* p.19
685 *
686 * Shift the 56 most significant product
687 * bits into r9/r8 . The sign extension
688 * will be handled later.
689 */
690 ashq $-8,r10,r8
691 /*
692 * Convert the low order 8 bits of r10
693 * into an F-format number.
694 */
695 cvtbf r10,r3
696 /*
697 * If the result of the conversion was
698 * negative, add 1 to r9/r8 .
699 */
700 bgeq chop
701 incl r8
702 adwc $0,r9
703 /*
704 * If r9 is now zero, branch to special
705 * code to handle that possibility.
706 */
707 beql carryout
708 chop:
709 /* p.20
710 *
711 * Convert the number in r9/r8 into
712 * D-format number in r2/r1 .
713 */
714 rotl $16,r8,r2
715 rotl $16,r9,r1
716 /*
717 * Set the exponent field to the appropriate
718 * value. Note that the extra bits created by
719 * sign extension are now eliminated.
720 */
721 subw3 r6,$131,r6
722 insv r6,$7,$9,r1
723 /*
724 * Set the exponent field of the F-format
725 * number in r3 to the appropriate value.
726 */
727 tstf r3
728 beql return
729 /* extzv $7,$8,r3,r4 -S.McD */
730 extzv $7,$7,r3,r4
731 addw2 r4,r6
732 /* subw2 $217,r6 -S.McD */
733 subw2 $64,r6
734 insv r6,$7,$8,r3
735 brb return
736 /* p.21
737 *
738 * The following code generates the appropriate
739 * result for the unlikely possibility that
740 * rounding the number in r9/r8 resulted in
741 * a carry out.
742 */
743 carryout:
744 clrl r1
745 clrl r2
746 subw3 r6,$132,r6
747 insv r6,$7,$9,r1
748 tstf r3
749 beql return
750 extzv $7,$8,r3,r4
751 addw2 r4,r6
752 subw2 $218,r6
753 insv r6,$7,$8,r3
754 /* p.22
755 *
756 * The following code makes an needed
757 * adjustments to the signs of the
758 * results or to the octant number, and
759 * then returns.
760 */
761 return:
762 /*
763 * Test if the fraction was greater than or
764 * equal to 1/2 . If so, negate the reduced
765 * argument.
766 */
767 blbc r5,signoff8
768 mnegf r1,r1
769 mnegf r3,r3
770 signoff8:
771 /* p.23
772 *
773 * If the original argument was negative,
774 * negate the reduce argument and
775 * adjust the octant number.
776 */
777 tstw (sp)+
778 bgeq signoff9
779 mnegf r1,r1
780 mnegf r3,r3
781 /* subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD */
782 subb3 r0,$4,r0
783 signoff9:
784 /*
785 * Clear all unneeded octant bits.
786 *
787 * bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD */
788 bicb2 $0xfc,r0
789 /*
790 * Return.
791 */
792 rsb
793