Home | History | Annotate | Line # | Download | only in vax
n_argred.S revision 1.4
      1 /*	$NetBSD: n_argred.S,v 1.4 1999/07/02 15:37:35 simonb Exp $	*/
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)argred.s	8.1 (Berkeley) 6/4/93
     35  */
     36 
     37 /*
     38  *  libm$argred implements Bob Corbett's argument reduction and
     39  *  libm$sincos implements Peter Tang's double precision sin/cos.
     40  *
     41  *  Note: The two entry points libm$argred and libm$sincos are meant
     42  *        to be used only by _sin, _cos and _tan.
     43  *
     44  * method: true range reduction to [-pi/4,pi/4], P. Tang  &  B. Corbett
     45  * S. McDonald, April 4,  1985
     46  */
     47 	.text
     48 	.globl	libm$argred
     49 	.type	libm$argred,@label
     50 	.globl	libm$sincos
     51 	.type	libm$sincos,@label
     52 	.align	1
     53 
     54 libm$argred:
     55 /*
     56  *  Compare the argument with the largest possible that can
     57  *  be reduced by table lookup.  r3 := |x|  will be used in  table_lookup .
     58  */
     59 	movd	r0,r3
     60 	bgeq	abs1
     61 	mnegd	r3,r3
     62 abs1:
     63 	cmpd	r3,$0d+4.55530934770520019583e+01
     64 	blss	small_arg
     65 	jsb	trigred
     66 	rsb
     67 small_arg:
     68 	jsb	table_lookup
     69 	rsb
     70 /*
     71  *  At this point,
     72  *	   r0  contains the quadrant number, 0, 1, 2, or 3;
     73  *	r2/r1  contains the reduced argument as a D-format number;
     74  *  	   r3  contains a F-format extension to the reduced argument;
     75  *          r4  contains a  0 or 1  corresponding to a  sin or cos  entry.
     76  */
     77 libm$sincos:
     78 /*
     79  *  Compensate for a cosine entry by adding one to the quadrant number.
     80  */
     81 	addl2	r4,r0
     82 /*
     83  *  Polyd clobbers  r5-r0 ;  save  X  in  r7/r6 .
     84  *  This can be avoided by rewriting  trigred .
     85  */
     86 	movd	r1,r6
     87 /*
     88  *  Likewise, save  alpha  in  r8 .
     89  *  This can be avoided by rewriting  trigred .
     90  */
     91 	movf	r3,r8
     92 /*
     93  *  Odd or even quadrant?  cosine if odd, sine otherwise.
     94  *  Save  floor(quadrant/2) in  r9  ; it determines the final sign.
     95  */
     96 	rotl	$-1,r0,r9
     97 	blss	cosine
     98 sine:
     99 	muld2	r1,r1		# Xsq = X * X
    100 	cmpw	$0x2480,r1	# [zl] Xsq > 2^-56?
    101 	blss	1f		# [zl] yes, go ahead and do polyd
    102 	clrq	r1		# [zl] work around 11/780 FPA polyd bug
    103 1:
    104 	polyd	r1,$7,sin_coef	# Q = P(Xsq) , of deg 7
    105 	mulf3	$0f3.0,r8,r4	# beta = 3 * alpha
    106 	mulf2	r0,r4		# beta = Q * beta
    107 	addf2	r8,r4		# beta = alpha + beta
    108 	muld2	r6,r0		# S(X) = X * Q
    109 /*	cvtfd	r4,r4		... r5 = 0 after a polyd. */
    110 	addd2	r4,r0		# S(X) = beta + S(X)
    111 	addd2	r6,r0		# S(X) = X + S(X)
    112 	brb	done
    113 cosine:
    114 	muld2	r6,r6		# Xsq = X * X
    115 	beql	zero_arg
    116 	mulf2	r1,r8		# beta = X * alpha
    117 	polyd	r6,$7,cos_coef	/* Q = P'(Xsq) , of deg 7 */
    118 	subd3	r0,r8,r0	# beta = beta - Q
    119 	subw2	$0x80,r6	# Xsq = Xsq / 2
    120 	addd2	r0,r6		# Xsq = Xsq + beta
    121 zero_arg:
    122 	subd3	r6,$0d1.0,r0	# C(X) = 1 - Xsq
    123 done:
    124 	blbc	r9,even
    125 	mnegd	r0,r0
    126 even:
    127 	rsb
    128 
    129 .data
    130 .align	2
    131 
    132 sin_coef:
    133 	.double	0d-7.53080332264191085773e-13	# s7 = 2^-29 -1.a7f2504ffc49f8..
    134 	.double	0d+1.60573519267703489121e-10	# s6 = 2^-21  1.611adaede473c8..
    135 	.double	0d-2.50520965150706067211e-08	# s5 = 2^-1a -1.ae644921ed8382..
    136 	.double	0d+2.75573191800593885716e-06	# s4 = 2^-13  1.71de3a4b884278..
    137 	.double	0d-1.98412698411850507950e-04	# s3 = 2^-0d -1.a01a01a0125e7d..
    138 	.double	0d+8.33333333333325688985e-03	# s2 = 2^-07  1.11111111110e50
    139 	.double	0d-1.66666666666666664354e-01	# s1 = 2^-03 -1.55555555555554
    140 	.double	0d+0.00000000000000000000e+00	# s0 = 0
    141 
    142 cos_coef:
    143 	.double	0d-1.13006966202629430300e-11	# s7 = 2^-25 -1.8D9BA04D1374BE..
    144 	.double	0d+2.08746646574796004700e-09	# s6 = 2^-1D  1.1EE632650350BA..
    145 	.double	0d-2.75573073031284417300e-07	# s5 = 2^-16 -1.27E4F31411719E..
    146 	.double	0d+2.48015872682668025200e-05	# s4 = 2^-10  1.A01A0196B902E8..
    147 	.double	0d-1.38888888888464709200e-03	# s3 = 2^-0A -1.6C16C16C11FACE..
    148 	.double	0d+4.16666666666664761400e-02	# s2 = 2^-05  1.5555555555539E
    149 	.double	0d+0.00000000000000000000e+00	# s1 = 0
    150 	.double	0d+0.00000000000000000000e+00	# s0 = 0
    151 
    152 /*
    153  *  Multiples of  pi/2  expressed as the sum of three doubles,
    154  *
    155  *  trailing:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    156  *			trailing[n] ,
    157  *
    158  *  middle:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    159  *			middle[n]   ,
    160  *
    161  *  leading:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    162  *			leading[n]  ,
    163  *
    164  *	where
    165  *		leading[n]  := (n * pi/2)  rounded,
    166  *		middle[n]   := (n * pi/2  -  leading[n])  rounded,
    167  *		trailing[n] := (( n * pi/2 - leading[n]) - middle[n])  rounded .
    168  */
    169 trailing:
    170 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  trailing
    171 	.double	0d+4.33590506506189049611e-35	#  1 * pi/2  trailing
    172 	.double	0d+8.67181013012378099223e-35	#  2 * pi/2  trailing
    173 	.double	0d+1.30077151951856714215e-34	#  3 * pi/2  trailing
    174 	.double	0d+1.73436202602475619845e-34	#  4 * pi/2  trailing
    175 	.double	0d-1.68390735624352669192e-34	#  5 * pi/2  trailing
    176 	.double	0d+2.60154303903713428430e-34	#  6 * pi/2  trailing
    177 	.double	0d-8.16726343231148352150e-35	#  7 * pi/2  trailing
    178 	.double	0d+3.46872405204951239689e-34	#  8 * pi/2  trailing
    179 	.double	0d+3.90231455855570147991e-34	#  9 * pi/2  trailing
    180 	.double	0d-3.36781471248705338384e-34	# 10 * pi/2  trailing
    181 	.double	0d-1.06379439835298071785e-33	# 11 * pi/2  trailing
    182 	.double	0d+5.20308607807426856861e-34	# 12 * pi/2  trailing
    183 	.double	0d+5.63667658458045770509e-34	# 13 * pi/2  trailing
    184 	.double	0d-1.63345268646229670430e-34	# 14 * pi/2  trailing
    185 	.double	0d-1.19986217995610764801e-34	# 15 * pi/2  trailing
    186 	.double	0d+6.93744810409902479378e-34	# 16 * pi/2  trailing
    187 	.double	0d-8.03640094449267300110e-34	# 17 * pi/2  trailing
    188 	.double	0d+7.80462911711140295982e-34	# 18 * pi/2  trailing
    189 	.double	0d-7.16921993148029483506e-34	# 19 * pi/2  trailing
    190 	.double	0d-6.73562942497410676769e-34	# 20 * pi/2  trailing
    191 	.double	0d-6.30203891846791677593e-34	# 21 * pi/2  trailing
    192 	.double	0d-2.12758879670596143570e-33	# 22 * pi/2  trailing
    193 	.double	0d+2.53800212047402350390e-33	# 23 * pi/2  trailing
    194 	.double	0d+1.04061721561485371372e-33	# 24 * pi/2  trailing
    195 	.double	0d+6.11729905311472319056e-32	# 25 * pi/2  trailing
    196 	.double	0d+1.12733531691609154102e-33	# 26 * pi/2  trailing
    197 	.double	0d-3.70049587943078297272e-34	# 27 * pi/2  trailing
    198 	.double	0d-3.26690537292459340860e-34	# 28 * pi/2  trailing
    199 	.double	0d-1.14812616507957271361e-34	# 29 * pi/2  trailing
    200 
    201 middle:
    202 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  middle
    203 	.double	0d+5.72118872610983179676e-18	#  1 * pi/2  middle
    204 	.double	0d+1.14423774522196635935e-17	#  2 * pi/2  middle
    205 	.double	0d-3.83475850529283316309e-17	#  3 * pi/2  middle
    206 	.double	0d+2.28847549044393271871e-17	#  4 * pi/2  middle
    207 	.double	0d-2.69052076007086676522e-17	#  5 * pi/2  middle
    208 	.double	0d-7.66951701058566632618e-17	#  6 * pi/2  middle
    209 	.double	0d-1.54628301484890040587e-17	#  7 * pi/2  middle
    210 	.double	0d+4.57695098088786543741e-17	#  8 * pi/2  middle
    211 	.double	0d+1.07001849766246313192e-16	#  9 * pi/2  middle
    212 	.double	0d-5.38104152014173353044e-17	# 10 * pi/2  middle
    213 	.double	0d-2.14622680169080983801e-16	# 11 * pi/2  middle
    214 	.double	0d-1.53390340211713326524e-16	# 12 * pi/2  middle
    215 	.double	0d-9.21580002543456677056e-17	# 13 * pi/2  middle
    216 	.double	0d-3.09256602969780081173e-17	# 14 * pi/2  middle
    217 	.double	0d+3.03066796603896507006e-17	# 15 * pi/2  middle
    218 	.double	0d+9.15390196177573087482e-17	# 16 * pi/2  middle
    219 	.double	0d+1.52771359575124969107e-16	# 17 * pi/2  middle
    220 	.double	0d+2.14003699532492626384e-16	# 18 * pi/2  middle
    221 	.double	0d-1.68853170360202329427e-16	# 19 * pi/2  middle
    222 	.double	0d-1.07620830402834670609e-16	# 20 * pi/2  middle
    223 	.double	0d+3.97700719404595604379e-16	# 21 * pi/2  middle
    224 	.double	0d-4.29245360338161967602e-16	# 22 * pi/2  middle
    225 	.double	0d-3.68013020380794313406e-16	# 23 * pi/2  middle
    226 	.double	0d-3.06780680423426653047e-16	# 24 * pi/2  middle
    227 	.double	0d-2.45548340466059054318e-16	# 25 * pi/2  middle
    228 	.double	0d-1.84316000508691335411e-16	# 26 * pi/2  middle
    229 	.double	0d-1.23083660551323675053e-16	# 27 * pi/2  middle
    230 	.double	0d-6.18513205939560162346e-17	# 28 * pi/2  middle
    231 	.double	0d-6.18980636588357585202e-19	# 29 * pi/2  middle
    232 
    233 leading:
    234 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  leading
    235 	.double	0d+1.57079632679489661351e+00	#  1 * pi/2  leading
    236 	.double	0d+3.14159265358979322702e+00	#  2 * pi/2  leading
    237 	.double	0d+4.71238898038468989604e+00	#  3 * pi/2  leading
    238 	.double	0d+6.28318530717958645404e+00	#  4 * pi/2  leading
    239 	.double	0d+7.85398163397448312306e+00	#  5 * pi/2  leading
    240 	.double	0d+9.42477796076937979208e+00	#  6 * pi/2  leading
    241 	.double	0d+1.09955742875642763501e+01	#  7 * pi/2  leading
    242 	.double	0d+1.25663706143591729081e+01	#  8 * pi/2  leading
    243 	.double	0d+1.41371669411540694661e+01	#  9 * pi/2  leading
    244 	.double	0d+1.57079632679489662461e+01	# 10 * pi/2  leading
    245 	.double	0d+1.72787595947438630262e+01	# 11 * pi/2  leading
    246 	.double	0d+1.88495559215387595842e+01	# 12 * pi/2  leading
    247 	.double	0d+2.04203522483336561422e+01	# 13 * pi/2  leading
    248 	.double	0d+2.19911485751285527002e+01	# 14 * pi/2  leading
    249 	.double	0d+2.35619449019234492582e+01	# 15 * pi/2  leading
    250 	.double	0d+2.51327412287183458162e+01	# 16 * pi/2  leading
    251 	.double	0d+2.67035375555132423742e+01	# 17 * pi/2  leading
    252 	.double	0d+2.82743338823081389322e+01	# 18 * pi/2  leading
    253 	.double	0d+2.98451302091030359342e+01	# 19 * pi/2  leading
    254 	.double	0d+3.14159265358979324922e+01	# 20 * pi/2  leading
    255 	.double	0d+3.29867228626928286062e+01	# 21 * pi/2  leading
    256 	.double	0d+3.45575191894877260523e+01	# 22 * pi/2  leading
    257 	.double	0d+3.61283155162826226103e+01	# 23 * pi/2  leading
    258 	.double	0d+3.76991118430775191683e+01	# 24 * pi/2  leading
    259 	.double	0d+3.92699081698724157263e+01	# 25 * pi/2  leading
    260 	.double	0d+4.08407044966673122843e+01	# 26 * pi/2  leading
    261 	.double	0d+4.24115008234622088423e+01	# 27 * pi/2  leading
    262 	.double	0d+4.39822971502571054003e+01	# 28 * pi/2  leading
    263 	.double	0d+4.55530934770520019583e+01	# 29 * pi/2  leading
    264 
    265 twoOverPi:
    266 	.double	0d+6.36619772367581343076e-01
    267 	.text
    268 	.align	1
    269 
    270 table_lookup:
    271 	muld3	r3,twoOverPi,r0
    272 	cvtrdl	r0,r0			# n = nearest int to ((2/pi)*|x|) rnded
    273 	mull3	$8,r0,r5
    274 	subd2	leading(r5),r3		# p = (|x| - leading n*pi/2) exactly
    275 	subd3	middle(r5),r3,r1	# q = (p - middle  n*pi/2) rounded
    276 	subd2	r1,r3			# r = (p - q)
    277 	subd2	middle(r5),r3		# r =  r - middle  n*pi/2
    278 	subd2	trailing(r5),r3		# r =  r - trailing n*pi/2  rounded
    279 /*
    280  *  If the original argument was negative,
    281  *  negate the reduce argument and
    282  *  adjust the octant/quadrant number.
    283  */
    284 	tstw	4(ap)
    285 	bgeq	abs2
    286 	mnegf	r1,r1
    287 	mnegf	r3,r3
    288 /*	subb3	r0,$8,r0	...used for  pi/4  reduction -S.McD */
    289 	subb3	r0,$4,r0
    290 abs2:
    291 /*
    292  *  Clear all unneeded octant/quadrant bits.
    293  */
    294 /*	bicb2	$0xf8,r0	...used for  pi/4  reduction -S.McD */
    295 	bicb2	$0xfc,r0
    296 	rsb
    297 /*
    298  *						p.0
    299  */
    300 	.text
    301 	.align	2
    302 /*
    303  * Only 256 (actually 225) bits of 2/pi are needed for VAX double
    304  * precision; this was determined by enumerating all the nearest
    305  * machine integer multiples of pi/2 using continued fractions.
    306  * (8a8d3673775b7ff7 required the most bits.)		-S.McD
    307  */
    308 	.long	0
    309 	.long	0
    310 	.long	0xaef1586d
    311 	.long	0x9458eaf7
    312 	.long	0x10e4107f
    313 	.long	0xd8a5664f
    314 	.long	0x4d377036
    315 	.long	0x09d5f47d
    316 	.long	0x91054a7f
    317 	.long	0xbe60db93
    318 bits2opi:
    319 	.long	0x00000028
    320 	.long	0
    321 /*
    322  *  Note: wherever you see the word `octant', read `quadrant'.
    323  *  Currently this code is set up for  pi/2  argument reduction.
    324  *  By uncommenting/commenting the appropriate lines, it will
    325  *  also serve as a  pi/4  argument reduction code.
    326  */
    327 
    328 /*						p.1
    329  *  Trigred  preforms argument reduction
    330  *  for the trigonometric functions.  It
    331  *  takes one input argument, a D-format
    332  *  number in  r1/r0 .  The magnitude of
    333  *  the input argument must be greater
    334  *  than or equal to  1/2 .  Trigred produces
    335  *  three results:  the number of the octant
    336  *  occupied by the argument, the reduced
    337  *  argument, and an extension of the
    338  *  reduced argument.  The octant number is
    339  *  returned in  r0 .  The reduced argument
    340  *  is returned as a D-format number in
    341  *  r2/r1 .  An 8 bit extension of the
    342  *  reduced argument is returned as an
    343  *  F-format number in r3.
    344  *						p.2
    345  */
    346 trigred:
    347 /*
    348  *  Save the sign of the input argument.
    349  */
    350 	movw	r0,-(sp)
    351 /*
    352  *  Extract the exponent field.
    353  */
    354 	extzv	$7,$7,r0,r2
    355 /*
    356  *  Convert the fraction part of the input
    357  *  argument into a quadword integer.
    358  */
    359 	bicw2	$0xff80,r0
    360 	bisb2	$0x80,r0	# -S.McD
    361 	rotl	$16,r0,r0
    362 	rotl	$16,r1,r1
    363 /*
    364  *  If  r1  is negative, add  1  to  r0 .  This
    365  *  adjustment is made so that the two's
    366  *  complement multiplications done later
    367  *  will produce unsigned results.
    368  */
    369 	bgeq	posmid
    370 	incl	r0
    371 posmid:
    372 /*						p.3
    373  *
    374  *  Set  r3  to the address of the first quadword
    375  *  used to obtain the needed portion of  2/pi .
    376  *  The address is longword aligned to ensure
    377  *  efficient access.
    378  */
    379 	ashl	$-3,r2,r3
    380 	bicb2	$3,r3
    381 	mnegl	r3,r3
    382 	movab	bits2opi[r3],r3
    383 /*
    384  *  Set  r2  to the size of the shift needed to
    385  *  obtain the correct portion of  2/pi .
    386  */
    387 	bicb2	$0xe0,r2
    388 /*						p.4
    389  *
    390  *  Move the needed  128  bits of  2/pi  into
    391  *  r11 - r8 .  Adjust the numbers to allow
    392  *  for unsigned multiplication.
    393  */
    394 	ashq	r2,(r3),r10
    395 
    396 	subl2	$4,r3
    397 	ashq	r2,(r3),r9
    398 	bgeq	signoff1
    399 	incl	r11
    400 signoff1:
    401 	subl2	$4,r3
    402 	ashq	r2,(r3),r8
    403 	bgeq	signoff2
    404 	incl	r10
    405 signoff2:
    406 	subl2	$4,r3
    407 	ashq	r2,(r3),r7
    408 	bgeq	signoff3
    409 	incl	r9
    410 signoff3:
    411 /*						p.5
    412  *
    413  *  Multiply the contents of  r0/r1  by the
    414  *  slice of  2/pi  in  r11 - r8 .
    415  */
    416 	emul	r0,r8,$0,r4
    417 	emul	r0,r9,r5,r5
    418 	emul	r0,r10,r6,r6
    419 
    420 	emul	r1,r8,$0,r7
    421 	emul	r1,r9,r8,r8
    422 	emul	r1,r10,r9,r9
    423 	emul	r1,r11,r10,r10
    424 
    425 	addl2	r4,r8
    426 	adwc	r5,r9
    427 	adwc	r6,r10
    428 /*						p.6
    429  *
    430  *  If there are more than five leading zeros
    431  *  after the first two quotient bits or if there
    432  *  are more than five leading ones after the first
    433  *  two quotient bits, generate more fraction bits.
    434  *  Otherwise, branch to code to produce the result.
    435  */
    436 	bicl3	$0xc1ffffff,r10,r4
    437 	beql	more1
    438 	cmpl	$0x3e000000,r4
    439 	bneq	result
    440 more1:
    441 /*						p.7
    442  *
    443  *  generate another  32  result bits.
    444  */
    445 	subl2	$4,r3
    446 	ashq	r2,(r3),r5
    447 	bgeq	signoff4
    448 
    449 	emul	r1,r6,$0,r4
    450 	addl2	r1,r5
    451 	emul	r0,r6,r5,r5
    452 	addl2	r0,r6
    453 	brb	addbits1
    454 
    455 signoff4:
    456 	emul	r1,r6,$0,r4
    457 	emul	r0,r6,r5,r5
    458 
    459 addbits1:
    460 	addl2	r5,r7
    461 	adwc	r6,r8
    462 	adwc	$0,r9
    463 	adwc	$0,r10
    464 /*						p.8
    465  *
    466  *  Check for massive cancellation.
    467  */
    468 	bicl3	$0xc0000000,r10,r6
    469 /*	bneq	more2			-S.McD  Test was backwards */
    470 	beql	more2
    471 	cmpl	$0x3fffffff,r6
    472 	bneq	result
    473 more2:
    474 /*						p.9
    475  *
    476  *  If massive cancellation has occurred,
    477  *  generate another  24  result bits.
    478  *  Testing has shown there will always be
    479  *  enough bits after this point.
    480  */
    481 	subl2	$4,r3
    482 	ashq	r2,(r3),r5
    483 	bgeq	signoff5
    484 
    485 	emul	r0,r6,r4,r5
    486 	addl2	r0,r6
    487 	brb	addbits2
    488 
    489 signoff5:
    490 	emul	r0,r6,r4,r5
    491 
    492 addbits2:
    493 	addl2	r6,r7
    494 	adwc	$0,r8
    495 	adwc	$0,r9
    496 	adwc	$0,r10
    497 /*						p.10
    498  *
    499  *  The following code produces the reduced
    500  *  argument from the product bits contained
    501  *  in  r10 - r7 .
    502  */
    503 result:
    504 /*
    505  *  Extract the octant number from  r10 .
    506  */
    507 /*	extzv	$29,$3,r10,r0	...used for  pi/4  reduction -S.McD */
    508 	extzv	$30,$2,r10,r0
    509 /*
    510  *  Clear the octant bits in  r10 .
    511  */
    512 /*	bicl2	$0xe0000000,r10	...used for  pi/4  reduction -S.McD */
    513 	bicl2	$0xc0000000,r10
    514 /*
    515  *  Zero the sign flag.
    516  */
    517 	clrl	r5
    518 /*						p.11
    519  *
    520  *  Check to see if the fraction is greater than
    521  *  or equal to one-half.  If it is, add one
    522  *  to the octant number, set the sign flag
    523  *  on, and replace the fraction with  1 minus
    524  *  the fraction.
    525  */
    526 /*	bitl	$0x10000000,r10		...used for  pi/4  reduction -S.McD */
    527 	bitl	$0x20000000,r10
    528 	beql	small
    529 	incl	r0
    530 	incl	r5
    531 /*	subl3	r10,$0x1fffffff,r10	...used for  pi/4  reduction -S.McD */
    532 	subl3	r10,$0x3fffffff,r10
    533 	mcoml	r9,r9
    534 	mcoml	r8,r8
    535 	mcoml	r7,r7
    536 small:
    537 /*						p.12
    538  *
    539  *  Test whether the first  29  bits of the ...used for  pi/4  reduction -S.McD
    540  *  Test whether the first  30  bits of the
    541  *  fraction are zero.
    542  */
    543 	tstl	r10
    544 	beql	tiny
    545 /*
    546  *  Find the position of the first one bit in  r10 .
    547  */
    548 	cvtld	r10,r1
    549 	extzv	$7,$7,r1,r1
    550 /*
    551  *  Compute the size of the shift needed.
    552  */
    553 	subl3	r1,$32,r6
    554 /*
    555  *  Shift up the high order  64  bits of the
    556  *  product.
    557  */
    558 	ashq	r6,r9,r10
    559 	ashq	r6,r8,r9
    560 	brb	mult
    561 /*						p.13
    562  *
    563  *  Test to see if the sign bit of  r9  is on.
    564  */
    565 tiny:
    566 	tstl	r9
    567 	bgeq	tinier
    568 /*
    569  *  If it is, shift the product bits up  32  bits.
    570  */
    571 	movl	$32,r6
    572 	movq	r8,r10
    573 	tstl	r10
    574 	brb	mult
    575 /*						p.14
    576  *
    577  *  Test whether  r9  is zero.  It is probably
    578  *  impossible for both  r10  and  r9  to be
    579  *  zero, but until proven to be so, the test
    580  *  must be made.
    581  */
    582 tinier:
    583 	beql	zero
    584 /*
    585  *  Find the position of the first one bit in  r9 .
    586  */
    587 	cvtld	r9,r1
    588 	extzv	$7,$7,r1,r1
    589 /*
    590  *  Compute the size of the shift needed.
    591  */
    592 	subl3	r1,$32,r1
    593 	addl3	$32,r1,r6
    594 /*
    595  *  Shift up the high order  64  bits of the
    596  *  product.
    597  */
    598 	ashq	r1,r8,r10
    599 	ashq	r1,r7,r9
    600 	brb	mult
    601 /*						p.15
    602  *
    603  *  The following code sets the reduced
    604  *  argument to zero.
    605  */
    606 zero:
    607 	clrl	r1
    608 	clrl	r2
    609 	clrl	r3
    610 	brw	return
    611 /*						p.16
    612  *
    613  *  At this point,  r0  contains the octant number,
    614  *  r6  indicates the number of bits the fraction
    615  *  has been shifted,  r5  indicates the sign of
    616  *  the fraction,  r11/r10  contain the high order
    617  *  64  bits of the fraction, and the condition
    618  *  codes indicate where the sign bit of  r10
    619  *  is on.  The following code multiplies the
    620  *  fraction by  pi/2 .
    621  */
    622 mult:
    623 /*
    624  *  Save  r11/r10  in  r4/r1 .		-S.McD
    625  */
    626 	movl	r11,r4
    627 	movl	r10,r1
    628 /*
    629  *  If the sign bit of  r10  is on, add  1  to  r11 .
    630  */
    631 	bgeq	signoff6
    632 	incl	r11
    633 signoff6:
    634 /*						p.17
    635  *
    636  *  Move  pi/2  into  r3/r2 .
    637  */
    638 	movq	$0xc90fdaa22168c235,r2
    639 /*
    640  *  Multiply the fraction by the portion of  pi/2
    641  *  in  r2 .
    642  */
    643 	emul	r2,r10,$0,r7
    644 	emul	r2,r11,r8,r7
    645 /*
    646  *  Multiply the fraction by the portion of  pi/2
    647  *  in  r3 .
    648  */
    649 	emul	r3,r10,$0,r9
    650 	emul	r3,r11,r10,r10
    651 /*
    652  *  Add the product bits together.
    653  */
    654 	addl2	r7,r9
    655 	adwc	r8,r10
    656 	adwc	$0,r11
    657 /*
    658  *  Compensate for not sign extending  r8  above.-S.McD
    659  */
    660 	tstl	r8
    661 	bgeq	signoff6a
    662 	decl	r11
    663 signoff6a:
    664 /*
    665  *  Compensate for  r11/r10  being unsigned.	-S.McD
    666  */
    667 	addl2	r2,r10
    668 	adwc	r3,r11
    669 /*
    670  *  Compensate for  r3/r2  being unsigned.	-S.McD
    671  */
    672 	addl2	r1,r10
    673 	adwc	r4,r11
    674 /*						p.18
    675  *
    676  *  If the sign bit of  r11  is zero, shift the
    677  *  product bits up one bit and increment  r6 .
    678  */
    679 	blss	signon
    680 	incl	r6
    681 	ashq	$1,r10,r10
    682 	tstl	r9
    683 	bgeq	signoff7
    684 	incl	r10
    685 signoff7:
    686 signon:
    687 /*						p.19
    688  *
    689  *  Shift the  56  most significant product
    690  *  bits into  r9/r8 .  The sign extension
    691  *  will be handled later.
    692  */
    693 	ashq	$-8,r10,r8
    694 /*
    695  *  Convert the low order  8  bits of  r10
    696  *  into an F-format number.
    697  */
    698 	cvtbf	r10,r3
    699 /*
    700  *  If the result of the conversion was
    701  *  negative, add  1  to  r9/r8 .
    702  */
    703 	bgeq	chop
    704 	incl	r8
    705 	adwc	$0,r9
    706 /*
    707  *  If  r9  is now zero, branch to special
    708  *  code to handle that possibility.
    709  */
    710 	beql	carryout
    711 chop:
    712 /*						p.20
    713  *
    714  *  Convert the number in  r9/r8  into
    715  *  D-format number in  r2/r1 .
    716  */
    717 	rotl	$16,r8,r2
    718 	rotl	$16,r9,r1
    719 /*
    720  *  Set the exponent field to the appropriate
    721  *  value.  Note that the extra bits created by
    722  *  sign extension are now eliminated.
    723  */
    724 	subw3	r6,$131,r6
    725 	insv	r6,$7,$9,r1
    726 /*
    727  *  Set the exponent field of the F-format
    728  *  number in  r3  to the appropriate value.
    729  */
    730 	tstf	r3
    731 	beql	return
    732 /*	extzv	$7,$8,r3,r4	-S.McD */
    733 	extzv	$7,$7,r3,r4
    734 	addw2	r4,r6
    735 /*	subw2	$217,r6		-S.McD */
    736 	subw2	$64,r6
    737 	insv	r6,$7,$8,r3
    738 	brb	return
    739 /*						p.21
    740  *
    741  *  The following code generates the appropriate
    742  *  result for the unlikely possibility that
    743  *  rounding the number in  r9/r8  resulted in
    744  *  a carry out.
    745  */
    746 carryout:
    747 	clrl	r1
    748 	clrl	r2
    749 	subw3	r6,$132,r6
    750 	insv	r6,$7,$9,r1
    751 	tstf	r3
    752 	beql	return
    753 	extzv	$7,$8,r3,r4
    754 	addw2	r4,r6
    755 	subw2	$218,r6
    756 	insv	r6,$7,$8,r3
    757 /*						p.22
    758  *
    759  *  The following code makes an needed
    760  *  adjustments to the signs of the
    761  *  results or to the octant number, and
    762  *  then returns.
    763  */
    764 return:
    765 /*
    766  *  Test if the fraction was greater than or
    767  *  equal to  1/2 .  If so, negate the reduced
    768  *  argument.
    769  */
    770 	blbc	r5,signoff8
    771 	mnegf	r1,r1
    772 	mnegf	r3,r3
    773 signoff8:
    774 /*						p.23
    775  *
    776  *  If the original argument was negative,
    777  *  negate the reduce argument and
    778  *  adjust the octant number.
    779  */
    780 	tstw	(sp)+
    781 	bgeq	signoff9
    782 	mnegf	r1,r1
    783 	mnegf	r3,r3
    784 /*	subb3	r0,$8,r0	...used for  pi/4  reduction -S.McD */
    785 	subb3	r0,$4,r0
    786 signoff9:
    787 /*
    788  *  Clear all unneeded octant bits.
    789  *
    790  *	bicb2	$0xf8,r0	...used for  pi/4  reduction -S.McD */
    791 	bicb2	$0xfc,r0
    792 /*
    793  *  Return.
    794  */
    795 	rsb
    796