Home | History | Annotate | Line # | Download | only in vax
n_argred.S revision 1.4.8.1
      1 /*	$NetBSD: n_argred.S,v 1.4.8.1 2000/08/14 21:24:15 ragge Exp $	*/
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)argred.s	8.1 (Berkeley) 6/4/93
     35  */
     36 
     37 /*
     38  *  libm_argred implements Bob Corbett's argument reduction and
     39  *  libm_sincos implements Peter Tang's double precision sin/cos.
     40  *
     41  *  Note: The two entry points libm_argred and libm_sincos are meant
     42  *        to be used only by _sin, _cos and _tan.
     43  *
     44  * method: true range reduction to [-pi/4,pi/4], P. Tang  &  B. Corbett
     45  * S. McDonald, April 4,  1985
     46  */
     47 #include <machine/asm.h>
     48 	.text
     49 
     50 ENTRY(_libm_argred, 0)
     51 /*
     52  *  Compare the argument with the largest possible that can
     53  *  be reduced by table lookup.  r3 := |x|  will be used in  table_lookup .
     54  */
     55 	movd	r0,r3
     56 	bgeq	abs1
     57 	mnegd	r3,r3
     58 abs1:
     59 	cmpd	r3,$0d+4.55530934770520019583e+01
     60 	blss	small_arg
     61 	jsb	trigred
     62 	ret
     63 small_arg:
     64 	jsb	table_lookup
     65 	ret
     66 /*
     67  *  At this point,
     68  *	   r0  contains the quadrant number, 0, 1, 2, or 3;
     69  *	r2/r1  contains the reduced argument as a D-format number;
     70  *  	   r3  contains a F-format extension to the reduced argument;
     71  *          r4  contains a  0 or 1  corresponding to a  sin or cos  entry.
     72  */
     73 ENTRY(_libm_sincos, 0)
     74 /*
     75  *  Compensate for a cosine entry by adding one to the quadrant number.
     76  */
     77 	addl2	r4,r0
     78 /*
     79  *  Polyd clobbers  r5-r0 ;  save  X  in  r7/r6 .
     80  *  This can be avoided by rewriting  trigred .
     81  */
     82 	movd	r1,r6
     83 /*
     84  *  Likewise, save  alpha  in  r8 .
     85  *  This can be avoided by rewriting  trigred .
     86  */
     87 	movf	r3,r8
     88 /*
     89  *  Odd or even quadrant?  cosine if odd, sine otherwise.
     90  *  Save  floor(quadrant/2) in  r9  ; it determines the final sign.
     91  */
     92 	rotl	$-1,r0,r9
     93 	blss	cosine
     94 sine:
     95 	muld2	r1,r1		# Xsq = X * X
     96 	cmpw	$0x2480,r1	# [zl] Xsq > 2^-56?
     97 	blss	1f		# [zl] yes, go ahead and do polyd
     98 	clrq	r1		# [zl] work around 11/780 FPA polyd bug
     99 1:
    100 	polyd	r1,$7,sin_coef	# Q = P(Xsq) , of deg 7
    101 	mulf3	$0f3.0,r8,r4	# beta = 3 * alpha
    102 	mulf2	r0,r4		# beta = Q * beta
    103 	addf2	r8,r4		# beta = alpha + beta
    104 	muld2	r6,r0		# S(X) = X * Q
    105 /*	cvtfd	r4,r4		... r5 = 0 after a polyd. */
    106 	addd2	r4,r0		# S(X) = beta + S(X)
    107 	addd2	r6,r0		# S(X) = X + S(X)
    108 	brb	done
    109 cosine:
    110 	muld2	r6,r6		# Xsq = X * X
    111 	beql	zero_arg
    112 	mulf2	r1,r8		# beta = X * alpha
    113 	polyd	r6,$7,cos_coef	/* Q = P'(Xsq) , of deg 7 */
    114 	subd3	r0,r8,r0	# beta = beta - Q
    115 	subw2	$0x80,r6	# Xsq = Xsq / 2
    116 	addd2	r0,r6		# Xsq = Xsq + beta
    117 zero_arg:
    118 	subd3	r6,$0d1.0,r0	# C(X) = 1 - Xsq
    119 done:
    120 	blbc	r9,even
    121 	mnegd	r0,r0
    122 even:
    123 	ret
    124 
    125 .data
    126 .align	2
    127 
    128 sin_coef:
    129 	.double	0d-7.53080332264191085773e-13	# s7 = 2^-29 -1.a7f2504ffc49f8..
    130 	.double	0d+1.60573519267703489121e-10	# s6 = 2^-21  1.611adaede473c8..
    131 	.double	0d-2.50520965150706067211e-08	# s5 = 2^-1a -1.ae644921ed8382..
    132 	.double	0d+2.75573191800593885716e-06	# s4 = 2^-13  1.71de3a4b884278..
    133 	.double	0d-1.98412698411850507950e-04	# s3 = 2^-0d -1.a01a01a0125e7d..
    134 	.double	0d+8.33333333333325688985e-03	# s2 = 2^-07  1.11111111110e50
    135 	.double	0d-1.66666666666666664354e-01	# s1 = 2^-03 -1.55555555555554
    136 	.double	0d+0.00000000000000000000e+00	# s0 = 0
    137 
    138 cos_coef:
    139 	.double	0d-1.13006966202629430300e-11	# s7 = 2^-25 -1.8D9BA04D1374BE..
    140 	.double	0d+2.08746646574796004700e-09	# s6 = 2^-1D  1.1EE632650350BA..
    141 	.double	0d-2.75573073031284417300e-07	# s5 = 2^-16 -1.27E4F31411719E..
    142 	.double	0d+2.48015872682668025200e-05	# s4 = 2^-10  1.A01A0196B902E8..
    143 	.double	0d-1.38888888888464709200e-03	# s3 = 2^-0A -1.6C16C16C11FACE..
    144 	.double	0d+4.16666666666664761400e-02	# s2 = 2^-05  1.5555555555539E
    145 	.double	0d+0.00000000000000000000e+00	# s1 = 0
    146 	.double	0d+0.00000000000000000000e+00	# s0 = 0
    147 
    148 /*
    149  *  Multiples of  pi/2  expressed as the sum of three doubles,
    150  *
    151  *  trailing:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    152  *			trailing[n] ,
    153  *
    154  *  middle:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    155  *			middle[n]   ,
    156  *
    157  *  leading:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    158  *			leading[n]  ,
    159  *
    160  *	where
    161  *		leading[n]  := (n * pi/2)  rounded,
    162  *		middle[n]   := (n * pi/2  -  leading[n])  rounded,
    163  *		trailing[n] := (( n * pi/2 - leading[n]) - middle[n])  rounded .
    164  */
    165 trailing:
    166 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  trailing
    167 	.double	0d+4.33590506506189049611e-35	#  1 * pi/2  trailing
    168 	.double	0d+8.67181013012378099223e-35	#  2 * pi/2  trailing
    169 	.double	0d+1.30077151951856714215e-34	#  3 * pi/2  trailing
    170 	.double	0d+1.73436202602475619845e-34	#  4 * pi/2  trailing
    171 	.double	0d-1.68390735624352669192e-34	#  5 * pi/2  trailing
    172 	.double	0d+2.60154303903713428430e-34	#  6 * pi/2  trailing
    173 	.double	0d-8.16726343231148352150e-35	#  7 * pi/2  trailing
    174 	.double	0d+3.46872405204951239689e-34	#  8 * pi/2  trailing
    175 	.double	0d+3.90231455855570147991e-34	#  9 * pi/2  trailing
    176 	.double	0d-3.36781471248705338384e-34	# 10 * pi/2  trailing
    177 	.double	0d-1.06379439835298071785e-33	# 11 * pi/2  trailing
    178 	.double	0d+5.20308607807426856861e-34	# 12 * pi/2  trailing
    179 	.double	0d+5.63667658458045770509e-34	# 13 * pi/2  trailing
    180 	.double	0d-1.63345268646229670430e-34	# 14 * pi/2  trailing
    181 	.double	0d-1.19986217995610764801e-34	# 15 * pi/2  trailing
    182 	.double	0d+6.93744810409902479378e-34	# 16 * pi/2  trailing
    183 	.double	0d-8.03640094449267300110e-34	# 17 * pi/2  trailing
    184 	.double	0d+7.80462911711140295982e-34	# 18 * pi/2  trailing
    185 	.double	0d-7.16921993148029483506e-34	# 19 * pi/2  trailing
    186 	.double	0d-6.73562942497410676769e-34	# 20 * pi/2  trailing
    187 	.double	0d-6.30203891846791677593e-34	# 21 * pi/2  trailing
    188 	.double	0d-2.12758879670596143570e-33	# 22 * pi/2  trailing
    189 	.double	0d+2.53800212047402350390e-33	# 23 * pi/2  trailing
    190 	.double	0d+1.04061721561485371372e-33	# 24 * pi/2  trailing
    191 	.double	0d+6.11729905311472319056e-32	# 25 * pi/2  trailing
    192 	.double	0d+1.12733531691609154102e-33	# 26 * pi/2  trailing
    193 	.double	0d-3.70049587943078297272e-34	# 27 * pi/2  trailing
    194 	.double	0d-3.26690537292459340860e-34	# 28 * pi/2  trailing
    195 	.double	0d-1.14812616507957271361e-34	# 29 * pi/2  trailing
    196 
    197 middle:
    198 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  middle
    199 	.double	0d+5.72118872610983179676e-18	#  1 * pi/2  middle
    200 	.double	0d+1.14423774522196635935e-17	#  2 * pi/2  middle
    201 	.double	0d-3.83475850529283316309e-17	#  3 * pi/2  middle
    202 	.double	0d+2.28847549044393271871e-17	#  4 * pi/2  middle
    203 	.double	0d-2.69052076007086676522e-17	#  5 * pi/2  middle
    204 	.double	0d-7.66951701058566632618e-17	#  6 * pi/2  middle
    205 	.double	0d-1.54628301484890040587e-17	#  7 * pi/2  middle
    206 	.double	0d+4.57695098088786543741e-17	#  8 * pi/2  middle
    207 	.double	0d+1.07001849766246313192e-16	#  9 * pi/2  middle
    208 	.double	0d-5.38104152014173353044e-17	# 10 * pi/2  middle
    209 	.double	0d-2.14622680169080983801e-16	# 11 * pi/2  middle
    210 	.double	0d-1.53390340211713326524e-16	# 12 * pi/2  middle
    211 	.double	0d-9.21580002543456677056e-17	# 13 * pi/2  middle
    212 	.double	0d-3.09256602969780081173e-17	# 14 * pi/2  middle
    213 	.double	0d+3.03066796603896507006e-17	# 15 * pi/2  middle
    214 	.double	0d+9.15390196177573087482e-17	# 16 * pi/2  middle
    215 	.double	0d+1.52771359575124969107e-16	# 17 * pi/2  middle
    216 	.double	0d+2.14003699532492626384e-16	# 18 * pi/2  middle
    217 	.double	0d-1.68853170360202329427e-16	# 19 * pi/2  middle
    218 	.double	0d-1.07620830402834670609e-16	# 20 * pi/2  middle
    219 	.double	0d+3.97700719404595604379e-16	# 21 * pi/2  middle
    220 	.double	0d-4.29245360338161967602e-16	# 22 * pi/2  middle
    221 	.double	0d-3.68013020380794313406e-16	# 23 * pi/2  middle
    222 	.double	0d-3.06780680423426653047e-16	# 24 * pi/2  middle
    223 	.double	0d-2.45548340466059054318e-16	# 25 * pi/2  middle
    224 	.double	0d-1.84316000508691335411e-16	# 26 * pi/2  middle
    225 	.double	0d-1.23083660551323675053e-16	# 27 * pi/2  middle
    226 	.double	0d-6.18513205939560162346e-17	# 28 * pi/2  middle
    227 	.double	0d-6.18980636588357585202e-19	# 29 * pi/2  middle
    228 
    229 leading:
    230 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  leading
    231 	.double	0d+1.57079632679489661351e+00	#  1 * pi/2  leading
    232 	.double	0d+3.14159265358979322702e+00	#  2 * pi/2  leading
    233 	.double	0d+4.71238898038468989604e+00	#  3 * pi/2  leading
    234 	.double	0d+6.28318530717958645404e+00	#  4 * pi/2  leading
    235 	.double	0d+7.85398163397448312306e+00	#  5 * pi/2  leading
    236 	.double	0d+9.42477796076937979208e+00	#  6 * pi/2  leading
    237 	.double	0d+1.09955742875642763501e+01	#  7 * pi/2  leading
    238 	.double	0d+1.25663706143591729081e+01	#  8 * pi/2  leading
    239 	.double	0d+1.41371669411540694661e+01	#  9 * pi/2  leading
    240 	.double	0d+1.57079632679489662461e+01	# 10 * pi/2  leading
    241 	.double	0d+1.72787595947438630262e+01	# 11 * pi/2  leading
    242 	.double	0d+1.88495559215387595842e+01	# 12 * pi/2  leading
    243 	.double	0d+2.04203522483336561422e+01	# 13 * pi/2  leading
    244 	.double	0d+2.19911485751285527002e+01	# 14 * pi/2  leading
    245 	.double	0d+2.35619449019234492582e+01	# 15 * pi/2  leading
    246 	.double	0d+2.51327412287183458162e+01	# 16 * pi/2  leading
    247 	.double	0d+2.67035375555132423742e+01	# 17 * pi/2  leading
    248 	.double	0d+2.82743338823081389322e+01	# 18 * pi/2  leading
    249 	.double	0d+2.98451302091030359342e+01	# 19 * pi/2  leading
    250 	.double	0d+3.14159265358979324922e+01	# 20 * pi/2  leading
    251 	.double	0d+3.29867228626928286062e+01	# 21 * pi/2  leading
    252 	.double	0d+3.45575191894877260523e+01	# 22 * pi/2  leading
    253 	.double	0d+3.61283155162826226103e+01	# 23 * pi/2  leading
    254 	.double	0d+3.76991118430775191683e+01	# 24 * pi/2  leading
    255 	.double	0d+3.92699081698724157263e+01	# 25 * pi/2  leading
    256 	.double	0d+4.08407044966673122843e+01	# 26 * pi/2  leading
    257 	.double	0d+4.24115008234622088423e+01	# 27 * pi/2  leading
    258 	.double	0d+4.39822971502571054003e+01	# 28 * pi/2  leading
    259 	.double	0d+4.55530934770520019583e+01	# 29 * pi/2  leading
    260 
    261 twoOverPi:
    262 	.double	0d+6.36619772367581343076e-01
    263 	.text
    264 	.align	1
    265 
    266 table_lookup:
    267 	muld3	r3,twoOverPi,r0
    268 	cvtrdl	r0,r0			# n = nearest int to ((2/pi)*|x|) rnded
    269 	mull3	$8,r0,r5
    270 	subd2	leading(r5),r3		# p = (|x| - leading n*pi/2) exactly
    271 	subd3	middle(r5),r3,r1	# q = (p - middle  n*pi/2) rounded
    272 	subd2	r1,r3			# r = (p - q)
    273 	subd2	middle(r5),r3		# r =  r - middle  n*pi/2
    274 	subd2	trailing(r5),r3		# r =  r - trailing n*pi/2  rounded
    275 /*
    276  *  If the original argument was negative,
    277  *  negate the reduce argument and
    278  *  adjust the octant/quadrant number.
    279  */
    280 	tstw	4(ap)
    281 	bgeq	abs2
    282 	mnegf	r1,r1
    283 	mnegf	r3,r3
    284 /*	subb3	r0,$8,r0	...used for  pi/4  reduction -S.McD */
    285 	subb3	r0,$4,r0
    286 abs2:
    287 /*
    288  *  Clear all unneeded octant/quadrant bits.
    289  */
    290 /*	bicb2	$0xf8,r0	...used for  pi/4  reduction -S.McD */
    291 	bicb2	$0xfc,r0
    292 	rsb
    293 /*
    294  *						p.0
    295  */
    296 	.text
    297 	.align	2
    298 /*
    299  * Only 256 (actually 225) bits of 2/pi are needed for VAX double
    300  * precision; this was determined by enumerating all the nearest
    301  * machine integer multiples of pi/2 using continued fractions.
    302  * (8a8d3673775b7ff7 required the most bits.)		-S.McD
    303  */
    304 	.long	0
    305 	.long	0
    306 	.long	0xaef1586d
    307 	.long	0x9458eaf7
    308 	.long	0x10e4107f
    309 	.long	0xd8a5664f
    310 	.long	0x4d377036
    311 	.long	0x09d5f47d
    312 	.long	0x91054a7f
    313 	.long	0xbe60db93
    314 bits2opi:
    315 	.long	0x00000028
    316 	.long	0
    317 /*
    318  *  Note: wherever you see the word `octant', read `quadrant'.
    319  *  Currently this code is set up for  pi/2  argument reduction.
    320  *  By uncommenting/commenting the appropriate lines, it will
    321  *  also serve as a  pi/4  argument reduction code.
    322  */
    323 
    324 /*						p.1
    325  *  Trigred  preforms argument reduction
    326  *  for the trigonometric functions.  It
    327  *  takes one input argument, a D-format
    328  *  number in  r1/r0 .  The magnitude of
    329  *  the input argument must be greater
    330  *  than or equal to  1/2 .  Trigred produces
    331  *  three results:  the number of the octant
    332  *  occupied by the argument, the reduced
    333  *  argument, and an extension of the
    334  *  reduced argument.  The octant number is
    335  *  returned in  r0 .  The reduced argument
    336  *  is returned as a D-format number in
    337  *  r2/r1 .  An 8 bit extension of the
    338  *  reduced argument is returned as an
    339  *  F-format number in r3.
    340  *						p.2
    341  */
    342 trigred:
    343 /*
    344  *  Save the sign of the input argument.
    345  */
    346 	movw	r0,-(sp)
    347 /*
    348  *  Extract the exponent field.
    349  */
    350 	extzv	$7,$7,r0,r2
    351 /*
    352  *  Convert the fraction part of the input
    353  *  argument into a quadword integer.
    354  */
    355 	bicw2	$0xff80,r0
    356 	bisb2	$0x80,r0	# -S.McD
    357 	rotl	$16,r0,r0
    358 	rotl	$16,r1,r1
    359 /*
    360  *  If  r1  is negative, add  1  to  r0 .  This
    361  *  adjustment is made so that the two's
    362  *  complement multiplications done later
    363  *  will produce unsigned results.
    364  */
    365 	bgeq	posmid
    366 	incl	r0
    367 posmid:
    368 /*						p.3
    369  *
    370  *  Set  r3  to the address of the first quadword
    371  *  used to obtain the needed portion of  2/pi .
    372  *  The address is longword aligned to ensure
    373  *  efficient access.
    374  */
    375 	ashl	$-3,r2,r3
    376 	bicb2	$3,r3
    377 	mnegl	r3,r3
    378 	movab	bits2opi[r3],r3
    379 /*
    380  *  Set  r2  to the size of the shift needed to
    381  *  obtain the correct portion of  2/pi .
    382  */
    383 	bicb2	$0xe0,r2
    384 /*						p.4
    385  *
    386  *  Move the needed  128  bits of  2/pi  into
    387  *  r11 - r8 .  Adjust the numbers to allow
    388  *  for unsigned multiplication.
    389  */
    390 	ashq	r2,(r3),r10
    391 
    392 	subl2	$4,r3
    393 	ashq	r2,(r3),r9
    394 	bgeq	signoff1
    395 	incl	r11
    396 signoff1:
    397 	subl2	$4,r3
    398 	ashq	r2,(r3),r8
    399 	bgeq	signoff2
    400 	incl	r10
    401 signoff2:
    402 	subl2	$4,r3
    403 	ashq	r2,(r3),r7
    404 	bgeq	signoff3
    405 	incl	r9
    406 signoff3:
    407 /*						p.5
    408  *
    409  *  Multiply the contents of  r0/r1  by the
    410  *  slice of  2/pi  in  r11 - r8 .
    411  */
    412 	emul	r0,r8,$0,r4
    413 	emul	r0,r9,r5,r5
    414 	emul	r0,r10,r6,r6
    415 
    416 	emul	r1,r8,$0,r7
    417 	emul	r1,r9,r8,r8
    418 	emul	r1,r10,r9,r9
    419 	emul	r1,r11,r10,r10
    420 
    421 	addl2	r4,r8
    422 	adwc	r5,r9
    423 	adwc	r6,r10
    424 /*						p.6
    425  *
    426  *  If there are more than five leading zeros
    427  *  after the first two quotient bits or if there
    428  *  are more than five leading ones after the first
    429  *  two quotient bits, generate more fraction bits.
    430  *  Otherwise, branch to code to produce the result.
    431  */
    432 	bicl3	$0xc1ffffff,r10,r4
    433 	beql	more1
    434 	cmpl	$0x3e000000,r4
    435 	bneq	result
    436 more1:
    437 /*						p.7
    438  *
    439  *  generate another  32  result bits.
    440  */
    441 	subl2	$4,r3
    442 	ashq	r2,(r3),r5
    443 	bgeq	signoff4
    444 
    445 	emul	r1,r6,$0,r4
    446 	addl2	r1,r5
    447 	emul	r0,r6,r5,r5
    448 	addl2	r0,r6
    449 	brb	addbits1
    450 
    451 signoff4:
    452 	emul	r1,r6,$0,r4
    453 	emul	r0,r6,r5,r5
    454 
    455 addbits1:
    456 	addl2	r5,r7
    457 	adwc	r6,r8
    458 	adwc	$0,r9
    459 	adwc	$0,r10
    460 /*						p.8
    461  *
    462  *  Check for massive cancellation.
    463  */
    464 	bicl3	$0xc0000000,r10,r6
    465 /*	bneq	more2			-S.McD  Test was backwards */
    466 	beql	more2
    467 	cmpl	$0x3fffffff,r6
    468 	bneq	result
    469 more2:
    470 /*						p.9
    471  *
    472  *  If massive cancellation has occurred,
    473  *  generate another  24  result bits.
    474  *  Testing has shown there will always be
    475  *  enough bits after this point.
    476  */
    477 	subl2	$4,r3
    478 	ashq	r2,(r3),r5
    479 	bgeq	signoff5
    480 
    481 	emul	r0,r6,r4,r5
    482 	addl2	r0,r6
    483 	brb	addbits2
    484 
    485 signoff5:
    486 	emul	r0,r6,r4,r5
    487 
    488 addbits2:
    489 	addl2	r6,r7
    490 	adwc	$0,r8
    491 	adwc	$0,r9
    492 	adwc	$0,r10
    493 /*						p.10
    494  *
    495  *  The following code produces the reduced
    496  *  argument from the product bits contained
    497  *  in  r10 - r7 .
    498  */
    499 result:
    500 /*
    501  *  Extract the octant number from  r10 .
    502  */
    503 /*	extzv	$29,$3,r10,r0	...used for  pi/4  reduction -S.McD */
    504 	extzv	$30,$2,r10,r0
    505 /*
    506  *  Clear the octant bits in  r10 .
    507  */
    508 /*	bicl2	$0xe0000000,r10	...used for  pi/4  reduction -S.McD */
    509 	bicl2	$0xc0000000,r10
    510 /*
    511  *  Zero the sign flag.
    512  */
    513 	clrl	r5
    514 /*						p.11
    515  *
    516  *  Check to see if the fraction is greater than
    517  *  or equal to one-half.  If it is, add one
    518  *  to the octant number, set the sign flag
    519  *  on, and replace the fraction with  1 minus
    520  *  the fraction.
    521  */
    522 /*	bitl	$0x10000000,r10		...used for  pi/4  reduction -S.McD */
    523 	bitl	$0x20000000,r10
    524 	beql	small
    525 	incl	r0
    526 	incl	r5
    527 /*	subl3	r10,$0x1fffffff,r10	...used for  pi/4  reduction -S.McD */
    528 	subl3	r10,$0x3fffffff,r10
    529 	mcoml	r9,r9
    530 	mcoml	r8,r8
    531 	mcoml	r7,r7
    532 small:
    533 /*						p.12
    534  *
    535  *  Test whether the first  29  bits of the ...used for  pi/4  reduction -S.McD
    536  *  Test whether the first  30  bits of the
    537  *  fraction are zero.
    538  */
    539 	tstl	r10
    540 	beql	tiny
    541 /*
    542  *  Find the position of the first one bit in  r10 .
    543  */
    544 	cvtld	r10,r1
    545 	extzv	$7,$7,r1,r1
    546 /*
    547  *  Compute the size of the shift needed.
    548  */
    549 	subl3	r1,$32,r6
    550 /*
    551  *  Shift up the high order  64  bits of the
    552  *  product.
    553  */
    554 	ashq	r6,r9,r10
    555 	ashq	r6,r8,r9
    556 	brb	mult
    557 /*						p.13
    558  *
    559  *  Test to see if the sign bit of  r9  is on.
    560  */
    561 tiny:
    562 	tstl	r9
    563 	bgeq	tinier
    564 /*
    565  *  If it is, shift the product bits up  32  bits.
    566  */
    567 	movl	$32,r6
    568 	movq	r8,r10
    569 	tstl	r10
    570 	brb	mult
    571 /*						p.14
    572  *
    573  *  Test whether  r9  is zero.  It is probably
    574  *  impossible for both  r10  and  r9  to be
    575  *  zero, but until proven to be so, the test
    576  *  must be made.
    577  */
    578 tinier:
    579 	beql	zero
    580 /*
    581  *  Find the position of the first one bit in  r9 .
    582  */
    583 	cvtld	r9,r1
    584 	extzv	$7,$7,r1,r1
    585 /*
    586  *  Compute the size of the shift needed.
    587  */
    588 	subl3	r1,$32,r1
    589 	addl3	$32,r1,r6
    590 /*
    591  *  Shift up the high order  64  bits of the
    592  *  product.
    593  */
    594 	ashq	r1,r8,r10
    595 	ashq	r1,r7,r9
    596 	brb	mult
    597 /*						p.15
    598  *
    599  *  The following code sets the reduced
    600  *  argument to zero.
    601  */
    602 zero:
    603 	clrl	r1
    604 	clrl	r2
    605 	clrl	r3
    606 	brw	return
    607 /*						p.16
    608  *
    609  *  At this point,  r0  contains the octant number,
    610  *  r6  indicates the number of bits the fraction
    611  *  has been shifted,  r5  indicates the sign of
    612  *  the fraction,  r11/r10  contain the high order
    613  *  64  bits of the fraction, and the condition
    614  *  codes indicate where the sign bit of  r10
    615  *  is on.  The following code multiplies the
    616  *  fraction by  pi/2 .
    617  */
    618 mult:
    619 /*
    620  *  Save  r11/r10  in  r4/r1 .		-S.McD
    621  */
    622 	movl	r11,r4
    623 	movl	r10,r1
    624 /*
    625  *  If the sign bit of  r10  is on, add  1  to  r11 .
    626  */
    627 	bgeq	signoff6
    628 	incl	r11
    629 signoff6:
    630 /*						p.17
    631  *
    632  *  Move  pi/2  into  r3/r2 .
    633  */
    634 	movq	$0xc90fdaa22168c235,r2
    635 /*
    636  *  Multiply the fraction by the portion of  pi/2
    637  *  in  r2 .
    638  */
    639 	emul	r2,r10,$0,r7
    640 	emul	r2,r11,r8,r7
    641 /*
    642  *  Multiply the fraction by the portion of  pi/2
    643  *  in  r3 .
    644  */
    645 	emul	r3,r10,$0,r9
    646 	emul	r3,r11,r10,r10
    647 /*
    648  *  Add the product bits together.
    649  */
    650 	addl2	r7,r9
    651 	adwc	r8,r10
    652 	adwc	$0,r11
    653 /*
    654  *  Compensate for not sign extending  r8  above.-S.McD
    655  */
    656 	tstl	r8
    657 	bgeq	signoff6a
    658 	decl	r11
    659 signoff6a:
    660 /*
    661  *  Compensate for  r11/r10  being unsigned.	-S.McD
    662  */
    663 	addl2	r2,r10
    664 	adwc	r3,r11
    665 /*
    666  *  Compensate for  r3/r2  being unsigned.	-S.McD
    667  */
    668 	addl2	r1,r10
    669 	adwc	r4,r11
    670 /*						p.18
    671  *
    672  *  If the sign bit of  r11  is zero, shift the
    673  *  product bits up one bit and increment  r6 .
    674  */
    675 	blss	signon
    676 	incl	r6
    677 	ashq	$1,r10,r10
    678 	tstl	r9
    679 	bgeq	signoff7
    680 	incl	r10
    681 signoff7:
    682 signon:
    683 /*						p.19
    684  *
    685  *  Shift the  56  most significant product
    686  *  bits into  r9/r8 .  The sign extension
    687  *  will be handled later.
    688  */
    689 	ashq	$-8,r10,r8
    690 /*
    691  *  Convert the low order  8  bits of  r10
    692  *  into an F-format number.
    693  */
    694 	cvtbf	r10,r3
    695 /*
    696  *  If the result of the conversion was
    697  *  negative, add  1  to  r9/r8 .
    698  */
    699 	bgeq	chop
    700 	incl	r8
    701 	adwc	$0,r9
    702 /*
    703  *  If  r9  is now zero, branch to special
    704  *  code to handle that possibility.
    705  */
    706 	beql	carryout
    707 chop:
    708 /*						p.20
    709  *
    710  *  Convert the number in  r9/r8  into
    711  *  D-format number in  r2/r1 .
    712  */
    713 	rotl	$16,r8,r2
    714 	rotl	$16,r9,r1
    715 /*
    716  *  Set the exponent field to the appropriate
    717  *  value.  Note that the extra bits created by
    718  *  sign extension are now eliminated.
    719  */
    720 	subw3	r6,$131,r6
    721 	insv	r6,$7,$9,r1
    722 /*
    723  *  Set the exponent field of the F-format
    724  *  number in  r3  to the appropriate value.
    725  */
    726 	tstf	r3
    727 	beql	return
    728 /*	extzv	$7,$8,r3,r4	-S.McD */
    729 	extzv	$7,$7,r3,r4
    730 	addw2	r4,r6
    731 /*	subw2	$217,r6		-S.McD */
    732 	subw2	$64,r6
    733 	insv	r6,$7,$8,r3
    734 	brb	return
    735 /*						p.21
    736  *
    737  *  The following code generates the appropriate
    738  *  result for the unlikely possibility that
    739  *  rounding the number in  r9/r8  resulted in
    740  *  a carry out.
    741  */
    742 carryout:
    743 	clrl	r1
    744 	clrl	r2
    745 	subw3	r6,$132,r6
    746 	insv	r6,$7,$9,r1
    747 	tstf	r3
    748 	beql	return
    749 	extzv	$7,$8,r3,r4
    750 	addw2	r4,r6
    751 	subw2	$218,r6
    752 	insv	r6,$7,$8,r3
    753 /*						p.22
    754  *
    755  *  The following code makes an needed
    756  *  adjustments to the signs of the
    757  *  results or to the octant number, and
    758  *  then returns.
    759  */
    760 return:
    761 /*
    762  *  Test if the fraction was greater than or
    763  *  equal to  1/2 .  If so, negate the reduced
    764  *  argument.
    765  */
    766 	blbc	r5,signoff8
    767 	mnegf	r1,r1
    768 	mnegf	r3,r3
    769 signoff8:
    770 /*						p.23
    771  *
    772  *  If the original argument was negative,
    773  *  negate the reduce argument and
    774  *  adjust the octant number.
    775  */
    776 	tstw	(sp)+
    777 	bgeq	signoff9
    778 	mnegf	r1,r1
    779 	mnegf	r3,r3
    780 /*	subb3	r0,$8,r0	...used for  pi/4  reduction -S.McD */
    781 	subb3	r0,$4,r0
    782 signoff9:
    783 /*
    784  *  Clear all unneeded octant bits.
    785  *
    786  *	bicb2	$0xf8,r0	...used for  pi/4  reduction -S.McD */
    787 	bicb2	$0xfc,r0
    788 /*
    789  *  Return.
    790  */
    791 	rsb
    792