n_argred.S revision 1.4.8.1 1 /* $NetBSD: n_argred.S,v 1.4.8.1 2000/08/14 21:24:15 ragge Exp $ */
2 /*
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)argred.s 8.1 (Berkeley) 6/4/93
35 */
36
37 /*
38 * libm_argred implements Bob Corbett's argument reduction and
39 * libm_sincos implements Peter Tang's double precision sin/cos.
40 *
41 * Note: The two entry points libm_argred and libm_sincos are meant
42 * to be used only by _sin, _cos and _tan.
43 *
44 * method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett
45 * S. McDonald, April 4, 1985
46 */
47 #include <machine/asm.h>
48 .text
49
50 ENTRY(_libm_argred, 0)
51 /*
52 * Compare the argument with the largest possible that can
53 * be reduced by table lookup. r3 := |x| will be used in table_lookup .
54 */
55 movd r0,r3
56 bgeq abs1
57 mnegd r3,r3
58 abs1:
59 cmpd r3,$0d+4.55530934770520019583e+01
60 blss small_arg
61 jsb trigred
62 ret
63 small_arg:
64 jsb table_lookup
65 ret
66 /*
67 * At this point,
68 * r0 contains the quadrant number, 0, 1, 2, or 3;
69 * r2/r1 contains the reduced argument as a D-format number;
70 * r3 contains a F-format extension to the reduced argument;
71 * r4 contains a 0 or 1 corresponding to a sin or cos entry.
72 */
73 ENTRY(_libm_sincos, 0)
74 /*
75 * Compensate for a cosine entry by adding one to the quadrant number.
76 */
77 addl2 r4,r0
78 /*
79 * Polyd clobbers r5-r0 ; save X in r7/r6 .
80 * This can be avoided by rewriting trigred .
81 */
82 movd r1,r6
83 /*
84 * Likewise, save alpha in r8 .
85 * This can be avoided by rewriting trigred .
86 */
87 movf r3,r8
88 /*
89 * Odd or even quadrant? cosine if odd, sine otherwise.
90 * Save floor(quadrant/2) in r9 ; it determines the final sign.
91 */
92 rotl $-1,r0,r9
93 blss cosine
94 sine:
95 muld2 r1,r1 # Xsq = X * X
96 cmpw $0x2480,r1 # [zl] Xsq > 2^-56?
97 blss 1f # [zl] yes, go ahead and do polyd
98 clrq r1 # [zl] work around 11/780 FPA polyd bug
99 1:
100 polyd r1,$7,sin_coef # Q = P(Xsq) , of deg 7
101 mulf3 $0f3.0,r8,r4 # beta = 3 * alpha
102 mulf2 r0,r4 # beta = Q * beta
103 addf2 r8,r4 # beta = alpha + beta
104 muld2 r6,r0 # S(X) = X * Q
105 /* cvtfd r4,r4 ... r5 = 0 after a polyd. */
106 addd2 r4,r0 # S(X) = beta + S(X)
107 addd2 r6,r0 # S(X) = X + S(X)
108 brb done
109 cosine:
110 muld2 r6,r6 # Xsq = X * X
111 beql zero_arg
112 mulf2 r1,r8 # beta = X * alpha
113 polyd r6,$7,cos_coef /* Q = P'(Xsq) , of deg 7 */
114 subd3 r0,r8,r0 # beta = beta - Q
115 subw2 $0x80,r6 # Xsq = Xsq / 2
116 addd2 r0,r6 # Xsq = Xsq + beta
117 zero_arg:
118 subd3 r6,$0d1.0,r0 # C(X) = 1 - Xsq
119 done:
120 blbc r9,even
121 mnegd r0,r0
122 even:
123 ret
124
125 .data
126 .align 2
127
128 sin_coef:
129 .double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8..
130 .double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8..
131 .double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382..
132 .double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278..
133 .double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d..
134 .double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50
135 .double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554
136 .double 0d+0.00000000000000000000e+00 # s0 = 0
137
138 cos_coef:
139 .double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE..
140 .double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA..
141 .double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E..
142 .double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8..
143 .double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE..
144 .double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E
145 .double 0d+0.00000000000000000000e+00 # s1 = 0
146 .double 0d+0.00000000000000000000e+00 # s0 = 0
147
148 /*
149 * Multiples of pi/2 expressed as the sum of three doubles,
150 *
151 * trailing: n * pi/2 , n = 0, 1, 2, ..., 29
152 * trailing[n] ,
153 *
154 * middle: n * pi/2 , n = 0, 1, 2, ..., 29
155 * middle[n] ,
156 *
157 * leading: n * pi/2 , n = 0, 1, 2, ..., 29
158 * leading[n] ,
159 *
160 * where
161 * leading[n] := (n * pi/2) rounded,
162 * middle[n] := (n * pi/2 - leading[n]) rounded,
163 * trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded .
164 */
165 trailing:
166 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing
167 .double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing
168 .double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing
169 .double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing
170 .double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing
171 .double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing
172 .double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing
173 .double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing
174 .double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing
175 .double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing
176 .double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing
177 .double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing
178 .double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing
179 .double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing
180 .double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing
181 .double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing
182 .double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing
183 .double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing
184 .double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing
185 .double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing
186 .double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing
187 .double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing
188 .double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing
189 .double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing
190 .double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing
191 .double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing
192 .double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing
193 .double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing
194 .double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing
195 .double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing
196
197 middle:
198 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle
199 .double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle
200 .double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle
201 .double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle
202 .double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle
203 .double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle
204 .double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle
205 .double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle
206 .double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle
207 .double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle
208 .double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle
209 .double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle
210 .double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle
211 .double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle
212 .double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle
213 .double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle
214 .double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle
215 .double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle
216 .double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle
217 .double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle
218 .double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle
219 .double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle
220 .double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle
221 .double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle
222 .double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle
223 .double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle
224 .double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle
225 .double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle
226 .double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle
227 .double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle
228
229 leading:
230 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading
231 .double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading
232 .double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading
233 .double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading
234 .double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading
235 .double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading
236 .double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading
237 .double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading
238 .double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading
239 .double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading
240 .double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading
241 .double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading
242 .double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading
243 .double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading
244 .double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading
245 .double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading
246 .double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading
247 .double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading
248 .double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading
249 .double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading
250 .double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading
251 .double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading
252 .double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading
253 .double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading
254 .double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading
255 .double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading
256 .double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading
257 .double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading
258 .double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading
259 .double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading
260
261 twoOverPi:
262 .double 0d+6.36619772367581343076e-01
263 .text
264 .align 1
265
266 table_lookup:
267 muld3 r3,twoOverPi,r0
268 cvtrdl r0,r0 # n = nearest int to ((2/pi)*|x|) rnded
269 mull3 $8,r0,r5
270 subd2 leading(r5),r3 # p = (|x| - leading n*pi/2) exactly
271 subd3 middle(r5),r3,r1 # q = (p - middle n*pi/2) rounded
272 subd2 r1,r3 # r = (p - q)
273 subd2 middle(r5),r3 # r = r - middle n*pi/2
274 subd2 trailing(r5),r3 # r = r - trailing n*pi/2 rounded
275 /*
276 * If the original argument was negative,
277 * negate the reduce argument and
278 * adjust the octant/quadrant number.
279 */
280 tstw 4(ap)
281 bgeq abs2
282 mnegf r1,r1
283 mnegf r3,r3
284 /* subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD */
285 subb3 r0,$4,r0
286 abs2:
287 /*
288 * Clear all unneeded octant/quadrant bits.
289 */
290 /* bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD */
291 bicb2 $0xfc,r0
292 rsb
293 /*
294 * p.0
295 */
296 .text
297 .align 2
298 /*
299 * Only 256 (actually 225) bits of 2/pi are needed for VAX double
300 * precision; this was determined by enumerating all the nearest
301 * machine integer multiples of pi/2 using continued fractions.
302 * (8a8d3673775b7ff7 required the most bits.) -S.McD
303 */
304 .long 0
305 .long 0
306 .long 0xaef1586d
307 .long 0x9458eaf7
308 .long 0x10e4107f
309 .long 0xd8a5664f
310 .long 0x4d377036
311 .long 0x09d5f47d
312 .long 0x91054a7f
313 .long 0xbe60db93
314 bits2opi:
315 .long 0x00000028
316 .long 0
317 /*
318 * Note: wherever you see the word `octant', read `quadrant'.
319 * Currently this code is set up for pi/2 argument reduction.
320 * By uncommenting/commenting the appropriate lines, it will
321 * also serve as a pi/4 argument reduction code.
322 */
323
324 /* p.1
325 * Trigred preforms argument reduction
326 * for the trigonometric functions. It
327 * takes one input argument, a D-format
328 * number in r1/r0 . The magnitude of
329 * the input argument must be greater
330 * than or equal to 1/2 . Trigred produces
331 * three results: the number of the octant
332 * occupied by the argument, the reduced
333 * argument, and an extension of the
334 * reduced argument. The octant number is
335 * returned in r0 . The reduced argument
336 * is returned as a D-format number in
337 * r2/r1 . An 8 bit extension of the
338 * reduced argument is returned as an
339 * F-format number in r3.
340 * p.2
341 */
342 trigred:
343 /*
344 * Save the sign of the input argument.
345 */
346 movw r0,-(sp)
347 /*
348 * Extract the exponent field.
349 */
350 extzv $7,$7,r0,r2
351 /*
352 * Convert the fraction part of the input
353 * argument into a quadword integer.
354 */
355 bicw2 $0xff80,r0
356 bisb2 $0x80,r0 # -S.McD
357 rotl $16,r0,r0
358 rotl $16,r1,r1
359 /*
360 * If r1 is negative, add 1 to r0 . This
361 * adjustment is made so that the two's
362 * complement multiplications done later
363 * will produce unsigned results.
364 */
365 bgeq posmid
366 incl r0
367 posmid:
368 /* p.3
369 *
370 * Set r3 to the address of the first quadword
371 * used to obtain the needed portion of 2/pi .
372 * The address is longword aligned to ensure
373 * efficient access.
374 */
375 ashl $-3,r2,r3
376 bicb2 $3,r3
377 mnegl r3,r3
378 movab bits2opi[r3],r3
379 /*
380 * Set r2 to the size of the shift needed to
381 * obtain the correct portion of 2/pi .
382 */
383 bicb2 $0xe0,r2
384 /* p.4
385 *
386 * Move the needed 128 bits of 2/pi into
387 * r11 - r8 . Adjust the numbers to allow
388 * for unsigned multiplication.
389 */
390 ashq r2,(r3),r10
391
392 subl2 $4,r3
393 ashq r2,(r3),r9
394 bgeq signoff1
395 incl r11
396 signoff1:
397 subl2 $4,r3
398 ashq r2,(r3),r8
399 bgeq signoff2
400 incl r10
401 signoff2:
402 subl2 $4,r3
403 ashq r2,(r3),r7
404 bgeq signoff3
405 incl r9
406 signoff3:
407 /* p.5
408 *
409 * Multiply the contents of r0/r1 by the
410 * slice of 2/pi in r11 - r8 .
411 */
412 emul r0,r8,$0,r4
413 emul r0,r9,r5,r5
414 emul r0,r10,r6,r6
415
416 emul r1,r8,$0,r7
417 emul r1,r9,r8,r8
418 emul r1,r10,r9,r9
419 emul r1,r11,r10,r10
420
421 addl2 r4,r8
422 adwc r5,r9
423 adwc r6,r10
424 /* p.6
425 *
426 * If there are more than five leading zeros
427 * after the first two quotient bits or if there
428 * are more than five leading ones after the first
429 * two quotient bits, generate more fraction bits.
430 * Otherwise, branch to code to produce the result.
431 */
432 bicl3 $0xc1ffffff,r10,r4
433 beql more1
434 cmpl $0x3e000000,r4
435 bneq result
436 more1:
437 /* p.7
438 *
439 * generate another 32 result bits.
440 */
441 subl2 $4,r3
442 ashq r2,(r3),r5
443 bgeq signoff4
444
445 emul r1,r6,$0,r4
446 addl2 r1,r5
447 emul r0,r6,r5,r5
448 addl2 r0,r6
449 brb addbits1
450
451 signoff4:
452 emul r1,r6,$0,r4
453 emul r0,r6,r5,r5
454
455 addbits1:
456 addl2 r5,r7
457 adwc r6,r8
458 adwc $0,r9
459 adwc $0,r10
460 /* p.8
461 *
462 * Check for massive cancellation.
463 */
464 bicl3 $0xc0000000,r10,r6
465 /* bneq more2 -S.McD Test was backwards */
466 beql more2
467 cmpl $0x3fffffff,r6
468 bneq result
469 more2:
470 /* p.9
471 *
472 * If massive cancellation has occurred,
473 * generate another 24 result bits.
474 * Testing has shown there will always be
475 * enough bits after this point.
476 */
477 subl2 $4,r3
478 ashq r2,(r3),r5
479 bgeq signoff5
480
481 emul r0,r6,r4,r5
482 addl2 r0,r6
483 brb addbits2
484
485 signoff5:
486 emul r0,r6,r4,r5
487
488 addbits2:
489 addl2 r6,r7
490 adwc $0,r8
491 adwc $0,r9
492 adwc $0,r10
493 /* p.10
494 *
495 * The following code produces the reduced
496 * argument from the product bits contained
497 * in r10 - r7 .
498 */
499 result:
500 /*
501 * Extract the octant number from r10 .
502 */
503 /* extzv $29,$3,r10,r0 ...used for pi/4 reduction -S.McD */
504 extzv $30,$2,r10,r0
505 /*
506 * Clear the octant bits in r10 .
507 */
508 /* bicl2 $0xe0000000,r10 ...used for pi/4 reduction -S.McD */
509 bicl2 $0xc0000000,r10
510 /*
511 * Zero the sign flag.
512 */
513 clrl r5
514 /* p.11
515 *
516 * Check to see if the fraction is greater than
517 * or equal to one-half. If it is, add one
518 * to the octant number, set the sign flag
519 * on, and replace the fraction with 1 minus
520 * the fraction.
521 */
522 /* bitl $0x10000000,r10 ...used for pi/4 reduction -S.McD */
523 bitl $0x20000000,r10
524 beql small
525 incl r0
526 incl r5
527 /* subl3 r10,$0x1fffffff,r10 ...used for pi/4 reduction -S.McD */
528 subl3 r10,$0x3fffffff,r10
529 mcoml r9,r9
530 mcoml r8,r8
531 mcoml r7,r7
532 small:
533 /* p.12
534 *
535 * Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD
536 * Test whether the first 30 bits of the
537 * fraction are zero.
538 */
539 tstl r10
540 beql tiny
541 /*
542 * Find the position of the first one bit in r10 .
543 */
544 cvtld r10,r1
545 extzv $7,$7,r1,r1
546 /*
547 * Compute the size of the shift needed.
548 */
549 subl3 r1,$32,r6
550 /*
551 * Shift up the high order 64 bits of the
552 * product.
553 */
554 ashq r6,r9,r10
555 ashq r6,r8,r9
556 brb mult
557 /* p.13
558 *
559 * Test to see if the sign bit of r9 is on.
560 */
561 tiny:
562 tstl r9
563 bgeq tinier
564 /*
565 * If it is, shift the product bits up 32 bits.
566 */
567 movl $32,r6
568 movq r8,r10
569 tstl r10
570 brb mult
571 /* p.14
572 *
573 * Test whether r9 is zero. It is probably
574 * impossible for both r10 and r9 to be
575 * zero, but until proven to be so, the test
576 * must be made.
577 */
578 tinier:
579 beql zero
580 /*
581 * Find the position of the first one bit in r9 .
582 */
583 cvtld r9,r1
584 extzv $7,$7,r1,r1
585 /*
586 * Compute the size of the shift needed.
587 */
588 subl3 r1,$32,r1
589 addl3 $32,r1,r6
590 /*
591 * Shift up the high order 64 bits of the
592 * product.
593 */
594 ashq r1,r8,r10
595 ashq r1,r7,r9
596 brb mult
597 /* p.15
598 *
599 * The following code sets the reduced
600 * argument to zero.
601 */
602 zero:
603 clrl r1
604 clrl r2
605 clrl r3
606 brw return
607 /* p.16
608 *
609 * At this point, r0 contains the octant number,
610 * r6 indicates the number of bits the fraction
611 * has been shifted, r5 indicates the sign of
612 * the fraction, r11/r10 contain the high order
613 * 64 bits of the fraction, and the condition
614 * codes indicate where the sign bit of r10
615 * is on. The following code multiplies the
616 * fraction by pi/2 .
617 */
618 mult:
619 /*
620 * Save r11/r10 in r4/r1 . -S.McD
621 */
622 movl r11,r4
623 movl r10,r1
624 /*
625 * If the sign bit of r10 is on, add 1 to r11 .
626 */
627 bgeq signoff6
628 incl r11
629 signoff6:
630 /* p.17
631 *
632 * Move pi/2 into r3/r2 .
633 */
634 movq $0xc90fdaa22168c235,r2
635 /*
636 * Multiply the fraction by the portion of pi/2
637 * in r2 .
638 */
639 emul r2,r10,$0,r7
640 emul r2,r11,r8,r7
641 /*
642 * Multiply the fraction by the portion of pi/2
643 * in r3 .
644 */
645 emul r3,r10,$0,r9
646 emul r3,r11,r10,r10
647 /*
648 * Add the product bits together.
649 */
650 addl2 r7,r9
651 adwc r8,r10
652 adwc $0,r11
653 /*
654 * Compensate for not sign extending r8 above.-S.McD
655 */
656 tstl r8
657 bgeq signoff6a
658 decl r11
659 signoff6a:
660 /*
661 * Compensate for r11/r10 being unsigned. -S.McD
662 */
663 addl2 r2,r10
664 adwc r3,r11
665 /*
666 * Compensate for r3/r2 being unsigned. -S.McD
667 */
668 addl2 r1,r10
669 adwc r4,r11
670 /* p.18
671 *
672 * If the sign bit of r11 is zero, shift the
673 * product bits up one bit and increment r6 .
674 */
675 blss signon
676 incl r6
677 ashq $1,r10,r10
678 tstl r9
679 bgeq signoff7
680 incl r10
681 signoff7:
682 signon:
683 /* p.19
684 *
685 * Shift the 56 most significant product
686 * bits into r9/r8 . The sign extension
687 * will be handled later.
688 */
689 ashq $-8,r10,r8
690 /*
691 * Convert the low order 8 bits of r10
692 * into an F-format number.
693 */
694 cvtbf r10,r3
695 /*
696 * If the result of the conversion was
697 * negative, add 1 to r9/r8 .
698 */
699 bgeq chop
700 incl r8
701 adwc $0,r9
702 /*
703 * If r9 is now zero, branch to special
704 * code to handle that possibility.
705 */
706 beql carryout
707 chop:
708 /* p.20
709 *
710 * Convert the number in r9/r8 into
711 * D-format number in r2/r1 .
712 */
713 rotl $16,r8,r2
714 rotl $16,r9,r1
715 /*
716 * Set the exponent field to the appropriate
717 * value. Note that the extra bits created by
718 * sign extension are now eliminated.
719 */
720 subw3 r6,$131,r6
721 insv r6,$7,$9,r1
722 /*
723 * Set the exponent field of the F-format
724 * number in r3 to the appropriate value.
725 */
726 tstf r3
727 beql return
728 /* extzv $7,$8,r3,r4 -S.McD */
729 extzv $7,$7,r3,r4
730 addw2 r4,r6
731 /* subw2 $217,r6 -S.McD */
732 subw2 $64,r6
733 insv r6,$7,$8,r3
734 brb return
735 /* p.21
736 *
737 * The following code generates the appropriate
738 * result for the unlikely possibility that
739 * rounding the number in r9/r8 resulted in
740 * a carry out.
741 */
742 carryout:
743 clrl r1
744 clrl r2
745 subw3 r6,$132,r6
746 insv r6,$7,$9,r1
747 tstf r3
748 beql return
749 extzv $7,$8,r3,r4
750 addw2 r4,r6
751 subw2 $218,r6
752 insv r6,$7,$8,r3
753 /* p.22
754 *
755 * The following code makes an needed
756 * adjustments to the signs of the
757 * results or to the octant number, and
758 * then returns.
759 */
760 return:
761 /*
762 * Test if the fraction was greater than or
763 * equal to 1/2 . If so, negate the reduced
764 * argument.
765 */
766 blbc r5,signoff8
767 mnegf r1,r1
768 mnegf r3,r3
769 signoff8:
770 /* p.23
771 *
772 * If the original argument was negative,
773 * negate the reduce argument and
774 * adjust the octant number.
775 */
776 tstw (sp)+
777 bgeq signoff9
778 mnegf r1,r1
779 mnegf r3,r3
780 /* subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD */
781 subb3 r0,$4,r0
782 signoff9:
783 /*
784 * Clear all unneeded octant bits.
785 *
786 * bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD */
787 bicb2 $0xfc,r0
788 /*
789 * Return.
790 */
791 rsb
792