Home | History | Annotate | Line # | Download | only in vax
n_argred.S revision 1.5
      1 /*	$NetBSD: n_argred.S,v 1.5 2000/07/14 04:50:58 matt Exp $	*/
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)argred.s	8.1 (Berkeley) 6/4/93
     35  */
     36 
     37 #include <machine/asm.h>
     38 
     39 /*
     40  *  libm$argred implements Bob Corbett's argument reduction and
     41  *  libm$sincos implements Peter Tang's double precision sin/cos.
     42  *
     43  *  Note: The two entry points libm$argred and libm$sincos are meant
     44  *        to be used only by _sin, _cos and _tan.
     45  *
     46  * method: true range reduction to [-pi/4,pi/4], P. Tang  &  B. Corbett
     47  * S. McDonald, April 4,  1985
     48  */
     49 
     50 ENTRY(__libm_argred, 0)
     51 /*
     52  *  Compare the argument with the largest possible that can
     53  *  be reduced by table lookup.  r3 := |x|  will be used in  table_lookup .
     54  */
     55 	movd	r0,r3
     56 	bgeq	abs1
     57 	mnegd	r3,r3
     58 abs1:
     59 	cmpd	r3,$0d+4.55530934770520019583e+01
     60 	blss	small_arg
     61 	jsb	trigred
     62 	rsb
     63 small_arg:
     64 	jsb	table_lookup
     65 	rsb
     66 /*
     67  *  At this point,
     68  *	   r0  contains the quadrant number, 0, 1, 2, or 3;
     69  *	r2/r1  contains the reduced argument as a D-format number;
     70  *  	   r3  contains a F-format extension to the reduced argument;
     71  *          r4  contains a  0 or 1  corresponding to a  sin or cos  entry.
     72  */
     73 
     74 ENTRY(__libm_sincos, 0)
     75 /*
     76  *  Compensate for a cosine entry by adding one to the quadrant number.
     77  */
     78 	addl2	r4,r0
     79 /*
     80  *  Polyd clobbers  r5-r0 ;  save  X  in  r7/r6 .
     81  *  This can be avoided by rewriting  trigred .
     82  */
     83 	movd	r1,r6
     84 /*
     85  *  Likewise, save  alpha  in  r8 .
     86  *  This can be avoided by rewriting  trigred .
     87  */
     88 	movf	r3,r8
     89 /*
     90  *  Odd or even quadrant?  cosine if odd, sine otherwise.
     91  *  Save  floor(quadrant/2) in  r9  ; it determines the final sign.
     92  */
     93 	rotl	$-1,r0,r9
     94 	blss	cosine
     95 sine:
     96 	muld2	r1,r1		# Xsq = X * X
     97 	cmpw	$0x2480,r1	# [zl] Xsq > 2^-56?
     98 	blss	1f		# [zl] yes, go ahead and do polyd
     99 	clrq	r1		# [zl] work around 11/780 FPA polyd bug
    100 1:
    101 	polyd	r1,$7,sin_coef	# Q = P(Xsq) , of deg 7
    102 	mulf3	$0f3.0,r8,r4	# beta = 3 * alpha
    103 	mulf2	r0,r4		# beta = Q * beta
    104 	addf2	r8,r4		# beta = alpha + beta
    105 	muld2	r6,r0		# S(X) = X * Q
    106 /*	cvtfd	r4,r4		... r5 = 0 after a polyd. */
    107 	addd2	r4,r0		# S(X) = beta + S(X)
    108 	addd2	r6,r0		# S(X) = X + S(X)
    109 	jbr	done
    110 cosine:
    111 	muld2	r6,r6		# Xsq = X * X
    112 	beql	zero_arg
    113 	mulf2	r1,r8		# beta = X * alpha
    114 	polyd	r6,$7,cos_coef	/* Q = P'(Xsq) , of deg 7 */
    115 	subd3	r0,r8,r0	# beta = beta - Q
    116 	subw2	$0x80,r6	# Xsq = Xsq / 2
    117 	addd2	r0,r6		# Xsq = Xsq + beta
    118 zero_arg:
    119 	subd3	r6,$0d1.0,r0	# C(X) = 1 - Xsq
    120 done:
    121 	blbc	r9,even
    122 	mnegd	r0,r0
    123 even:
    124 	rsb
    125 
    126 	_ALIGN_TEXT
    127 
    128 sin_coef:
    129 	.double	0d-7.53080332264191085773e-13	# s7 = 2^-29 -1.a7f2504ffc49f8..
    130 	.double	0d+1.60573519267703489121e-10	# s6 = 2^-21  1.611adaede473c8..
    131 	.double	0d-2.50520965150706067211e-08	# s5 = 2^-1a -1.ae644921ed8382..
    132 	.double	0d+2.75573191800593885716e-06	# s4 = 2^-13  1.71de3a4b884278..
    133 	.double	0d-1.98412698411850507950e-04	# s3 = 2^-0d -1.a01a01a0125e7d..
    134 	.double	0d+8.33333333333325688985e-03	# s2 = 2^-07  1.11111111110e50
    135 	.double	0d-1.66666666666666664354e-01	# s1 = 2^-03 -1.55555555555554
    136 	.double	0d+0.00000000000000000000e+00	# s0 = 0
    137 
    138 cos_coef:
    139 	.double	0d-1.13006966202629430300e-11	# s7 = 2^-25 -1.8D9BA04D1374BE..
    140 	.double	0d+2.08746646574796004700e-09	# s6 = 2^-1D  1.1EE632650350BA..
    141 	.double	0d-2.75573073031284417300e-07	# s5 = 2^-16 -1.27E4F31411719E..
    142 	.double	0d+2.48015872682668025200e-05	# s4 = 2^-10  1.A01A0196B902E8..
    143 	.double	0d-1.38888888888464709200e-03	# s3 = 2^-0A -1.6C16C16C11FACE..
    144 	.double	0d+4.16666666666664761400e-02	# s2 = 2^-05  1.5555555555539E
    145 	.double	0d+0.00000000000000000000e+00	# s1 = 0
    146 	.double	0d+0.00000000000000000000e+00	# s0 = 0
    147 
    148 /*
    149  *  Multiples of  pi/2  expressed as the sum of three doubles,
    150  *
    151  *  trailing:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    152  *			trailing[n] ,
    153  *
    154  *  middle:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    155  *			middle[n]   ,
    156  *
    157  *  leading:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    158  *			leading[n]  ,
    159  *
    160  *	where
    161  *		leading[n]  := (n * pi/2)  rounded,
    162  *		middle[n]   := (n * pi/2  -  leading[n])  rounded,
    163  *		trailing[n] := (( n * pi/2 - leading[n]) - middle[n])  rounded .
    164  */
    165 trailing:
    166 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  trailing
    167 	.double	0d+4.33590506506189049611e-35	#  1 * pi/2  trailing
    168 	.double	0d+8.67181013012378099223e-35	#  2 * pi/2  trailing
    169 	.double	0d+1.30077151951856714215e-34	#  3 * pi/2  trailing
    170 	.double	0d+1.73436202602475619845e-34	#  4 * pi/2  trailing
    171 	.double	0d-1.68390735624352669192e-34	#  5 * pi/2  trailing
    172 	.double	0d+2.60154303903713428430e-34	#  6 * pi/2  trailing
    173 	.double	0d-8.16726343231148352150e-35	#  7 * pi/2  trailing
    174 	.double	0d+3.46872405204951239689e-34	#  8 * pi/2  trailing
    175 	.double	0d+3.90231455855570147991e-34	#  9 * pi/2  trailing
    176 	.double	0d-3.36781471248705338384e-34	# 10 * pi/2  trailing
    177 	.double	0d-1.06379439835298071785e-33	# 11 * pi/2  trailing
    178 	.double	0d+5.20308607807426856861e-34	# 12 * pi/2  trailing
    179 	.double	0d+5.63667658458045770509e-34	# 13 * pi/2  trailing
    180 	.double	0d-1.63345268646229670430e-34	# 14 * pi/2  trailing
    181 	.double	0d-1.19986217995610764801e-34	# 15 * pi/2  trailing
    182 	.double	0d+6.93744810409902479378e-34	# 16 * pi/2  trailing
    183 	.double	0d-8.03640094449267300110e-34	# 17 * pi/2  trailing
    184 	.double	0d+7.80462911711140295982e-34	# 18 * pi/2  trailing
    185 	.double	0d-7.16921993148029483506e-34	# 19 * pi/2  trailing
    186 	.double	0d-6.73562942497410676769e-34	# 20 * pi/2  trailing
    187 	.double	0d-6.30203891846791677593e-34	# 21 * pi/2  trailing
    188 	.double	0d-2.12758879670596143570e-33	# 22 * pi/2  trailing
    189 	.double	0d+2.53800212047402350390e-33	# 23 * pi/2  trailing
    190 	.double	0d+1.04061721561485371372e-33	# 24 * pi/2  trailing
    191 	.double	0d+6.11729905311472319056e-32	# 25 * pi/2  trailing
    192 	.double	0d+1.12733531691609154102e-33	# 26 * pi/2  trailing
    193 	.double	0d-3.70049587943078297272e-34	# 27 * pi/2  trailing
    194 	.double	0d-3.26690537292459340860e-34	# 28 * pi/2  trailing
    195 	.double	0d-1.14812616507957271361e-34	# 29 * pi/2  trailing
    196 
    197 middle:
    198 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  middle
    199 	.double	0d+5.72118872610983179676e-18	#  1 * pi/2  middle
    200 	.double	0d+1.14423774522196635935e-17	#  2 * pi/2  middle
    201 	.double	0d-3.83475850529283316309e-17	#  3 * pi/2  middle
    202 	.double	0d+2.28847549044393271871e-17	#  4 * pi/2  middle
    203 	.double	0d-2.69052076007086676522e-17	#  5 * pi/2  middle
    204 	.double	0d-7.66951701058566632618e-17	#  6 * pi/2  middle
    205 	.double	0d-1.54628301484890040587e-17	#  7 * pi/2  middle
    206 	.double	0d+4.57695098088786543741e-17	#  8 * pi/2  middle
    207 	.double	0d+1.07001849766246313192e-16	#  9 * pi/2  middle
    208 	.double	0d-5.38104152014173353044e-17	# 10 * pi/2  middle
    209 	.double	0d-2.14622680169080983801e-16	# 11 * pi/2  middle
    210 	.double	0d-1.53390340211713326524e-16	# 12 * pi/2  middle
    211 	.double	0d-9.21580002543456677056e-17	# 13 * pi/2  middle
    212 	.double	0d-3.09256602969780081173e-17	# 14 * pi/2  middle
    213 	.double	0d+3.03066796603896507006e-17	# 15 * pi/2  middle
    214 	.double	0d+9.15390196177573087482e-17	# 16 * pi/2  middle
    215 	.double	0d+1.52771359575124969107e-16	# 17 * pi/2  middle
    216 	.double	0d+2.14003699532492626384e-16	# 18 * pi/2  middle
    217 	.double	0d-1.68853170360202329427e-16	# 19 * pi/2  middle
    218 	.double	0d-1.07620830402834670609e-16	# 20 * pi/2  middle
    219 	.double	0d+3.97700719404595604379e-16	# 21 * pi/2  middle
    220 	.double	0d-4.29245360338161967602e-16	# 22 * pi/2  middle
    221 	.double	0d-3.68013020380794313406e-16	# 23 * pi/2  middle
    222 	.double	0d-3.06780680423426653047e-16	# 24 * pi/2  middle
    223 	.double	0d-2.45548340466059054318e-16	# 25 * pi/2  middle
    224 	.double	0d-1.84316000508691335411e-16	# 26 * pi/2  middle
    225 	.double	0d-1.23083660551323675053e-16	# 27 * pi/2  middle
    226 	.double	0d-6.18513205939560162346e-17	# 28 * pi/2  middle
    227 	.double	0d-6.18980636588357585202e-19	# 29 * pi/2  middle
    228 
    229 leading:
    230 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  leading
    231 	.double	0d+1.57079632679489661351e+00	#  1 * pi/2  leading
    232 	.double	0d+3.14159265358979322702e+00	#  2 * pi/2  leading
    233 	.double	0d+4.71238898038468989604e+00	#  3 * pi/2  leading
    234 	.double	0d+6.28318530717958645404e+00	#  4 * pi/2  leading
    235 	.double	0d+7.85398163397448312306e+00	#  5 * pi/2  leading
    236 	.double	0d+9.42477796076937979208e+00	#  6 * pi/2  leading
    237 	.double	0d+1.09955742875642763501e+01	#  7 * pi/2  leading
    238 	.double	0d+1.25663706143591729081e+01	#  8 * pi/2  leading
    239 	.double	0d+1.41371669411540694661e+01	#  9 * pi/2  leading
    240 	.double	0d+1.57079632679489662461e+01	# 10 * pi/2  leading
    241 	.double	0d+1.72787595947438630262e+01	# 11 * pi/2  leading
    242 	.double	0d+1.88495559215387595842e+01	# 12 * pi/2  leading
    243 	.double	0d+2.04203522483336561422e+01	# 13 * pi/2  leading
    244 	.double	0d+2.19911485751285527002e+01	# 14 * pi/2  leading
    245 	.double	0d+2.35619449019234492582e+01	# 15 * pi/2  leading
    246 	.double	0d+2.51327412287183458162e+01	# 16 * pi/2  leading
    247 	.double	0d+2.67035375555132423742e+01	# 17 * pi/2  leading
    248 	.double	0d+2.82743338823081389322e+01	# 18 * pi/2  leading
    249 	.double	0d+2.98451302091030359342e+01	# 19 * pi/2  leading
    250 	.double	0d+3.14159265358979324922e+01	# 20 * pi/2  leading
    251 	.double	0d+3.29867228626928286062e+01	# 21 * pi/2  leading
    252 	.double	0d+3.45575191894877260523e+01	# 22 * pi/2  leading
    253 	.double	0d+3.61283155162826226103e+01	# 23 * pi/2  leading
    254 	.double	0d+3.76991118430775191683e+01	# 24 * pi/2  leading
    255 	.double	0d+3.92699081698724157263e+01	# 25 * pi/2  leading
    256 	.double	0d+4.08407044966673122843e+01	# 26 * pi/2  leading
    257 	.double	0d+4.24115008234622088423e+01	# 27 * pi/2  leading
    258 	.double	0d+4.39822971502571054003e+01	# 28 * pi/2  leading
    259 	.double	0d+4.55530934770520019583e+01	# 29 * pi/2  leading
    260 
    261 twoOverPi:
    262 	.double	0d+6.36619772367581343076e-01
    263 
    264 	.text
    265 	_ALIGN_TEXT
    266 
    267 table_lookup:
    268 	muld3	r3,twoOverPi,r0
    269 	cvtrdl	r0,r0			# n = nearest int to ((2/pi)*|x|) rnded
    270 	mull3	$8,r0,r5
    271 	subd2	leading(r5),r3		# p = (|x| - leading n*pi/2) exactly
    272 	subd3	middle(r5),r3,r1	# q = (p - middle  n*pi/2) rounded
    273 	subd2	r1,r3			# r = (p - q)
    274 	subd2	middle(r5),r3		# r =  r - middle  n*pi/2
    275 	subd2	trailing(r5),r3		# r =  r - trailing n*pi/2  rounded
    276 /*
    277  *  If the original argument was negative,
    278  *  negate the reduce argument and
    279  *  adjust the octant/quadrant number.
    280  */
    281 	tstw	4(ap)
    282 	bgeq	abs2
    283 	mnegf	r1,r1
    284 	mnegf	r3,r3
    285 /*	subb3	r0,$8,r0	...used for  pi/4  reduction -S.McD */
    286 	subb3	r0,$4,r0
    287 abs2:
    288 /*
    289  *  Clear all unneeded octant/quadrant bits.
    290  */
    291 /*	bicb2	$0xf8,r0	...used for  pi/4  reduction -S.McD */
    292 	bicb2	$0xfc,r0
    293 	rsb
    294 /*
    295  *						p.0
    296  */
    297 	.text
    298 	_ALIGN_TEXT
    299 /*
    300  * Only 256 (actually 225) bits of 2/pi are needed for VAX double
    301  * precision; this was determined by enumerating all the nearest
    302  * machine integer multiples of pi/2 using continued fractions.
    303  * (8a8d3673775b7ff7 required the most bits.)		-S.McD
    304  */
    305 	.long	0
    306 	.long	0
    307 	.long	0xaef1586d
    308 	.long	0x9458eaf7
    309 	.long	0x10e4107f
    310 	.long	0xd8a5664f
    311 	.long	0x4d377036
    312 	.long	0x09d5f47d
    313 	.long	0x91054a7f
    314 	.long	0xbe60db93
    315 bits2opi:
    316 	.long	0x00000028
    317 	.long	0
    318 /*
    319  *  Note: wherever you see the word `octant', read `quadrant'.
    320  *  Currently this code is set up for  pi/2  argument reduction.
    321  *  By uncommenting/commenting the appropriate lines, it will
    322  *  also serve as a  pi/4  argument reduction code.
    323  */
    324 
    325 /*						p.1
    326  *  Trigred  preforms argument reduction
    327  *  for the trigonometric functions.  It
    328  *  takes one input argument, a D-format
    329  *  number in  r1/r0 .  The magnitude of
    330  *  the input argument must be greater
    331  *  than or equal to  1/2 .  Trigred produces
    332  *  three results:  the number of the octant
    333  *  occupied by the argument, the reduced
    334  *  argument, and an extension of the
    335  *  reduced argument.  The octant number is
    336  *  returned in  r0 .  The reduced argument
    337  *  is returned as a D-format number in
    338  *  r2/r1 .  An 8 bit extension of the
    339  *  reduced argument is returned as an
    340  *  F-format number in r3.
    341  *						p.2
    342  */
    343 trigred:
    344 /*
    345  *  Save the sign of the input argument.
    346  */
    347 	movw	r0,-(sp)
    348 /*
    349  *  Extract the exponent field.
    350  */
    351 	extzv	$7,$7,r0,r2
    352 /*
    353  *  Convert the fraction part of the input
    354  *  argument into a quadword integer.
    355  */
    356 	bicw2	$0xff80,r0
    357 	bisb2	$0x80,r0	# -S.McD
    358 	rotl	$16,r0,r0
    359 	rotl	$16,r1,r1
    360 /*
    361  *  If  r1  is negative, add  1  to  r0 .  This
    362  *  adjustment is made so that the two's
    363  *  complement multiplications done later
    364  *  will produce unsigned results.
    365  */
    366 	bgeq	posmid
    367 	incl	r0
    368 posmid:
    369 /*						p.3
    370  *
    371  *  Set  r3  to the address of the first quadword
    372  *  used to obtain the needed portion of  2/pi .
    373  *  The address is longword aligned to ensure
    374  *  efficient access.
    375  */
    376 	ashl	$-3,r2,r3
    377 	bicb2	$3,r3
    378 	mnegl	r3,r3
    379 	movab	bits2opi[r3],r3
    380 /*
    381  *  Set  r2  to the size of the shift needed to
    382  *  obtain the correct portion of  2/pi .
    383  */
    384 	bicb2	$0xe0,r2
    385 /*						p.4
    386  *
    387  *  Move the needed  128  bits of  2/pi  into
    388  *  r11 - r8 .  Adjust the numbers to allow
    389  *  for unsigned multiplication.
    390  */
    391 	ashq	r2,(r3),r10
    392 
    393 	subl2	$4,r3
    394 	ashq	r2,(r3),r9
    395 	bgeq	signoff1
    396 	incl	r11
    397 signoff1:
    398 	subl2	$4,r3
    399 	ashq	r2,(r3),r8
    400 	bgeq	signoff2
    401 	incl	r10
    402 signoff2:
    403 	subl2	$4,r3
    404 	ashq	r2,(r3),r7
    405 	bgeq	signoff3
    406 	incl	r9
    407 signoff3:
    408 /*						p.5
    409  *
    410  *  Multiply the contents of  r0/r1  by the
    411  *  slice of  2/pi  in  r11 - r8 .
    412  */
    413 	emul	r0,r8,$0,r4
    414 	emul	r0,r9,r5,r5
    415 	emul	r0,r10,r6,r6
    416 
    417 	emul	r1,r8,$0,r7
    418 	emul	r1,r9,r8,r8
    419 	emul	r1,r10,r9,r9
    420 	emul	r1,r11,r10,r10
    421 
    422 	addl2	r4,r8
    423 	adwc	r5,r9
    424 	adwc	r6,r10
    425 /*						p.6
    426  *
    427  *  If there are more than five leading zeros
    428  *  after the first two quotient bits or if there
    429  *  are more than five leading ones after the first
    430  *  two quotient bits, generate more fraction bits.
    431  *  Otherwise, branch to code to produce the result.
    432  */
    433 	bicl3	$0xc1ffffff,r10,r4
    434 	beql	more1
    435 	cmpl	$0x3e000000,r4
    436 	bneq	result
    437 more1:
    438 /*						p.7
    439  *
    440  *  generate another  32  result bits.
    441  */
    442 	subl2	$4,r3
    443 	ashq	r2,(r3),r5
    444 	bgeq	signoff4
    445 
    446 	emul	r1,r6,$0,r4
    447 	addl2	r1,r5
    448 	emul	r0,r6,r5,r5
    449 	addl2	r0,r6
    450 	jbr	addbits1
    451 
    452 signoff4:
    453 	emul	r1,r6,$0,r4
    454 	emul	r0,r6,r5,r5
    455 
    456 addbits1:
    457 	addl2	r5,r7
    458 	adwc	r6,r8
    459 	adwc	$0,r9
    460 	adwc	$0,r10
    461 /*						p.8
    462  *
    463  *  Check for massive cancellation.
    464  */
    465 	bicl3	$0xc0000000,r10,r6
    466 /*	bneq	more2			-S.McD  Test was backwards */
    467 	beql	more2
    468 	cmpl	$0x3fffffff,r6
    469 	bneq	result
    470 more2:
    471 /*						p.9
    472  *
    473  *  If massive cancellation has occurred,
    474  *  generate another  24  result bits.
    475  *  Testing has shown there will always be
    476  *  enough bits after this point.
    477  */
    478 	subl2	$4,r3
    479 	ashq	r2,(r3),r5
    480 	bgeq	signoff5
    481 
    482 	emul	r0,r6,r4,r5
    483 	addl2	r0,r6
    484 	jbr	addbits2
    485 
    486 signoff5:
    487 	emul	r0,r6,r4,r5
    488 
    489 addbits2:
    490 	addl2	r6,r7
    491 	adwc	$0,r8
    492 	adwc	$0,r9
    493 	adwc	$0,r10
    494 /*						p.10
    495  *
    496  *  The following code produces the reduced
    497  *  argument from the product bits contained
    498  *  in  r10 - r7 .
    499  */
    500 result:
    501 /*
    502  *  Extract the octant number from  r10 .
    503  */
    504 /*	extzv	$29,$3,r10,r0	...used for  pi/4  reduction -S.McD */
    505 	extzv	$30,$2,r10,r0
    506 /*
    507  *  Clear the octant bits in  r10 .
    508  */
    509 /*	bicl2	$0xe0000000,r10	...used for  pi/4  reduction -S.McD */
    510 	bicl2	$0xc0000000,r10
    511 /*
    512  *  Zero the sign flag.
    513  */
    514 	clrl	r5
    515 /*						p.11
    516  *
    517  *  Check to see if the fraction is greater than
    518  *  or equal to one-half.  If it is, add one
    519  *  to the octant number, set the sign flag
    520  *  on, and replace the fraction with  1 minus
    521  *  the fraction.
    522  */
    523 /*	bitl	$0x10000000,r10		...used for  pi/4  reduction -S.McD */
    524 	bitl	$0x20000000,r10
    525 	beql	small
    526 	incl	r0
    527 	incl	r5
    528 /*	subl3	r10,$0x1fffffff,r10	...used for  pi/4  reduction -S.McD */
    529 	subl3	r10,$0x3fffffff,r10
    530 	mcoml	r9,r9
    531 	mcoml	r8,r8
    532 	mcoml	r7,r7
    533 small:
    534 /*						p.12
    535  *
    536  *  Test whether the first  29  bits of the ...used for  pi/4  reduction -S.McD
    537  *  Test whether the first  30  bits of the
    538  *  fraction are zero.
    539  */
    540 	tstl	r10
    541 	beql	tiny
    542 /*
    543  *  Find the position of the first one bit in  r10 .
    544  */
    545 	cvtld	r10,r1
    546 	extzv	$7,$7,r1,r1
    547 /*
    548  *  Compute the size of the shift needed.
    549  */
    550 	subl3	r1,$32,r6
    551 /*
    552  *  Shift up the high order  64  bits of the
    553  *  product.
    554  */
    555 	ashq	r6,r9,r10
    556 	ashq	r6,r8,r9
    557 	jbr	mult
    558 /*						p.13
    559  *
    560  *  Test to see if the sign bit of  r9  is on.
    561  */
    562 tiny:
    563 	tstl	r9
    564 	bgeq	tinier
    565 /*
    566  *  If it is, shift the product bits up  32  bits.
    567  */
    568 	movl	$32,r6
    569 	movq	r8,r10
    570 	tstl	r10
    571 	jbr	mult
    572 /*						p.14
    573  *
    574  *  Test whether  r9  is zero.  It is probably
    575  *  impossible for both  r10  and  r9  to be
    576  *  zero, but until proven to be so, the test
    577  *  must be made.
    578  */
    579 tinier:
    580 	beql	zero
    581 /*
    582  *  Find the position of the first one bit in  r9 .
    583  */
    584 	cvtld	r9,r1
    585 	extzv	$7,$7,r1,r1
    586 /*
    587  *  Compute the size of the shift needed.
    588  */
    589 	subl3	r1,$32,r1
    590 	addl3	$32,r1,r6
    591 /*
    592  *  Shift up the high order  64  bits of the
    593  *  product.
    594  */
    595 	ashq	r1,r8,r10
    596 	ashq	r1,r7,r9
    597 	jbr	mult
    598 /*						p.15
    599  *
    600  *  The following code sets the reduced
    601  *  argument to zero.
    602  */
    603 zero:
    604 	clrl	r1
    605 	clrl	r2
    606 	clrl	r3
    607 	jbr	return
    608 /*						p.16
    609  *
    610  *  At this point,  r0  contains the octant number,
    611  *  r6  indicates the number of bits the fraction
    612  *  has been shifted,  r5  indicates the sign of
    613  *  the fraction,  r11/r10  contain the high order
    614  *  64  bits of the fraction, and the condition
    615  *  codes indicate where the sign bit of  r10
    616  *  is on.  The following code multiplies the
    617  *  fraction by  pi/2 .
    618  */
    619 mult:
    620 /*
    621  *  Save  r11/r10  in  r4/r1 .		-S.McD
    622  */
    623 	movl	r11,r4
    624 	movl	r10,r1
    625 /*
    626  *  If the sign bit of  r10  is on, add  1  to  r11 .
    627  */
    628 	bgeq	signoff6
    629 	incl	r11
    630 signoff6:
    631 /*						p.17
    632  *
    633  *  Move  pi/2  into  r3/r2 .
    634  */
    635 	movq	$0xc90fdaa22168c235,r2
    636 /*
    637  *  Multiply the fraction by the portion of  pi/2
    638  *  in  r2 .
    639  */
    640 	emul	r2,r10,$0,r7
    641 	emul	r2,r11,r8,r7
    642 /*
    643  *  Multiply the fraction by the portion of  pi/2
    644  *  in  r3 .
    645  */
    646 	emul	r3,r10,$0,r9
    647 	emul	r3,r11,r10,r10
    648 /*
    649  *  Add the product bits together.
    650  */
    651 	addl2	r7,r9
    652 	adwc	r8,r10
    653 	adwc	$0,r11
    654 /*
    655  *  Compensate for not sign extending  r8  above.-S.McD
    656  */
    657 	tstl	r8
    658 	bgeq	signoff6a
    659 	decl	r11
    660 signoff6a:
    661 /*
    662  *  Compensate for  r11/r10  being unsigned.	-S.McD
    663  */
    664 	addl2	r2,r10
    665 	adwc	r3,r11
    666 /*
    667  *  Compensate for  r3/r2  being unsigned.	-S.McD
    668  */
    669 	addl2	r1,r10
    670 	adwc	r4,r11
    671 /*						p.18
    672  *
    673  *  If the sign bit of  r11  is zero, shift the
    674  *  product bits up one bit and increment  r6 .
    675  */
    676 	blss	signon
    677 	incl	r6
    678 	ashq	$1,r10,r10
    679 	tstl	r9
    680 	bgeq	signoff7
    681 	incl	r10
    682 signoff7:
    683 signon:
    684 /*						p.19
    685  *
    686  *  Shift the  56  most significant product
    687  *  bits into  r9/r8 .  The sign extension
    688  *  will be handled later.
    689  */
    690 	ashq	$-8,r10,r8
    691 /*
    692  *  Convert the low order  8  bits of  r10
    693  *  into an F-format number.
    694  */
    695 	cvtbf	r10,r3
    696 /*
    697  *  If the result of the conversion was
    698  *  negative, add  1  to  r9/r8 .
    699  */
    700 	bgeq	chop
    701 	incl	r8
    702 	adwc	$0,r9
    703 /*
    704  *  If  r9  is now zero, branch to special
    705  *  code to handle that possibility.
    706  */
    707 	beql	carryout
    708 chop:
    709 /*						p.20
    710  *
    711  *  Convert the number in  r9/r8  into
    712  *  D-format number in  r2/r1 .
    713  */
    714 	rotl	$16,r8,r2
    715 	rotl	$16,r9,r1
    716 /*
    717  *  Set the exponent field to the appropriate
    718  *  value.  Note that the extra bits created by
    719  *  sign extension are now eliminated.
    720  */
    721 	subw3	r6,$131,r6
    722 	insv	r6,$7,$9,r1
    723 /*
    724  *  Set the exponent field of the F-format
    725  *  number in  r3  to the appropriate value.
    726  */
    727 	tstf	r3
    728 	beql	return
    729 /*	extzv	$7,$8,r3,r4	-S.McD */
    730 	extzv	$7,$7,r3,r4
    731 	addw2	r4,r6
    732 /*	subw2	$217,r6		-S.McD */
    733 	subw2	$64,r6
    734 	insv	r6,$7,$8,r3
    735 	jbr	return
    736 /*						p.21
    737  *
    738  *  The following code generates the appropriate
    739  *  result for the unlikely possibility that
    740  *  rounding the number in  r9/r8  resulted in
    741  *  a carry out.
    742  */
    743 carryout:
    744 	clrl	r1
    745 	clrl	r2
    746 	subw3	r6,$132,r6
    747 	insv	r6,$7,$9,r1
    748 	tstf	r3
    749 	beql	return
    750 	extzv	$7,$8,r3,r4
    751 	addw2	r4,r6
    752 	subw2	$218,r6
    753 	insv	r6,$7,$8,r3
    754 /*						p.22
    755  *
    756  *  The following code makes an needed
    757  *  adjustments to the signs of the
    758  *  results or to the octant number, and
    759  *  then returns.
    760  */
    761 return:
    762 /*
    763  *  Test if the fraction was greater than or
    764  *  equal to  1/2 .  If so, negate the reduced
    765  *  argument.
    766  */
    767 	blbc	r5,signoff8
    768 	mnegf	r1,r1
    769 	mnegf	r3,r3
    770 signoff8:
    771 /*						p.23
    772  *
    773  *  If the original argument was negative,
    774  *  negate the reduce argument and
    775  *  adjust the octant number.
    776  */
    777 	tstw	(sp)+
    778 	bgeq	signoff9
    779 	mnegf	r1,r1
    780 	mnegf	r3,r3
    781 /*	subb3	r0,$8,r0	...used for  pi/4  reduction -S.McD */
    782 	subb3	r0,$4,r0
    783 signoff9:
    784 /*
    785  *  Clear all unneeded octant bits.
    786  *
    787  *	bicb2	$0xf8,r0	...used for  pi/4  reduction -S.McD */
    788 	bicb2	$0xfc,r0
    789 /*
    790  *  Return.
    791  */
    792 	rsb
    793