n_argred.S revision 1.7 1 /* $NetBSD: n_argred.S,v 1.7 2002/02/24 01:06:21 matt Exp $ */
2 /*
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)argred.s 8.1 (Berkeley) 6/4/93
35 */
36
37 #include <machine/asm.h>
38
39 /*
40 * libm$argred implements Bob Corbett's argument reduction and
41 * libm$sincos implements Peter Tang's double precision sin/cos.
42 *
43 * Note: The two entry points libm$argred and libm$sincos are meant
44 * to be used only by _sin, _cos and _tan.
45 *
46 * method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett
47 * S. McDonald, April 4, 1985
48 */
49
50 ENTRY(__libm_argred, 0)
51 /*
52 * Compare the argument with the largest possible that can
53 * be reduced by table lookup. %r3 := |x| will be used in table_lookup .
54 */
55 movd %r0,%r3
56 bgeq abs1
57 mnegd %r3,%r3
58 abs1:
59 cmpd %r3,$0d+4.55530934770520019583e+01
60 blss small_arg
61 jsb trigred
62 rsb
63 small_arg:
64 jsb table_lookup
65 rsb
66 /*
67 * At this point,
68 * %r0 contains the quadrant number, 0, 1, 2, or 3;
69 * %r2/%r1 contains the reduced argument as a D-format number;
70 * %r3 contains a F-format extension to the reduced argument;
71 * %r4 contains a 0 or 1 corresponding to a sin or cos entry.
72 */
73
74 ENTRY(__libm_sincos, 0)
75 /*
76 * Compensate for a cosine entry by adding one to the quadrant number.
77 */
78 addl2 %r4,%r0
79 /*
80 * Polyd clobbers %r5-%r0 ; save X in %r7/%r6 .
81 * This can be avoided by rewriting trigred .
82 */
83 movd %r1,%r6
84 /*
85 * Likewise, save alpha in %r8 .
86 * This can be avoided by rewriting trigred .
87 */
88 movf %r3,%r8
89 /*
90 * Odd or even quadrant? cosine if odd, sine otherwise.
91 * Save floor(quadrant/2) in %r9 ; it determines the final sign.
92 */
93 rotl $-1,%r0,%r9
94 blss cosine
95 sine:
96 muld2 %r1,%r1 # Xsq = X * X
97 cmpw $0x2480,%r1 # [zl] Xsq > 2^-56?
98 blss 1f # [zl] yes, go ahead and do polyd
99 clrq %r1 # [zl] work around 11/780 FPA polyd bug
100 1:
101 polyd %r1,$7,sin_coef # Q = P(Xsq) , of deg 7
102 mulf3 $0f3.0,%r8,%r4 # beta = 3 * alpha
103 mulf2 %r0,%r4 # beta = Q * beta
104 addf2 %r8,%r4 # beta = alpha + beta
105 muld2 %r6,%r0 # S(X) = X * Q
106 /* cvtfd %r4,%r4 ... %r5 = 0 after a polyd. */
107 addd2 %r4,%r0 # S(X) = beta + S(X)
108 addd2 %r6,%r0 # S(X) = X + S(X)
109 jbr done
110 cosine:
111 muld2 %r6,%r6 # Xsq = X * X
112 beql zero_arg
113 mulf2 %r1,%r8 # beta = X * alpha
114 polyd %r6,$7,cos_coef /* Q = P'(Xsq) , of deg 7 */
115 subd3 %r0,%r8,%r0 # beta = beta - Q
116 subw2 $0x80,%r6 # Xsq = Xsq / 2
117 addd2 %r0,%r6 # Xsq = Xsq + beta
118 zero_arg:
119 subd3 %r6,$0d1.0,%r0 # C(X) = 1 - Xsq
120 done:
121 blbc %r9,even
122 mnegd %r0,%r0
123 even:
124 rsb
125
126 #ifdef __ELF__
127 .section .rodata
128 #else
129 .text
130 #endif
131 _ALIGN_TEXT
132
133 sin_coef:
134 .double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8..
135 .double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8..
136 .double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382..
137 .double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278..
138 .double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d..
139 .double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50
140 .double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554
141 .double 0d+0.00000000000000000000e+00 # s0 = 0
142
143 cos_coef:
144 .double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE..
145 .double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA..
146 .double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E..
147 .double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8..
148 .double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE..
149 .double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E
150 .double 0d+0.00000000000000000000e+00 # s1 = 0
151 .double 0d+0.00000000000000000000e+00 # s0 = 0
152
153 /*
154 * Multiples of pi/2 expressed as the sum of three doubles,
155 *
156 * trailing: n * pi/2 , n = 0, 1, 2, ..., 29
157 * trailing[n] ,
158 *
159 * middle: n * pi/2 , n = 0, 1, 2, ..., 29
160 * middle[n] ,
161 *
162 * leading: n * pi/2 , n = 0, 1, 2, ..., 29
163 * leading[n] ,
164 *
165 * where
166 * leading[n] := (n * pi/2) rounded,
167 * middle[n] := (n * pi/2 - leading[n]) rounded,
168 * trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded .
169 */
170 trailing:
171 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing
172 .double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing
173 .double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing
174 .double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing
175 .double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing
176 .double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing
177 .double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing
178 .double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing
179 .double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing
180 .double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing
181 .double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing
182 .double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing
183 .double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing
184 .double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing
185 .double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing
186 .double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing
187 .double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing
188 .double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing
189 .double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing
190 .double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing
191 .double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing
192 .double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing
193 .double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing
194 .double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing
195 .double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing
196 .double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing
197 .double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing
198 .double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing
199 .double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing
200 .double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing
201
202 middle:
203 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle
204 .double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle
205 .double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle
206 .double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle
207 .double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle
208 .double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle
209 .double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle
210 .double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle
211 .double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle
212 .double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle
213 .double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle
214 .double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle
215 .double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle
216 .double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle
217 .double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle
218 .double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle
219 .double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle
220 .double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle
221 .double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle
222 .double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle
223 .double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle
224 .double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle
225 .double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle
226 .double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle
227 .double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle
228 .double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle
229 .double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle
230 .double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle
231 .double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle
232 .double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle
233
234 leading:
235 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading
236 .double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading
237 .double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading
238 .double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading
239 .double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading
240 .double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading
241 .double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading
242 .double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading
243 .double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading
244 .double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading
245 .double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading
246 .double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading
247 .double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading
248 .double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading
249 .double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading
250 .double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading
251 .double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading
252 .double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading
253 .double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading
254 .double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading
255 .double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading
256 .double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading
257 .double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading
258 .double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading
259 .double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading
260 .double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading
261 .double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading
262 .double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading
263 .double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading
264 .double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading
265
266 twoOverPi:
267 .double 0d+6.36619772367581343076e-01
268
269 .text
270 _ALIGN_TEXT
271
272 table_lookup:
273 muld3 %r3,twoOverPi,%r0
274 cvtrdl %r0,%r0 # n = nearest int to ((2/pi)*|x|) rnded
275 subd2 leading[%r0],%r3 # p = (|x| - leading n*pi/2) exactly
276 subd3 middle[%r0],%r3,%r1 # q = (p - middle n*pi/2) rounded
277 subd2 %r1,%r3 # r = (p - q)
278 subd2 middle[%r0],%r3 # r = r - middle n*pi/2
279 subd2 trailing[%r0],%r3 # r = r - trailing n*pi/2 rounded
280 /*
281 * If the original argument was negative,
282 * negate the reduce argument and
283 * adjust the octant/quadrant number.
284 */
285 tstw 4(%ap)
286 bgeq abs2
287 mnegf %r1,%r1
288 mnegf %r3,%r3
289 /* subb3 %r0,$8,%r0 ...used for pi/4 reduction -S.McD */
290 subb3 %r0,$4,%r0
291 abs2:
292 /*
293 * Clear all unneeded octant/quadrant bits.
294 */
295 /* bicb2 $0xf8,%r0 ...used for pi/4 reduction -S.McD */
296 bicb2 $0xfc,%r0
297 rsb
298 /*
299 * p.0
300 */
301 #ifdef __ELF__
302 .section .rodata
303 #else
304 .text
305 #endif
306 _ALIGN_TEXT
307 /*
308 * Only 256 (actually 225) bits of 2/pi are needed for VAX double
309 * precision; this was determined by enumerating all the nearest
310 * machine integer multiples of pi/2 using continued fractions.
311 * (8a8d3673775b7ff7 required the most bits.) -S.McD
312 */
313 .long 0
314 .long 0
315 .long 0xaef1586d
316 .long 0x9458eaf7
317 .long 0x10e4107f
318 .long 0xd8a5664f
319 .long 0x4d377036
320 .long 0x09d5f47d
321 .long 0x91054a7f
322 .long 0xbe60db93
323 bits2opi:
324 .long 0x00000028
325 .long 0
326 /*
327 * Note: wherever you see the word `octant', read `quadrant'.
328 * Currently this code is set up for pi/2 argument reduction.
329 * By uncommenting/commenting the appropriate lines, it will
330 * also serve as a pi/4 argument reduction code.
331 */
332 .text
333
334 /* p.1
335 * Trigred preforms argument reduction
336 * for the trigonometric functions. It
337 * takes one input argument, a D-format
338 * number in %r1/%r0 . The magnitude of
339 * the input argument must be greater
340 * than or equal to 1/2 . Trigred produces
341 * three results: the number of the octant
342 * occupied by the argument, the reduced
343 * argument, and an extension of the
344 * reduced argument. The octant number is
345 * returned in %r0 . The reduced argument
346 * is returned as a D-format number in
347 * %r2/%r1 . An 8 bit extension of the
348 * reduced argument is returned as an
349 * F-format number in %r3.
350 * p.2
351 */
352 trigred:
353 /*
354 * Save the sign of the input argument.
355 */
356 movw %r0,-(%sp)
357 /*
358 * Extract the exponent field.
359 */
360 extzv $7,$7,%r0,%r2
361 /*
362 * Convert the fraction part of the input
363 * argument into a quadword integer.
364 */
365 bicw2 $0xff80,%r0
366 bisb2 $0x80,%r0 # -S.McD
367 rotl $16,%r0,%r0
368 rotl $16,%r1,%r1
369 /*
370 * If %r1 is negative, add 1 to %r0 . This
371 * adjustment is made so that the two's
372 * complement multiplications done later
373 * will produce unsigned results.
374 */
375 bgeq posmid
376 incl %r0
377 posmid:
378 /* p.3
379 *
380 * Set %r3 to the address of the first quadword
381 * used to obtain the needed portion of 2/pi .
382 * The address is longword aligned to ensure
383 * efficient access.
384 */
385 ashl $-3,%r2,%r3
386 bicb2 $3,%r3
387 mnegl %r3,%r3
388 movab bits2opi[%r3],%r3
389 /*
390 * Set %r2 to the size of the shift needed to
391 * obtain the correct portion of 2/pi .
392 */
393 bicb2 $0xe0,%r2
394 /* p.4
395 *
396 * Move the needed 128 bits of 2/pi into
397 * %r11 - %r8 . Adjust the numbers to allow
398 * for unsigned multiplication.
399 */
400 ashq %r2,(%r3),%r10
401
402 subl2 $4,%r3
403 ashq %r2,(%r3),%r9
404 bgeq signoff1
405 incl %r11
406 signoff1:
407 subl2 $4,%r3
408 ashq %r2,(%r3),%r8
409 bgeq signoff2
410 incl %r10
411 signoff2:
412 subl2 $4,%r3
413 ashq %r2,(%r3),%r7
414 bgeq signoff3
415 incl %r9
416 signoff3:
417 /* p.5
418 *
419 * Multiply the contents of %r0/%r1 by the
420 * slice of 2/pi in %r11 - %r8 .
421 */
422 emul %r0,%r8,$0,%r4
423 emul %r0,%r9,%r5,%r5
424 emul %r0,%r10,%r6,%r6
425
426 emul %r1,%r8,$0,%r7
427 emul %r1,%r9,%r8,%r8
428 emul %r1,%r10,%r9,%r9
429 emul %r1,%r11,%r10,%r10
430
431 addl2 %r4,%r8
432 adwc %r5,%r9
433 adwc %r6,%r10
434 /* p.6
435 *
436 * If there are more than five leading zeros
437 * after the first two quotient bits or if there
438 * are more than five leading ones after the first
439 * two quotient bits, generate more fraction bits.
440 * Otherwise, branch to code to produce the result.
441 */
442 bicl3 $0xc1ffffff,%r10,%r4
443 beql more1
444 cmpl $0x3e000000,%r4
445 bneq result
446 more1:
447 /* p.7
448 *
449 * generate another 32 result bits.
450 */
451 subl2 $4,%r3
452 ashq %r2,(%r3),%r5
453 bgeq signoff4
454
455 emul %r1,%r6,$0,%r4
456 addl2 %r1,%r5
457 emul %r0,%r6,%r5,%r5
458 addl2 %r0,%r6
459 jbr addbits1
460
461 signoff4:
462 emul %r1,%r6,$0,%r4
463 emul %r0,%r6,%r5,%r5
464
465 addbits1:
466 addl2 %r5,%r7
467 adwc %r6,%r8
468 adwc $0,%r9
469 adwc $0,%r10
470 /* p.8
471 *
472 * Check for massive cancellation.
473 */
474 bicl3 $0xc0000000,%r10,%r6
475 /* bneq more2 -S.McD Test was backwards */
476 beql more2
477 cmpl $0x3fffffff,%r6
478 bneq result
479 more2:
480 /* p.9
481 *
482 * If massive cancellation has occurred,
483 * generate another 24 result bits.
484 * Testing has shown there will always be
485 * enough bits after this point.
486 */
487 subl2 $4,%r3
488 ashq %r2,(%r3),%r5
489 bgeq signoff5
490
491 emul %r0,%r6,%r4,%r5
492 addl2 %r0,%r6
493 jbr addbits2
494
495 signoff5:
496 emul %r0,%r6,%r4,%r5
497
498 addbits2:
499 addl2 %r6,%r7
500 adwc $0,%r8
501 adwc $0,%r9
502 adwc $0,%r10
503 /* p.10
504 *
505 * The following code produces the reduced
506 * argument from the product bits contained
507 * in %r10 - %r7 .
508 */
509 result:
510 /*
511 * Extract the octant number from %r10 .
512 */
513 /* extzv $29,$3,%r10,%r0 ...used for pi/4 reduction -S.McD */
514 extzv $30,$2,%r10,%r0
515 /*
516 * Clear the octant bits in %r10 .
517 */
518 /* bicl2 $0xe0000000,%r10 ...used for pi/4 reduction -S.McD */
519 bicl2 $0xc0000000,%r10
520 /*
521 * Zero the sign flag.
522 */
523 clrl %r5
524 /* p.11
525 *
526 * Check to see if the fraction is greater than
527 * or equal to one-half. If it is, add one
528 * to the octant number, set the sign flag
529 * on, and replace the fraction with 1 minus
530 * the fraction.
531 */
532 /* bitl $0x10000000,%r10 ...used for pi/4 reduction -S.McD */
533 bitl $0x20000000,%r10
534 beql small
535 incl %r0
536 incl %r5
537 /* subl3 %r10,$0x1fffffff,%r10 ...used for pi/4 reduction -S.McD */
538 subl3 %r10,$0x3fffffff,%r10
539 mcoml %r9,%r9
540 mcoml %r8,%r8
541 mcoml %r7,%r7
542 small:
543 /* p.12
544 *
545 * Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD
546 * Test whether the first 30 bits of the
547 * fraction are zero.
548 */
549 tstl %r10
550 beql tiny
551 /*
552 * Find the position of the first one bit in %r10 .
553 */
554 cvtld %r10,%r1
555 extzv $7,$7,%r1,%r1
556 /*
557 * Compute the size of the shift needed.
558 */
559 subl3 %r1,$32,%r6
560 /*
561 * Shift up the high order 64 bits of the
562 * product.
563 */
564 ashq %r6,%r9,%r10
565 ashq %r6,%r8,%r9
566 jbr mult
567 /* p.13
568 *
569 * Test to see if the sign bit of %r9 is on.
570 */
571 tiny:
572 tstl %r9
573 bgeq tinier
574 /*
575 * If it is, shift the product bits up 32 bits.
576 */
577 movl $32,%r6
578 movq %r8,%r10
579 tstl %r10
580 jbr mult
581 /* p.14
582 *
583 * Test whether %r9 is zero. It is probably
584 * impossible for both %r10 and %r9 to be
585 * zero, but until proven to be so, the test
586 * must be made.
587 */
588 tinier:
589 beql zero
590 /*
591 * Find the position of the first one bit in %r9 .
592 */
593 cvtld %r9,%r1
594 extzv $7,$7,%r1,%r1
595 /*
596 * Compute the size of the shift needed.
597 */
598 subl3 %r1,$32,%r1
599 addl3 $32,%r1,%r6
600 /*
601 * Shift up the high order 64 bits of the
602 * product.
603 */
604 ashq %r1,%r8,%r10
605 ashq %r1,%r7,%r9
606 jbr mult
607 /* p.15
608 *
609 * The following code sets the reduced
610 * argument to zero.
611 */
612 zero:
613 clrl %r1
614 clrl %r2
615 clrl %r3
616 jbr return
617 /* p.16
618 *
619 * At this point, %r0 contains the octant number,
620 * %r6 indicates the number of bits the fraction
621 * has been shifted, %r5 indicates the sign of
622 * the fraction, %r11/%r10 contain the high order
623 * 64 bits of the fraction, and the condition
624 * codes indicate where the sign bit of %r10
625 * is on. The following code multiplies the
626 * fraction by pi/2 .
627 */
628 mult:
629 /*
630 * Save %r11/%r10 in %r4/%r1 . -S.McD
631 */
632 movl %r11,%r4
633 movl %r10,%r1
634 /*
635 * If the sign bit of %r10 is on, add 1 to %r11 .
636 */
637 bgeq signoff6
638 incl %r11
639 signoff6:
640 /* p.17
641 *
642 * Move pi/2 into %r3/%r2 .
643 */
644 movq $0xc90fdaa22168c235,%r2
645 /*
646 * Multiply the fraction by the portion of pi/2
647 * in %r2 .
648 */
649 emul %r2,%r10,$0,%r7
650 emul %r2,%r11,%r8,%r7
651 /*
652 * Multiply the fraction by the portion of pi/2
653 * in %r3 .
654 */
655 emul %r3,%r10,$0,%r9
656 emul %r3,%r11,%r10,%r10
657 /*
658 * Add the product bits together.
659 */
660 addl2 %r7,%r9
661 adwc %r8,%r10
662 adwc $0,%r11
663 /*
664 * Compensate for not sign extending %r8 above.-S.McD
665 */
666 tstl %r8
667 bgeq signoff6a
668 decl %r11
669 signoff6a:
670 /*
671 * Compensate for %r11/%r10 being unsigned. -S.McD
672 */
673 addl2 %r2,%r10
674 adwc %r3,%r11
675 /*
676 * Compensate for %r3/%r2 being unsigned. -S.McD
677 */
678 addl2 %r1,%r10
679 adwc %r4,%r11
680 /* p.18
681 *
682 * If the sign bit of %r11 is zero, shift the
683 * product bits up one bit and increment %r6 .
684 */
685 blss signon
686 incl %r6
687 ashq $1,%r10,%r10
688 tstl %r9
689 bgeq signoff7
690 incl %r10
691 signoff7:
692 signon:
693 /* p.19
694 *
695 * Shift the 56 most significant product
696 * bits into %r9/%r8 . The sign extension
697 * will be handled later.
698 */
699 ashq $-8,%r10,%r8
700 /*
701 * Convert the low order 8 bits of %r10
702 * into an F-format number.
703 */
704 cvtbf %r10,%r3
705 /*
706 * If the result of the conversion was
707 * negative, add 1 to %r9/%r8 .
708 */
709 bgeq chop
710 incl %r8
711 adwc $0,%r9
712 /*
713 * If %r9 is now zero, branch to special
714 * code to handle that possibility.
715 */
716 beql carryout
717 chop:
718 /* p.20
719 *
720 * Convert the number in %r9/%r8 into
721 * D-format number in %r2/%r1 .
722 */
723 rotl $16,%r8,%r2
724 rotl $16,%r9,%r1
725 /*
726 * Set the exponent field to the appropriate
727 * value. Note that the extra bits created by
728 * sign extension are now eliminated.
729 */
730 subw3 %r6,$131,%r6
731 insv %r6,$7,$9,%r1
732 /*
733 * Set the exponent field of the F-format
734 * number in %r3 to the appropriate value.
735 */
736 tstf %r3
737 beql return
738 /* extzv $7,$8,%r3,%r4 -S.McD */
739 extzv $7,$7,%r3,%r4
740 addw2 %r4,%r6
741 /* subw2 $217,%r6 -S.McD */
742 subw2 $64,%r6
743 insv %r6,$7,$8,%r3
744 jbr return
745 /* p.21
746 *
747 * The following code generates the appropriate
748 * result for the unlikely possibility that
749 * rounding the number in %r9/%r8 resulted in
750 * a carry out.
751 */
752 carryout:
753 clrl %r1
754 clrl %r2
755 subw3 %r6,$132,%r6
756 insv %r6,$7,$9,%r1
757 tstf %r3
758 beql return
759 extzv $7,$8,%r3,%r4
760 addw2 %r4,%r6
761 subw2 $218,%r6
762 insv %r6,$7,$8,%r3
763 /* p.22
764 *
765 * The following code makes an needed
766 * adjustments to the signs of the
767 * results or to the octant number, and
768 * then returns.
769 */
770 return:
771 /*
772 * Test if the fraction was greater than or
773 * equal to 1/2 . If so, negate the reduced
774 * argument.
775 */
776 blbc %r5,signoff8
777 mnegf %r1,%r1
778 mnegf %r3,%r3
779 signoff8:
780 /* p.23
781 *
782 * If the original argument was negative,
783 * negate the reduce argument and
784 * adjust the octant number.
785 */
786 tstw (%sp)+
787 bgeq signoff9
788 mnegf %r1,%r1
789 mnegf %r3,%r3
790 /* subb3 %r0,$8,%r0 ...used for pi/4 reduction -S.McD */
791 subb3 %r0,$4,%r0
792 signoff9:
793 /*
794 * Clear all unneeded octant bits.
795 *
796 * bicb2 $0xf8,%r0 ...used for pi/4 reduction -S.McD */
797 bicb2 $0xfc,%r0
798 /*
799 * Return.
800 */
801 rsb
802