Home | History | Annotate | Line # | Download | only in vax
n_argred.S revision 1.8
      1 /*	$NetBSD: n_argred.S,v 1.8 2003/08/07 16:44:44 agc Exp $	*/
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. Neither the name of the University nor the names of its contributors
     15  *    may be used to endorse or promote products derived from this software
     16  *    without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  *	@(#)argred.s	8.1 (Berkeley) 6/4/93
     31  */
     32 
     33 #include <machine/asm.h>
     34 
     35 /*
     36  *  libm$argred implements Bob Corbett's argument reduction and
     37  *  libm$sincos implements Peter Tang's double precision sin/cos.
     38  *
     39  *  Note: The two entry points libm$argred and libm$sincos are meant
     40  *        to be used only by _sin, _cos and _tan.
     41  *
     42  * method: true range reduction to [-pi/4,pi/4], P. Tang  &  B. Corbett
     43  * S. McDonald, April 4,  1985
     44  */
     45 
     46 ENTRY(__libm_argred, 0)
     47 /*
     48  *  Compare the argument with the largest possible that can
     49  *  be reduced by table lookup.  %r3 := |x|  will be used in  table_lookup .
     50  */
     51 	movd	%r0,%r3
     52 	bgeq	abs1
     53 	mnegd	%r3,%r3
     54 abs1:
     55 	cmpd	%r3,$0d+4.55530934770520019583e+01
     56 	blss	small_arg
     57 	jsb	trigred
     58 	rsb
     59 small_arg:
     60 	jsb	table_lookup
     61 	rsb
     62 /*
     63  *  At this point,
     64  *	   %r0  contains the quadrant number, 0, 1, 2, or 3;
     65  *	%r2/%r1  contains the reduced argument as a D-format number;
     66  *  	   %r3  contains a F-format extension to the reduced argument;
     67  *          %r4  contains a  0 or 1  corresponding to a  sin or cos  entry.
     68  */
     69 
     70 ENTRY(__libm_sincos, 0)
     71 /*
     72  *  Compensate for a cosine entry by adding one to the quadrant number.
     73  */
     74 	addl2	%r4,%r0
     75 /*
     76  *  Polyd clobbers  %r5-%r0 ;  save  X  in  %r7/%r6 .
     77  *  This can be avoided by rewriting  trigred .
     78  */
     79 	movd	%r1,%r6
     80 /*
     81  *  Likewise, save  alpha  in  %r8 .
     82  *  This can be avoided by rewriting  trigred .
     83  */
     84 	movf	%r3,%r8
     85 /*
     86  *  Odd or even quadrant?  cosine if odd, sine otherwise.
     87  *  Save  floor(quadrant/2) in  %r9  ; it determines the final sign.
     88  */
     89 	rotl	$-1,%r0,%r9
     90 	blss	cosine
     91 sine:
     92 	muld2	%r1,%r1		# Xsq = X * X
     93 	cmpw	$0x2480,%r1	# [zl] Xsq > 2^-56?
     94 	blss	1f		# [zl] yes, go ahead and do polyd
     95 	clrq	%r1		# [zl] work around 11/780 FPA polyd bug
     96 1:
     97 	polyd	%r1,$7,sin_coef	# Q = P(Xsq) , of deg 7
     98 	mulf3	$0f3.0,%r8,%r4	# beta = 3 * alpha
     99 	mulf2	%r0,%r4		# beta = Q * beta
    100 	addf2	%r8,%r4		# beta = alpha + beta
    101 	muld2	%r6,%r0		# S(X) = X * Q
    102 /*	cvtfd	%r4,%r4		... %r5 = 0 after a polyd. */
    103 	addd2	%r4,%r0		# S(X) = beta + S(X)
    104 	addd2	%r6,%r0		# S(X) = X + S(X)
    105 	jbr	done
    106 cosine:
    107 	muld2	%r6,%r6		# Xsq = X * X
    108 	beql	zero_arg
    109 	mulf2	%r1,%r8		# beta = X * alpha
    110 	polyd	%r6,$7,cos_coef	/* Q = P'(Xsq) , of deg 7 */
    111 	subd3	%r0,%r8,%r0	# beta = beta - Q
    112 	subw2	$0x80,%r6	# Xsq = Xsq / 2
    113 	addd2	%r0,%r6		# Xsq = Xsq + beta
    114 zero_arg:
    115 	subd3	%r6,$0d1.0,%r0	# C(X) = 1 - Xsq
    116 done:
    117 	blbc	%r9,even
    118 	mnegd	%r0,%r0
    119 even:
    120 	rsb
    121 
    122 #ifdef __ELF__
    123 	.section .rodata
    124 #else
    125 	.text
    126 #endif
    127 	_ALIGN_TEXT
    128 
    129 sin_coef:
    130 	.double	0d-7.53080332264191085773e-13	# s7 = 2^-29 -1.a7f2504ffc49f8..
    131 	.double	0d+1.60573519267703489121e-10	# s6 = 2^-21  1.611adaede473c8..
    132 	.double	0d-2.50520965150706067211e-08	# s5 = 2^-1a -1.ae644921ed8382..
    133 	.double	0d+2.75573191800593885716e-06	# s4 = 2^-13  1.71de3a4b884278..
    134 	.double	0d-1.98412698411850507950e-04	# s3 = 2^-0d -1.a01a01a0125e7d..
    135 	.double	0d+8.33333333333325688985e-03	# s2 = 2^-07  1.11111111110e50
    136 	.double	0d-1.66666666666666664354e-01	# s1 = 2^-03 -1.55555555555554
    137 	.double	0d+0.00000000000000000000e+00	# s0 = 0
    138 
    139 cos_coef:
    140 	.double	0d-1.13006966202629430300e-11	# s7 = 2^-25 -1.8D9BA04D1374BE..
    141 	.double	0d+2.08746646574796004700e-09	# s6 = 2^-1D  1.1EE632650350BA..
    142 	.double	0d-2.75573073031284417300e-07	# s5 = 2^-16 -1.27E4F31411719E..
    143 	.double	0d+2.48015872682668025200e-05	# s4 = 2^-10  1.A01A0196B902E8..
    144 	.double	0d-1.38888888888464709200e-03	# s3 = 2^-0A -1.6C16C16C11FACE..
    145 	.double	0d+4.16666666666664761400e-02	# s2 = 2^-05  1.5555555555539E
    146 	.double	0d+0.00000000000000000000e+00	# s1 = 0
    147 	.double	0d+0.00000000000000000000e+00	# s0 = 0
    148 
    149 /*
    150  *  Multiples of  pi/2  expressed as the sum of three doubles,
    151  *
    152  *  trailing:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    153  *			trailing[n] ,
    154  *
    155  *  middle:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    156  *			middle[n]   ,
    157  *
    158  *  leading:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    159  *			leading[n]  ,
    160  *
    161  *	where
    162  *		leading[n]  := (n * pi/2)  rounded,
    163  *		middle[n]   := (n * pi/2  -  leading[n])  rounded,
    164  *		trailing[n] := (( n * pi/2 - leading[n]) - middle[n])  rounded .
    165  */
    166 trailing:
    167 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  trailing
    168 	.double	0d+4.33590506506189049611e-35	#  1 * pi/2  trailing
    169 	.double	0d+8.67181013012378099223e-35	#  2 * pi/2  trailing
    170 	.double	0d+1.30077151951856714215e-34	#  3 * pi/2  trailing
    171 	.double	0d+1.73436202602475619845e-34	#  4 * pi/2  trailing
    172 	.double	0d-1.68390735624352669192e-34	#  5 * pi/2  trailing
    173 	.double	0d+2.60154303903713428430e-34	#  6 * pi/2  trailing
    174 	.double	0d-8.16726343231148352150e-35	#  7 * pi/2  trailing
    175 	.double	0d+3.46872405204951239689e-34	#  8 * pi/2  trailing
    176 	.double	0d+3.90231455855570147991e-34	#  9 * pi/2  trailing
    177 	.double	0d-3.36781471248705338384e-34	# 10 * pi/2  trailing
    178 	.double	0d-1.06379439835298071785e-33	# 11 * pi/2  trailing
    179 	.double	0d+5.20308607807426856861e-34	# 12 * pi/2  trailing
    180 	.double	0d+5.63667658458045770509e-34	# 13 * pi/2  trailing
    181 	.double	0d-1.63345268646229670430e-34	# 14 * pi/2  trailing
    182 	.double	0d-1.19986217995610764801e-34	# 15 * pi/2  trailing
    183 	.double	0d+6.93744810409902479378e-34	# 16 * pi/2  trailing
    184 	.double	0d-8.03640094449267300110e-34	# 17 * pi/2  trailing
    185 	.double	0d+7.80462911711140295982e-34	# 18 * pi/2  trailing
    186 	.double	0d-7.16921993148029483506e-34	# 19 * pi/2  trailing
    187 	.double	0d-6.73562942497410676769e-34	# 20 * pi/2  trailing
    188 	.double	0d-6.30203891846791677593e-34	# 21 * pi/2  trailing
    189 	.double	0d-2.12758879670596143570e-33	# 22 * pi/2  trailing
    190 	.double	0d+2.53800212047402350390e-33	# 23 * pi/2  trailing
    191 	.double	0d+1.04061721561485371372e-33	# 24 * pi/2  trailing
    192 	.double	0d+6.11729905311472319056e-32	# 25 * pi/2  trailing
    193 	.double	0d+1.12733531691609154102e-33	# 26 * pi/2  trailing
    194 	.double	0d-3.70049587943078297272e-34	# 27 * pi/2  trailing
    195 	.double	0d-3.26690537292459340860e-34	# 28 * pi/2  trailing
    196 	.double	0d-1.14812616507957271361e-34	# 29 * pi/2  trailing
    197 
    198 middle:
    199 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  middle
    200 	.double	0d+5.72118872610983179676e-18	#  1 * pi/2  middle
    201 	.double	0d+1.14423774522196635935e-17	#  2 * pi/2  middle
    202 	.double	0d-3.83475850529283316309e-17	#  3 * pi/2  middle
    203 	.double	0d+2.28847549044393271871e-17	#  4 * pi/2  middle
    204 	.double	0d-2.69052076007086676522e-17	#  5 * pi/2  middle
    205 	.double	0d-7.66951701058566632618e-17	#  6 * pi/2  middle
    206 	.double	0d-1.54628301484890040587e-17	#  7 * pi/2  middle
    207 	.double	0d+4.57695098088786543741e-17	#  8 * pi/2  middle
    208 	.double	0d+1.07001849766246313192e-16	#  9 * pi/2  middle
    209 	.double	0d-5.38104152014173353044e-17	# 10 * pi/2  middle
    210 	.double	0d-2.14622680169080983801e-16	# 11 * pi/2  middle
    211 	.double	0d-1.53390340211713326524e-16	# 12 * pi/2  middle
    212 	.double	0d-9.21580002543456677056e-17	# 13 * pi/2  middle
    213 	.double	0d-3.09256602969780081173e-17	# 14 * pi/2  middle
    214 	.double	0d+3.03066796603896507006e-17	# 15 * pi/2  middle
    215 	.double	0d+9.15390196177573087482e-17	# 16 * pi/2  middle
    216 	.double	0d+1.52771359575124969107e-16	# 17 * pi/2  middle
    217 	.double	0d+2.14003699532492626384e-16	# 18 * pi/2  middle
    218 	.double	0d-1.68853170360202329427e-16	# 19 * pi/2  middle
    219 	.double	0d-1.07620830402834670609e-16	# 20 * pi/2  middle
    220 	.double	0d+3.97700719404595604379e-16	# 21 * pi/2  middle
    221 	.double	0d-4.29245360338161967602e-16	# 22 * pi/2  middle
    222 	.double	0d-3.68013020380794313406e-16	# 23 * pi/2  middle
    223 	.double	0d-3.06780680423426653047e-16	# 24 * pi/2  middle
    224 	.double	0d-2.45548340466059054318e-16	# 25 * pi/2  middle
    225 	.double	0d-1.84316000508691335411e-16	# 26 * pi/2  middle
    226 	.double	0d-1.23083660551323675053e-16	# 27 * pi/2  middle
    227 	.double	0d-6.18513205939560162346e-17	# 28 * pi/2  middle
    228 	.double	0d-6.18980636588357585202e-19	# 29 * pi/2  middle
    229 
    230 leading:
    231 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  leading
    232 	.double	0d+1.57079632679489661351e+00	#  1 * pi/2  leading
    233 	.double	0d+3.14159265358979322702e+00	#  2 * pi/2  leading
    234 	.double	0d+4.71238898038468989604e+00	#  3 * pi/2  leading
    235 	.double	0d+6.28318530717958645404e+00	#  4 * pi/2  leading
    236 	.double	0d+7.85398163397448312306e+00	#  5 * pi/2  leading
    237 	.double	0d+9.42477796076937979208e+00	#  6 * pi/2  leading
    238 	.double	0d+1.09955742875642763501e+01	#  7 * pi/2  leading
    239 	.double	0d+1.25663706143591729081e+01	#  8 * pi/2  leading
    240 	.double	0d+1.41371669411540694661e+01	#  9 * pi/2  leading
    241 	.double	0d+1.57079632679489662461e+01	# 10 * pi/2  leading
    242 	.double	0d+1.72787595947438630262e+01	# 11 * pi/2  leading
    243 	.double	0d+1.88495559215387595842e+01	# 12 * pi/2  leading
    244 	.double	0d+2.04203522483336561422e+01	# 13 * pi/2  leading
    245 	.double	0d+2.19911485751285527002e+01	# 14 * pi/2  leading
    246 	.double	0d+2.35619449019234492582e+01	# 15 * pi/2  leading
    247 	.double	0d+2.51327412287183458162e+01	# 16 * pi/2  leading
    248 	.double	0d+2.67035375555132423742e+01	# 17 * pi/2  leading
    249 	.double	0d+2.82743338823081389322e+01	# 18 * pi/2  leading
    250 	.double	0d+2.98451302091030359342e+01	# 19 * pi/2  leading
    251 	.double	0d+3.14159265358979324922e+01	# 20 * pi/2  leading
    252 	.double	0d+3.29867228626928286062e+01	# 21 * pi/2  leading
    253 	.double	0d+3.45575191894877260523e+01	# 22 * pi/2  leading
    254 	.double	0d+3.61283155162826226103e+01	# 23 * pi/2  leading
    255 	.double	0d+3.76991118430775191683e+01	# 24 * pi/2  leading
    256 	.double	0d+3.92699081698724157263e+01	# 25 * pi/2  leading
    257 	.double	0d+4.08407044966673122843e+01	# 26 * pi/2  leading
    258 	.double	0d+4.24115008234622088423e+01	# 27 * pi/2  leading
    259 	.double	0d+4.39822971502571054003e+01	# 28 * pi/2  leading
    260 	.double	0d+4.55530934770520019583e+01	# 29 * pi/2  leading
    261 
    262 twoOverPi:
    263 	.double	0d+6.36619772367581343076e-01
    264 
    265 	.text
    266 	_ALIGN_TEXT
    267 
    268 table_lookup:
    269 	muld3	%r3,twoOverPi,%r0
    270 	cvtrdl	%r0,%r0			# n = nearest int to ((2/pi)*|x|) rnded
    271 	subd2	leading[%r0],%r3		# p = (|x| - leading n*pi/2) exactly
    272 	subd3	middle[%r0],%r3,%r1	# q = (p - middle  n*pi/2) rounded
    273 	subd2	%r1,%r3			# r = (p - q)
    274 	subd2	middle[%r0],%r3		# r =  r - middle  n*pi/2
    275 	subd2	trailing[%r0],%r3		# r =  r - trailing n*pi/2  rounded
    276 /*
    277  *  If the original argument was negative,
    278  *  negate the reduce argument and
    279  *  adjust the octant/quadrant number.
    280  */
    281 	tstw	4(%ap)
    282 	bgeq	abs2
    283 	mnegf	%r1,%r1
    284 	mnegf	%r3,%r3
    285 /*	subb3	%r0,$8,%r0	...used for  pi/4  reduction -S.McD */
    286 	subb3	%r0,$4,%r0
    287 abs2:
    288 /*
    289  *  Clear all unneeded octant/quadrant bits.
    290  */
    291 /*	bicb2	$0xf8,%r0	...used for  pi/4  reduction -S.McD */
    292 	bicb2	$0xfc,%r0
    293 	rsb
    294 /*
    295  *						p.0
    296  */
    297 #ifdef __ELF__
    298 	.section .rodata
    299 #else
    300 	.text
    301 #endif
    302 	_ALIGN_TEXT
    303 /*
    304  * Only 256 (actually 225) bits of 2/pi are needed for VAX double
    305  * precision; this was determined by enumerating all the nearest
    306  * machine integer multiples of pi/2 using continued fractions.
    307  * (8a8d3673775b7ff7 required the most bits.)		-S.McD
    308  */
    309 	.long	0
    310 	.long	0
    311 	.long	0xaef1586d
    312 	.long	0x9458eaf7
    313 	.long	0x10e4107f
    314 	.long	0xd8a5664f
    315 	.long	0x4d377036
    316 	.long	0x09d5f47d
    317 	.long	0x91054a7f
    318 	.long	0xbe60db93
    319 bits2opi:
    320 	.long	0x00000028
    321 	.long	0
    322 /*
    323  *  Note: wherever you see the word `octant', read `quadrant'.
    324  *  Currently this code is set up for  pi/2  argument reduction.
    325  *  By uncommenting/commenting the appropriate lines, it will
    326  *  also serve as a  pi/4  argument reduction code.
    327  */
    328 	.text
    329 
    330 /*						p.1
    331  *  Trigred  preforms argument reduction
    332  *  for the trigonometric functions.  It
    333  *  takes one input argument, a D-format
    334  *  number in  %r1/%r0 .  The magnitude of
    335  *  the input argument must be greater
    336  *  than or equal to  1/2 .  Trigred produces
    337  *  three results:  the number of the octant
    338  *  occupied by the argument, the reduced
    339  *  argument, and an extension of the
    340  *  reduced argument.  The octant number is
    341  *  returned in  %r0 .  The reduced argument
    342  *  is returned as a D-format number in
    343  *  %r2/%r1 .  An 8 bit extension of the
    344  *  reduced argument is returned as an
    345  *  F-format number in %r3.
    346  *						p.2
    347  */
    348 trigred:
    349 /*
    350  *  Save the sign of the input argument.
    351  */
    352 	movw	%r0,-(%sp)
    353 /*
    354  *  Extract the exponent field.
    355  */
    356 	extzv	$7,$7,%r0,%r2
    357 /*
    358  *  Convert the fraction part of the input
    359  *  argument into a quadword integer.
    360  */
    361 	bicw2	$0xff80,%r0
    362 	bisb2	$0x80,%r0	# -S.McD
    363 	rotl	$16,%r0,%r0
    364 	rotl	$16,%r1,%r1
    365 /*
    366  *  If  %r1  is negative, add  1  to  %r0 .  This
    367  *  adjustment is made so that the two's
    368  *  complement multiplications done later
    369  *  will produce unsigned results.
    370  */
    371 	bgeq	posmid
    372 	incl	%r0
    373 posmid:
    374 /*						p.3
    375  *
    376  *  Set  %r3  to the address of the first quadword
    377  *  used to obtain the needed portion of  2/pi .
    378  *  The address is longword aligned to ensure
    379  *  efficient access.
    380  */
    381 	ashl	$-3,%r2,%r3
    382 	bicb2	$3,%r3
    383 	mnegl	%r3,%r3
    384 	movab	bits2opi[%r3],%r3
    385 /*
    386  *  Set  %r2  to the size of the shift needed to
    387  *  obtain the correct portion of  2/pi .
    388  */
    389 	bicb2	$0xe0,%r2
    390 /*						p.4
    391  *
    392  *  Move the needed  128  bits of  2/pi  into
    393  *  %r11 - %r8 .  Adjust the numbers to allow
    394  *  for unsigned multiplication.
    395  */
    396 	ashq	%r2,(%r3),%r10
    397 
    398 	subl2	$4,%r3
    399 	ashq	%r2,(%r3),%r9
    400 	bgeq	signoff1
    401 	incl	%r11
    402 signoff1:
    403 	subl2	$4,%r3
    404 	ashq	%r2,(%r3),%r8
    405 	bgeq	signoff2
    406 	incl	%r10
    407 signoff2:
    408 	subl2	$4,%r3
    409 	ashq	%r2,(%r3),%r7
    410 	bgeq	signoff3
    411 	incl	%r9
    412 signoff3:
    413 /*						p.5
    414  *
    415  *  Multiply the contents of  %r0/%r1  by the
    416  *  slice of  2/pi  in  %r11 - %r8 .
    417  */
    418 	emul	%r0,%r8,$0,%r4
    419 	emul	%r0,%r9,%r5,%r5
    420 	emul	%r0,%r10,%r6,%r6
    421 
    422 	emul	%r1,%r8,$0,%r7
    423 	emul	%r1,%r9,%r8,%r8
    424 	emul	%r1,%r10,%r9,%r9
    425 	emul	%r1,%r11,%r10,%r10
    426 
    427 	addl2	%r4,%r8
    428 	adwc	%r5,%r9
    429 	adwc	%r6,%r10
    430 /*						p.6
    431  *
    432  *  If there are more than five leading zeros
    433  *  after the first two quotient bits or if there
    434  *  are more than five leading ones after the first
    435  *  two quotient bits, generate more fraction bits.
    436  *  Otherwise, branch to code to produce the result.
    437  */
    438 	bicl3	$0xc1ffffff,%r10,%r4
    439 	beql	more1
    440 	cmpl	$0x3e000000,%r4
    441 	bneq	result
    442 more1:
    443 /*						p.7
    444  *
    445  *  generate another  32  result bits.
    446  */
    447 	subl2	$4,%r3
    448 	ashq	%r2,(%r3),%r5
    449 	bgeq	signoff4
    450 
    451 	emul	%r1,%r6,$0,%r4
    452 	addl2	%r1,%r5
    453 	emul	%r0,%r6,%r5,%r5
    454 	addl2	%r0,%r6
    455 	jbr	addbits1
    456 
    457 signoff4:
    458 	emul	%r1,%r6,$0,%r4
    459 	emul	%r0,%r6,%r5,%r5
    460 
    461 addbits1:
    462 	addl2	%r5,%r7
    463 	adwc	%r6,%r8
    464 	adwc	$0,%r9
    465 	adwc	$0,%r10
    466 /*						p.8
    467  *
    468  *  Check for massive cancellation.
    469  */
    470 	bicl3	$0xc0000000,%r10,%r6
    471 /*	bneq	more2			-S.McD  Test was backwards */
    472 	beql	more2
    473 	cmpl	$0x3fffffff,%r6
    474 	bneq	result
    475 more2:
    476 /*						p.9
    477  *
    478  *  If massive cancellation has occurred,
    479  *  generate another  24  result bits.
    480  *  Testing has shown there will always be
    481  *  enough bits after this point.
    482  */
    483 	subl2	$4,%r3
    484 	ashq	%r2,(%r3),%r5
    485 	bgeq	signoff5
    486 
    487 	emul	%r0,%r6,%r4,%r5
    488 	addl2	%r0,%r6
    489 	jbr	addbits2
    490 
    491 signoff5:
    492 	emul	%r0,%r6,%r4,%r5
    493 
    494 addbits2:
    495 	addl2	%r6,%r7
    496 	adwc	$0,%r8
    497 	adwc	$0,%r9
    498 	adwc	$0,%r10
    499 /*						p.10
    500  *
    501  *  The following code produces the reduced
    502  *  argument from the product bits contained
    503  *  in  %r10 - %r7 .
    504  */
    505 result:
    506 /*
    507  *  Extract the octant number from  %r10 .
    508  */
    509 /*	extzv	$29,$3,%r10,%r0	...used for  pi/4  reduction -S.McD */
    510 	extzv	$30,$2,%r10,%r0
    511 /*
    512  *  Clear the octant bits in  %r10 .
    513  */
    514 /*	bicl2	$0xe0000000,%r10	...used for  pi/4  reduction -S.McD */
    515 	bicl2	$0xc0000000,%r10
    516 /*
    517  *  Zero the sign flag.
    518  */
    519 	clrl	%r5
    520 /*						p.11
    521  *
    522  *  Check to see if the fraction is greater than
    523  *  or equal to one-half.  If it is, add one
    524  *  to the octant number, set the sign flag
    525  *  on, and replace the fraction with  1 minus
    526  *  the fraction.
    527  */
    528 /*	bitl	$0x10000000,%r10		...used for  pi/4  reduction -S.McD */
    529 	bitl	$0x20000000,%r10
    530 	beql	small
    531 	incl	%r0
    532 	incl	%r5
    533 /*	subl3	%r10,$0x1fffffff,%r10	...used for  pi/4  reduction -S.McD */
    534 	subl3	%r10,$0x3fffffff,%r10
    535 	mcoml	%r9,%r9
    536 	mcoml	%r8,%r8
    537 	mcoml	%r7,%r7
    538 small:
    539 /*						p.12
    540  *
    541  *  Test whether the first  29  bits of the ...used for  pi/4  reduction -S.McD
    542  *  Test whether the first  30  bits of the
    543  *  fraction are zero.
    544  */
    545 	tstl	%r10
    546 	beql	tiny
    547 /*
    548  *  Find the position of the first one bit in  %r10 .
    549  */
    550 	cvtld	%r10,%r1
    551 	extzv	$7,$7,%r1,%r1
    552 /*
    553  *  Compute the size of the shift needed.
    554  */
    555 	subl3	%r1,$32,%r6
    556 /*
    557  *  Shift up the high order  64  bits of the
    558  *  product.
    559  */
    560 	ashq	%r6,%r9,%r10
    561 	ashq	%r6,%r8,%r9
    562 	jbr	mult
    563 /*						p.13
    564  *
    565  *  Test to see if the sign bit of  %r9  is on.
    566  */
    567 tiny:
    568 	tstl	%r9
    569 	bgeq	tinier
    570 /*
    571  *  If it is, shift the product bits up  32  bits.
    572  */
    573 	movl	$32,%r6
    574 	movq	%r8,%r10
    575 	tstl	%r10
    576 	jbr	mult
    577 /*						p.14
    578  *
    579  *  Test whether  %r9  is zero.  It is probably
    580  *  impossible for both  %r10  and  %r9  to be
    581  *  zero, but until proven to be so, the test
    582  *  must be made.
    583  */
    584 tinier:
    585 	beql	zero
    586 /*
    587  *  Find the position of the first one bit in  %r9 .
    588  */
    589 	cvtld	%r9,%r1
    590 	extzv	$7,$7,%r1,%r1
    591 /*
    592  *  Compute the size of the shift needed.
    593  */
    594 	subl3	%r1,$32,%r1
    595 	addl3	$32,%r1,%r6
    596 /*
    597  *  Shift up the high order  64  bits of the
    598  *  product.
    599  */
    600 	ashq	%r1,%r8,%r10
    601 	ashq	%r1,%r7,%r9
    602 	jbr	mult
    603 /*						p.15
    604  *
    605  *  The following code sets the reduced
    606  *  argument to zero.
    607  */
    608 zero:
    609 	clrl	%r1
    610 	clrl	%r2
    611 	clrl	%r3
    612 	jbr	return
    613 /*						p.16
    614  *
    615  *  At this point,  %r0  contains the octant number,
    616  *  %r6  indicates the number of bits the fraction
    617  *  has been shifted,  %r5  indicates the sign of
    618  *  the fraction,  %r11/%r10  contain the high order
    619  *  64  bits of the fraction, and the condition
    620  *  codes indicate where the sign bit of  %r10
    621  *  is on.  The following code multiplies the
    622  *  fraction by  pi/2 .
    623  */
    624 mult:
    625 /*
    626  *  Save  %r11/%r10  in  %r4/%r1 .		-S.McD
    627  */
    628 	movl	%r11,%r4
    629 	movl	%r10,%r1
    630 /*
    631  *  If the sign bit of  %r10  is on, add  1  to  %r11 .
    632  */
    633 	bgeq	signoff6
    634 	incl	%r11
    635 signoff6:
    636 /*						p.17
    637  *
    638  *  Move  pi/2  into  %r3/%r2 .
    639  */
    640 	movq	$0xc90fdaa22168c235,%r2
    641 /*
    642  *  Multiply the fraction by the portion of  pi/2
    643  *  in  %r2 .
    644  */
    645 	emul	%r2,%r10,$0,%r7
    646 	emul	%r2,%r11,%r8,%r7
    647 /*
    648  *  Multiply the fraction by the portion of  pi/2
    649  *  in  %r3 .
    650  */
    651 	emul	%r3,%r10,$0,%r9
    652 	emul	%r3,%r11,%r10,%r10
    653 /*
    654  *  Add the product bits together.
    655  */
    656 	addl2	%r7,%r9
    657 	adwc	%r8,%r10
    658 	adwc	$0,%r11
    659 /*
    660  *  Compensate for not sign extending  %r8  above.-S.McD
    661  */
    662 	tstl	%r8
    663 	bgeq	signoff6a
    664 	decl	%r11
    665 signoff6a:
    666 /*
    667  *  Compensate for  %r11/%r10  being unsigned.	-S.McD
    668  */
    669 	addl2	%r2,%r10
    670 	adwc	%r3,%r11
    671 /*
    672  *  Compensate for  %r3/%r2  being unsigned.	-S.McD
    673  */
    674 	addl2	%r1,%r10
    675 	adwc	%r4,%r11
    676 /*						p.18
    677  *
    678  *  If the sign bit of  %r11  is zero, shift the
    679  *  product bits up one bit and increment  %r6 .
    680  */
    681 	blss	signon
    682 	incl	%r6
    683 	ashq	$1,%r10,%r10
    684 	tstl	%r9
    685 	bgeq	signoff7
    686 	incl	%r10
    687 signoff7:
    688 signon:
    689 /*						p.19
    690  *
    691  *  Shift the  56  most significant product
    692  *  bits into  %r9/%r8 .  The sign extension
    693  *  will be handled later.
    694  */
    695 	ashq	$-8,%r10,%r8
    696 /*
    697  *  Convert the low order  8  bits of  %r10
    698  *  into an F-format number.
    699  */
    700 	cvtbf	%r10,%r3
    701 /*
    702  *  If the result of the conversion was
    703  *  negative, add  1  to  %r9/%r8 .
    704  */
    705 	bgeq	chop
    706 	incl	%r8
    707 	adwc	$0,%r9
    708 /*
    709  *  If  %r9  is now zero, branch to special
    710  *  code to handle that possibility.
    711  */
    712 	beql	carryout
    713 chop:
    714 /*						p.20
    715  *
    716  *  Convert the number in  %r9/%r8  into
    717  *  D-format number in  %r2/%r1 .
    718  */
    719 	rotl	$16,%r8,%r2
    720 	rotl	$16,%r9,%r1
    721 /*
    722  *  Set the exponent field to the appropriate
    723  *  value.  Note that the extra bits created by
    724  *  sign extension are now eliminated.
    725  */
    726 	subw3	%r6,$131,%r6
    727 	insv	%r6,$7,$9,%r1
    728 /*
    729  *  Set the exponent field of the F-format
    730  *  number in  %r3  to the appropriate value.
    731  */
    732 	tstf	%r3
    733 	beql	return
    734 /*	extzv	$7,$8,%r3,%r4	-S.McD */
    735 	extzv	$7,$7,%r3,%r4
    736 	addw2	%r4,%r6
    737 /*	subw2	$217,%r6		-S.McD */
    738 	subw2	$64,%r6
    739 	insv	%r6,$7,$8,%r3
    740 	jbr	return
    741 /*						p.21
    742  *
    743  *  The following code generates the appropriate
    744  *  result for the unlikely possibility that
    745  *  rounding the number in  %r9/%r8  resulted in
    746  *  a carry out.
    747  */
    748 carryout:
    749 	clrl	%r1
    750 	clrl	%r2
    751 	subw3	%r6,$132,%r6
    752 	insv	%r6,$7,$9,%r1
    753 	tstf	%r3
    754 	beql	return
    755 	extzv	$7,$8,%r3,%r4
    756 	addw2	%r4,%r6
    757 	subw2	$218,%r6
    758 	insv	%r6,$7,$8,%r3
    759 /*						p.22
    760  *
    761  *  The following code makes an needed
    762  *  adjustments to the signs of the
    763  *  results or to the octant number, and
    764  *  then returns.
    765  */
    766 return:
    767 /*
    768  *  Test if the fraction was greater than or
    769  *  equal to  1/2 .  If so, negate the reduced
    770  *  argument.
    771  */
    772 	blbc	%r5,signoff8
    773 	mnegf	%r1,%r1
    774 	mnegf	%r3,%r3
    775 signoff8:
    776 /*						p.23
    777  *
    778  *  If the original argument was negative,
    779  *  negate the reduce argument and
    780  *  adjust the octant number.
    781  */
    782 	tstw	(%sp)+
    783 	bgeq	signoff9
    784 	mnegf	%r1,%r1
    785 	mnegf	%r3,%r3
    786 /*	subb3	%r0,$8,%r0	...used for  pi/4  reduction -S.McD */
    787 	subb3	%r0,$4,%r0
    788 signoff9:
    789 /*
    790  *  Clear all unneeded octant bits.
    791  *
    792  *	bicb2	$0xf8,%r0	...used for  pi/4  reduction -S.McD */
    793 	bicb2	$0xfc,%r0
    794 /*
    795  *  Return.
    796  */
    797 	rsb
    798