n_argred.S revision 1.8 1 /* $NetBSD: n_argred.S,v 1.8 2003/08/07 16:44:44 agc Exp $ */
2 /*
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * @(#)argred.s 8.1 (Berkeley) 6/4/93
31 */
32
33 #include <machine/asm.h>
34
35 /*
36 * libm$argred implements Bob Corbett's argument reduction and
37 * libm$sincos implements Peter Tang's double precision sin/cos.
38 *
39 * Note: The two entry points libm$argred and libm$sincos are meant
40 * to be used only by _sin, _cos and _tan.
41 *
42 * method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett
43 * S. McDonald, April 4, 1985
44 */
45
46 ENTRY(__libm_argred, 0)
47 /*
48 * Compare the argument with the largest possible that can
49 * be reduced by table lookup. %r3 := |x| will be used in table_lookup .
50 */
51 movd %r0,%r3
52 bgeq abs1
53 mnegd %r3,%r3
54 abs1:
55 cmpd %r3,$0d+4.55530934770520019583e+01
56 blss small_arg
57 jsb trigred
58 rsb
59 small_arg:
60 jsb table_lookup
61 rsb
62 /*
63 * At this point,
64 * %r0 contains the quadrant number, 0, 1, 2, or 3;
65 * %r2/%r1 contains the reduced argument as a D-format number;
66 * %r3 contains a F-format extension to the reduced argument;
67 * %r4 contains a 0 or 1 corresponding to a sin or cos entry.
68 */
69
70 ENTRY(__libm_sincos, 0)
71 /*
72 * Compensate for a cosine entry by adding one to the quadrant number.
73 */
74 addl2 %r4,%r0
75 /*
76 * Polyd clobbers %r5-%r0 ; save X in %r7/%r6 .
77 * This can be avoided by rewriting trigred .
78 */
79 movd %r1,%r6
80 /*
81 * Likewise, save alpha in %r8 .
82 * This can be avoided by rewriting trigred .
83 */
84 movf %r3,%r8
85 /*
86 * Odd or even quadrant? cosine if odd, sine otherwise.
87 * Save floor(quadrant/2) in %r9 ; it determines the final sign.
88 */
89 rotl $-1,%r0,%r9
90 blss cosine
91 sine:
92 muld2 %r1,%r1 # Xsq = X * X
93 cmpw $0x2480,%r1 # [zl] Xsq > 2^-56?
94 blss 1f # [zl] yes, go ahead and do polyd
95 clrq %r1 # [zl] work around 11/780 FPA polyd bug
96 1:
97 polyd %r1,$7,sin_coef # Q = P(Xsq) , of deg 7
98 mulf3 $0f3.0,%r8,%r4 # beta = 3 * alpha
99 mulf2 %r0,%r4 # beta = Q * beta
100 addf2 %r8,%r4 # beta = alpha + beta
101 muld2 %r6,%r0 # S(X) = X * Q
102 /* cvtfd %r4,%r4 ... %r5 = 0 after a polyd. */
103 addd2 %r4,%r0 # S(X) = beta + S(X)
104 addd2 %r6,%r0 # S(X) = X + S(X)
105 jbr done
106 cosine:
107 muld2 %r6,%r6 # Xsq = X * X
108 beql zero_arg
109 mulf2 %r1,%r8 # beta = X * alpha
110 polyd %r6,$7,cos_coef /* Q = P'(Xsq) , of deg 7 */
111 subd3 %r0,%r8,%r0 # beta = beta - Q
112 subw2 $0x80,%r6 # Xsq = Xsq / 2
113 addd2 %r0,%r6 # Xsq = Xsq + beta
114 zero_arg:
115 subd3 %r6,$0d1.0,%r0 # C(X) = 1 - Xsq
116 done:
117 blbc %r9,even
118 mnegd %r0,%r0
119 even:
120 rsb
121
122 #ifdef __ELF__
123 .section .rodata
124 #else
125 .text
126 #endif
127 _ALIGN_TEXT
128
129 sin_coef:
130 .double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8..
131 .double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8..
132 .double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382..
133 .double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278..
134 .double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d..
135 .double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50
136 .double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554
137 .double 0d+0.00000000000000000000e+00 # s0 = 0
138
139 cos_coef:
140 .double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE..
141 .double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA..
142 .double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E..
143 .double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8..
144 .double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE..
145 .double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E
146 .double 0d+0.00000000000000000000e+00 # s1 = 0
147 .double 0d+0.00000000000000000000e+00 # s0 = 0
148
149 /*
150 * Multiples of pi/2 expressed as the sum of three doubles,
151 *
152 * trailing: n * pi/2 , n = 0, 1, 2, ..., 29
153 * trailing[n] ,
154 *
155 * middle: n * pi/2 , n = 0, 1, 2, ..., 29
156 * middle[n] ,
157 *
158 * leading: n * pi/2 , n = 0, 1, 2, ..., 29
159 * leading[n] ,
160 *
161 * where
162 * leading[n] := (n * pi/2) rounded,
163 * middle[n] := (n * pi/2 - leading[n]) rounded,
164 * trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded .
165 */
166 trailing:
167 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing
168 .double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing
169 .double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing
170 .double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing
171 .double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing
172 .double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing
173 .double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing
174 .double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing
175 .double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing
176 .double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing
177 .double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing
178 .double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing
179 .double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing
180 .double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing
181 .double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing
182 .double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing
183 .double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing
184 .double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing
185 .double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing
186 .double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing
187 .double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing
188 .double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing
189 .double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing
190 .double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing
191 .double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing
192 .double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing
193 .double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing
194 .double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing
195 .double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing
196 .double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing
197
198 middle:
199 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle
200 .double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle
201 .double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle
202 .double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle
203 .double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle
204 .double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle
205 .double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle
206 .double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle
207 .double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle
208 .double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle
209 .double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle
210 .double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle
211 .double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle
212 .double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle
213 .double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle
214 .double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle
215 .double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle
216 .double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle
217 .double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle
218 .double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle
219 .double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle
220 .double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle
221 .double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle
222 .double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle
223 .double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle
224 .double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle
225 .double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle
226 .double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle
227 .double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle
228 .double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle
229
230 leading:
231 .double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading
232 .double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading
233 .double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading
234 .double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading
235 .double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading
236 .double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading
237 .double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading
238 .double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading
239 .double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading
240 .double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading
241 .double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading
242 .double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading
243 .double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading
244 .double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading
245 .double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading
246 .double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading
247 .double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading
248 .double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading
249 .double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading
250 .double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading
251 .double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading
252 .double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading
253 .double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading
254 .double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading
255 .double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading
256 .double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading
257 .double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading
258 .double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading
259 .double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading
260 .double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading
261
262 twoOverPi:
263 .double 0d+6.36619772367581343076e-01
264
265 .text
266 _ALIGN_TEXT
267
268 table_lookup:
269 muld3 %r3,twoOverPi,%r0
270 cvtrdl %r0,%r0 # n = nearest int to ((2/pi)*|x|) rnded
271 subd2 leading[%r0],%r3 # p = (|x| - leading n*pi/2) exactly
272 subd3 middle[%r0],%r3,%r1 # q = (p - middle n*pi/2) rounded
273 subd2 %r1,%r3 # r = (p - q)
274 subd2 middle[%r0],%r3 # r = r - middle n*pi/2
275 subd2 trailing[%r0],%r3 # r = r - trailing n*pi/2 rounded
276 /*
277 * If the original argument was negative,
278 * negate the reduce argument and
279 * adjust the octant/quadrant number.
280 */
281 tstw 4(%ap)
282 bgeq abs2
283 mnegf %r1,%r1
284 mnegf %r3,%r3
285 /* subb3 %r0,$8,%r0 ...used for pi/4 reduction -S.McD */
286 subb3 %r0,$4,%r0
287 abs2:
288 /*
289 * Clear all unneeded octant/quadrant bits.
290 */
291 /* bicb2 $0xf8,%r0 ...used for pi/4 reduction -S.McD */
292 bicb2 $0xfc,%r0
293 rsb
294 /*
295 * p.0
296 */
297 #ifdef __ELF__
298 .section .rodata
299 #else
300 .text
301 #endif
302 _ALIGN_TEXT
303 /*
304 * Only 256 (actually 225) bits of 2/pi are needed for VAX double
305 * precision; this was determined by enumerating all the nearest
306 * machine integer multiples of pi/2 using continued fractions.
307 * (8a8d3673775b7ff7 required the most bits.) -S.McD
308 */
309 .long 0
310 .long 0
311 .long 0xaef1586d
312 .long 0x9458eaf7
313 .long 0x10e4107f
314 .long 0xd8a5664f
315 .long 0x4d377036
316 .long 0x09d5f47d
317 .long 0x91054a7f
318 .long 0xbe60db93
319 bits2opi:
320 .long 0x00000028
321 .long 0
322 /*
323 * Note: wherever you see the word `octant', read `quadrant'.
324 * Currently this code is set up for pi/2 argument reduction.
325 * By uncommenting/commenting the appropriate lines, it will
326 * also serve as a pi/4 argument reduction code.
327 */
328 .text
329
330 /* p.1
331 * Trigred preforms argument reduction
332 * for the trigonometric functions. It
333 * takes one input argument, a D-format
334 * number in %r1/%r0 . The magnitude of
335 * the input argument must be greater
336 * than or equal to 1/2 . Trigred produces
337 * three results: the number of the octant
338 * occupied by the argument, the reduced
339 * argument, and an extension of the
340 * reduced argument. The octant number is
341 * returned in %r0 . The reduced argument
342 * is returned as a D-format number in
343 * %r2/%r1 . An 8 bit extension of the
344 * reduced argument is returned as an
345 * F-format number in %r3.
346 * p.2
347 */
348 trigred:
349 /*
350 * Save the sign of the input argument.
351 */
352 movw %r0,-(%sp)
353 /*
354 * Extract the exponent field.
355 */
356 extzv $7,$7,%r0,%r2
357 /*
358 * Convert the fraction part of the input
359 * argument into a quadword integer.
360 */
361 bicw2 $0xff80,%r0
362 bisb2 $0x80,%r0 # -S.McD
363 rotl $16,%r0,%r0
364 rotl $16,%r1,%r1
365 /*
366 * If %r1 is negative, add 1 to %r0 . This
367 * adjustment is made so that the two's
368 * complement multiplications done later
369 * will produce unsigned results.
370 */
371 bgeq posmid
372 incl %r0
373 posmid:
374 /* p.3
375 *
376 * Set %r3 to the address of the first quadword
377 * used to obtain the needed portion of 2/pi .
378 * The address is longword aligned to ensure
379 * efficient access.
380 */
381 ashl $-3,%r2,%r3
382 bicb2 $3,%r3
383 mnegl %r3,%r3
384 movab bits2opi[%r3],%r3
385 /*
386 * Set %r2 to the size of the shift needed to
387 * obtain the correct portion of 2/pi .
388 */
389 bicb2 $0xe0,%r2
390 /* p.4
391 *
392 * Move the needed 128 bits of 2/pi into
393 * %r11 - %r8 . Adjust the numbers to allow
394 * for unsigned multiplication.
395 */
396 ashq %r2,(%r3),%r10
397
398 subl2 $4,%r3
399 ashq %r2,(%r3),%r9
400 bgeq signoff1
401 incl %r11
402 signoff1:
403 subl2 $4,%r3
404 ashq %r2,(%r3),%r8
405 bgeq signoff2
406 incl %r10
407 signoff2:
408 subl2 $4,%r3
409 ashq %r2,(%r3),%r7
410 bgeq signoff3
411 incl %r9
412 signoff3:
413 /* p.5
414 *
415 * Multiply the contents of %r0/%r1 by the
416 * slice of 2/pi in %r11 - %r8 .
417 */
418 emul %r0,%r8,$0,%r4
419 emul %r0,%r9,%r5,%r5
420 emul %r0,%r10,%r6,%r6
421
422 emul %r1,%r8,$0,%r7
423 emul %r1,%r9,%r8,%r8
424 emul %r1,%r10,%r9,%r9
425 emul %r1,%r11,%r10,%r10
426
427 addl2 %r4,%r8
428 adwc %r5,%r9
429 adwc %r6,%r10
430 /* p.6
431 *
432 * If there are more than five leading zeros
433 * after the first two quotient bits or if there
434 * are more than five leading ones after the first
435 * two quotient bits, generate more fraction bits.
436 * Otherwise, branch to code to produce the result.
437 */
438 bicl3 $0xc1ffffff,%r10,%r4
439 beql more1
440 cmpl $0x3e000000,%r4
441 bneq result
442 more1:
443 /* p.7
444 *
445 * generate another 32 result bits.
446 */
447 subl2 $4,%r3
448 ashq %r2,(%r3),%r5
449 bgeq signoff4
450
451 emul %r1,%r6,$0,%r4
452 addl2 %r1,%r5
453 emul %r0,%r6,%r5,%r5
454 addl2 %r0,%r6
455 jbr addbits1
456
457 signoff4:
458 emul %r1,%r6,$0,%r4
459 emul %r0,%r6,%r5,%r5
460
461 addbits1:
462 addl2 %r5,%r7
463 adwc %r6,%r8
464 adwc $0,%r9
465 adwc $0,%r10
466 /* p.8
467 *
468 * Check for massive cancellation.
469 */
470 bicl3 $0xc0000000,%r10,%r6
471 /* bneq more2 -S.McD Test was backwards */
472 beql more2
473 cmpl $0x3fffffff,%r6
474 bneq result
475 more2:
476 /* p.9
477 *
478 * If massive cancellation has occurred,
479 * generate another 24 result bits.
480 * Testing has shown there will always be
481 * enough bits after this point.
482 */
483 subl2 $4,%r3
484 ashq %r2,(%r3),%r5
485 bgeq signoff5
486
487 emul %r0,%r6,%r4,%r5
488 addl2 %r0,%r6
489 jbr addbits2
490
491 signoff5:
492 emul %r0,%r6,%r4,%r5
493
494 addbits2:
495 addl2 %r6,%r7
496 adwc $0,%r8
497 adwc $0,%r9
498 adwc $0,%r10
499 /* p.10
500 *
501 * The following code produces the reduced
502 * argument from the product bits contained
503 * in %r10 - %r7 .
504 */
505 result:
506 /*
507 * Extract the octant number from %r10 .
508 */
509 /* extzv $29,$3,%r10,%r0 ...used for pi/4 reduction -S.McD */
510 extzv $30,$2,%r10,%r0
511 /*
512 * Clear the octant bits in %r10 .
513 */
514 /* bicl2 $0xe0000000,%r10 ...used for pi/4 reduction -S.McD */
515 bicl2 $0xc0000000,%r10
516 /*
517 * Zero the sign flag.
518 */
519 clrl %r5
520 /* p.11
521 *
522 * Check to see if the fraction is greater than
523 * or equal to one-half. If it is, add one
524 * to the octant number, set the sign flag
525 * on, and replace the fraction with 1 minus
526 * the fraction.
527 */
528 /* bitl $0x10000000,%r10 ...used for pi/4 reduction -S.McD */
529 bitl $0x20000000,%r10
530 beql small
531 incl %r0
532 incl %r5
533 /* subl3 %r10,$0x1fffffff,%r10 ...used for pi/4 reduction -S.McD */
534 subl3 %r10,$0x3fffffff,%r10
535 mcoml %r9,%r9
536 mcoml %r8,%r8
537 mcoml %r7,%r7
538 small:
539 /* p.12
540 *
541 * Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD
542 * Test whether the first 30 bits of the
543 * fraction are zero.
544 */
545 tstl %r10
546 beql tiny
547 /*
548 * Find the position of the first one bit in %r10 .
549 */
550 cvtld %r10,%r1
551 extzv $7,$7,%r1,%r1
552 /*
553 * Compute the size of the shift needed.
554 */
555 subl3 %r1,$32,%r6
556 /*
557 * Shift up the high order 64 bits of the
558 * product.
559 */
560 ashq %r6,%r9,%r10
561 ashq %r6,%r8,%r9
562 jbr mult
563 /* p.13
564 *
565 * Test to see if the sign bit of %r9 is on.
566 */
567 tiny:
568 tstl %r9
569 bgeq tinier
570 /*
571 * If it is, shift the product bits up 32 bits.
572 */
573 movl $32,%r6
574 movq %r8,%r10
575 tstl %r10
576 jbr mult
577 /* p.14
578 *
579 * Test whether %r9 is zero. It is probably
580 * impossible for both %r10 and %r9 to be
581 * zero, but until proven to be so, the test
582 * must be made.
583 */
584 tinier:
585 beql zero
586 /*
587 * Find the position of the first one bit in %r9 .
588 */
589 cvtld %r9,%r1
590 extzv $7,$7,%r1,%r1
591 /*
592 * Compute the size of the shift needed.
593 */
594 subl3 %r1,$32,%r1
595 addl3 $32,%r1,%r6
596 /*
597 * Shift up the high order 64 bits of the
598 * product.
599 */
600 ashq %r1,%r8,%r10
601 ashq %r1,%r7,%r9
602 jbr mult
603 /* p.15
604 *
605 * The following code sets the reduced
606 * argument to zero.
607 */
608 zero:
609 clrl %r1
610 clrl %r2
611 clrl %r3
612 jbr return
613 /* p.16
614 *
615 * At this point, %r0 contains the octant number,
616 * %r6 indicates the number of bits the fraction
617 * has been shifted, %r5 indicates the sign of
618 * the fraction, %r11/%r10 contain the high order
619 * 64 bits of the fraction, and the condition
620 * codes indicate where the sign bit of %r10
621 * is on. The following code multiplies the
622 * fraction by pi/2 .
623 */
624 mult:
625 /*
626 * Save %r11/%r10 in %r4/%r1 . -S.McD
627 */
628 movl %r11,%r4
629 movl %r10,%r1
630 /*
631 * If the sign bit of %r10 is on, add 1 to %r11 .
632 */
633 bgeq signoff6
634 incl %r11
635 signoff6:
636 /* p.17
637 *
638 * Move pi/2 into %r3/%r2 .
639 */
640 movq $0xc90fdaa22168c235,%r2
641 /*
642 * Multiply the fraction by the portion of pi/2
643 * in %r2 .
644 */
645 emul %r2,%r10,$0,%r7
646 emul %r2,%r11,%r8,%r7
647 /*
648 * Multiply the fraction by the portion of pi/2
649 * in %r3 .
650 */
651 emul %r3,%r10,$0,%r9
652 emul %r3,%r11,%r10,%r10
653 /*
654 * Add the product bits together.
655 */
656 addl2 %r7,%r9
657 adwc %r8,%r10
658 adwc $0,%r11
659 /*
660 * Compensate for not sign extending %r8 above.-S.McD
661 */
662 tstl %r8
663 bgeq signoff6a
664 decl %r11
665 signoff6a:
666 /*
667 * Compensate for %r11/%r10 being unsigned. -S.McD
668 */
669 addl2 %r2,%r10
670 adwc %r3,%r11
671 /*
672 * Compensate for %r3/%r2 being unsigned. -S.McD
673 */
674 addl2 %r1,%r10
675 adwc %r4,%r11
676 /* p.18
677 *
678 * If the sign bit of %r11 is zero, shift the
679 * product bits up one bit and increment %r6 .
680 */
681 blss signon
682 incl %r6
683 ashq $1,%r10,%r10
684 tstl %r9
685 bgeq signoff7
686 incl %r10
687 signoff7:
688 signon:
689 /* p.19
690 *
691 * Shift the 56 most significant product
692 * bits into %r9/%r8 . The sign extension
693 * will be handled later.
694 */
695 ashq $-8,%r10,%r8
696 /*
697 * Convert the low order 8 bits of %r10
698 * into an F-format number.
699 */
700 cvtbf %r10,%r3
701 /*
702 * If the result of the conversion was
703 * negative, add 1 to %r9/%r8 .
704 */
705 bgeq chop
706 incl %r8
707 adwc $0,%r9
708 /*
709 * If %r9 is now zero, branch to special
710 * code to handle that possibility.
711 */
712 beql carryout
713 chop:
714 /* p.20
715 *
716 * Convert the number in %r9/%r8 into
717 * D-format number in %r2/%r1 .
718 */
719 rotl $16,%r8,%r2
720 rotl $16,%r9,%r1
721 /*
722 * Set the exponent field to the appropriate
723 * value. Note that the extra bits created by
724 * sign extension are now eliminated.
725 */
726 subw3 %r6,$131,%r6
727 insv %r6,$7,$9,%r1
728 /*
729 * Set the exponent field of the F-format
730 * number in %r3 to the appropriate value.
731 */
732 tstf %r3
733 beql return
734 /* extzv $7,$8,%r3,%r4 -S.McD */
735 extzv $7,$7,%r3,%r4
736 addw2 %r4,%r6
737 /* subw2 $217,%r6 -S.McD */
738 subw2 $64,%r6
739 insv %r6,$7,$8,%r3
740 jbr return
741 /* p.21
742 *
743 * The following code generates the appropriate
744 * result for the unlikely possibility that
745 * rounding the number in %r9/%r8 resulted in
746 * a carry out.
747 */
748 carryout:
749 clrl %r1
750 clrl %r2
751 subw3 %r6,$132,%r6
752 insv %r6,$7,$9,%r1
753 tstf %r3
754 beql return
755 extzv $7,$8,%r3,%r4
756 addw2 %r4,%r6
757 subw2 $218,%r6
758 insv %r6,$7,$8,%r3
759 /* p.22
760 *
761 * The following code makes an needed
762 * adjustments to the signs of the
763 * results or to the octant number, and
764 * then returns.
765 */
766 return:
767 /*
768 * Test if the fraction was greater than or
769 * equal to 1/2 . If so, negate the reduced
770 * argument.
771 */
772 blbc %r5,signoff8
773 mnegf %r1,%r1
774 mnegf %r3,%r3
775 signoff8:
776 /* p.23
777 *
778 * If the original argument was negative,
779 * negate the reduce argument and
780 * adjust the octant number.
781 */
782 tstw (%sp)+
783 bgeq signoff9
784 mnegf %r1,%r1
785 mnegf %r3,%r3
786 /* subb3 %r0,$8,%r0 ...used for pi/4 reduction -S.McD */
787 subb3 %r0,$4,%r0
788 signoff9:
789 /*
790 * Clear all unneeded octant bits.
791 *
792 * bicb2 $0xf8,%r0 ...used for pi/4 reduction -S.McD */
793 bicb2 $0xfc,%r0
794 /*
795 * Return.
796 */
797 rsb
798