Home | History | Annotate | Line # | Download | only in vax
n_argred.S revision 1.9
      1 /*	$NetBSD: n_argred.S,v 1.9 2007/04/19 00:37:20 matt Exp $	*/
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. Neither the name of the University nor the names of its contributors
     15  *    may be used to endorse or promote products derived from this software
     16  *    without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  *	@(#)argred.s	8.1 (Berkeley) 6/4/93
     31  */
     32 
     33 #include <machine/asm.h>
     34 
     35 /*
     36  *  libm$argred implements Bob Corbett's argument reduction and
     37  *  libm$sincos implements Peter Tang's double precision sin/cos.
     38  *
     39  *  Note: The two entry points libm$argred and libm$sincos are meant
     40  *        to be used only by _sin, _cos and _tan.
     41  *
     42  * method: true range reduction to [-pi/4,pi/4], P. Tang  &  B. Corbett
     43  * S. McDonald, April 4,  1985
     44  */
     45 
     46 	.hidden	__libm_argred
     47 ENTRY(__libm_argred, 0)
     48 /*
     49  *  Compare the argument with the largest possible that can
     50  *  be reduced by table lookup.  %r3 := |x|  will be used in  table_lookup .
     51  */
     52 	movd	%r0,%r3
     53 	bgeq	abs1
     54 	mnegd	%r3,%r3
     55 abs1:
     56 	cmpd	%r3,$0d+4.55530934770520019583e+01
     57 	blss	small_arg
     58 	jsb	trigred
     59 	rsb
     60 small_arg:
     61 	jsb	table_lookup
     62 	rsb
     63 /*
     64  *  At this point,
     65  *	   %r0  contains the quadrant number, 0, 1, 2, or 3;
     66  *	%r2/%r1  contains the reduced argument as a D-format number;
     67  *  	   %r3  contains a F-format extension to the reduced argument;
     68  *          %r4  contains a  0 or 1  corresponding to a  sin or cos  entry.
     69  */
     70 
     71 	.hidden	__libm_sincos
     72 ENTRY(__libm_sincos, 0)
     73 /*
     74  *  Compensate for a cosine entry by adding one to the quadrant number.
     75  */
     76 	addl2	%r4,%r0
     77 /*
     78  *  Polyd clobbers  %r5-%r0 ;  save  X  in  %r7/%r6 .
     79  *  This can be avoided by rewriting  trigred .
     80  */
     81 	movd	%r1,%r6
     82 /*
     83  *  Likewise, save  alpha  in  %r8 .
     84  *  This can be avoided by rewriting  trigred .
     85  */
     86 	movf	%r3,%r8
     87 /*
     88  *  Odd or even quadrant?  cosine if odd, sine otherwise.
     89  *  Save  floor(quadrant/2) in  %r9  ; it determines the final sign.
     90  */
     91 	rotl	$-1,%r0,%r9
     92 	blss	cosine
     93 sine:
     94 	muld2	%r1,%r1		# Xsq = X * X
     95 	cmpw	$0x2480,%r1	# [zl] Xsq > 2^-56?
     96 	blss	1f		# [zl] yes, go ahead and do polyd
     97 	clrq	%r1		# [zl] work around 11/780 FPA polyd bug
     98 1:
     99 	polyd	%r1,$7,sin_coef	# Q = P(Xsq) , of deg 7
    100 	mulf3	$0f3.0,%r8,%r4	# beta = 3 * alpha
    101 	mulf2	%r0,%r4		# beta = Q * beta
    102 	addf2	%r8,%r4		# beta = alpha + beta
    103 	muld2	%r6,%r0		# S(X) = X * Q
    104 /*	cvtfd	%r4,%r4		... %r5 = 0 after a polyd. */
    105 	addd2	%r4,%r0		# S(X) = beta + S(X)
    106 	addd2	%r6,%r0		# S(X) = X + S(X)
    107 	jbr	done
    108 cosine:
    109 	muld2	%r6,%r6		# Xsq = X * X
    110 	beql	zero_arg
    111 	mulf2	%r1,%r8		# beta = X * alpha
    112 	polyd	%r6,$7,cos_coef	/* Q = P'(Xsq) , of deg 7 */
    113 	subd3	%r0,%r8,%r0	# beta = beta - Q
    114 	subw2	$0x80,%r6	# Xsq = Xsq / 2
    115 	addd2	%r0,%r6		# Xsq = Xsq + beta
    116 zero_arg:
    117 	subd3	%r6,$0d1.0,%r0	# C(X) = 1 - Xsq
    118 done:
    119 	blbc	%r9,even
    120 	mnegd	%r0,%r0
    121 even:
    122 	rsb
    123 
    124 #ifdef __ELF__
    125 	.section .rodata
    126 #else
    127 	.text
    128 #endif
    129 	_ALIGN_TEXT
    130 
    131 sin_coef:
    132 	.double	0d-7.53080332264191085773e-13	# s7 = 2^-29 -1.a7f2504ffc49f8..
    133 	.double	0d+1.60573519267703489121e-10	# s6 = 2^-21  1.611adaede473c8..
    134 	.double	0d-2.50520965150706067211e-08	# s5 = 2^-1a -1.ae644921ed8382..
    135 	.double	0d+2.75573191800593885716e-06	# s4 = 2^-13  1.71de3a4b884278..
    136 	.double	0d-1.98412698411850507950e-04	# s3 = 2^-0d -1.a01a01a0125e7d..
    137 	.double	0d+8.33333333333325688985e-03	# s2 = 2^-07  1.11111111110e50
    138 	.double	0d-1.66666666666666664354e-01	# s1 = 2^-03 -1.55555555555554
    139 	.double	0d+0.00000000000000000000e+00	# s0 = 0
    140 
    141 cos_coef:
    142 	.double	0d-1.13006966202629430300e-11	# s7 = 2^-25 -1.8D9BA04D1374BE..
    143 	.double	0d+2.08746646574796004700e-09	# s6 = 2^-1D  1.1EE632650350BA..
    144 	.double	0d-2.75573073031284417300e-07	# s5 = 2^-16 -1.27E4F31411719E..
    145 	.double	0d+2.48015872682668025200e-05	# s4 = 2^-10  1.A01A0196B902E8..
    146 	.double	0d-1.38888888888464709200e-03	# s3 = 2^-0A -1.6C16C16C11FACE..
    147 	.double	0d+4.16666666666664761400e-02	# s2 = 2^-05  1.5555555555539E
    148 	.double	0d+0.00000000000000000000e+00	# s1 = 0
    149 	.double	0d+0.00000000000000000000e+00	# s0 = 0
    150 
    151 /*
    152  *  Multiples of  pi/2  expressed as the sum of three doubles,
    153  *
    154  *  trailing:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    155  *			trailing[n] ,
    156  *
    157  *  middle:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    158  *			middle[n]   ,
    159  *
    160  *  leading:	n * pi/2 ,  n = 0, 1, 2, ..., 29
    161  *			leading[n]  ,
    162  *
    163  *	where
    164  *		leading[n]  := (n * pi/2)  rounded,
    165  *		middle[n]   := (n * pi/2  -  leading[n])  rounded,
    166  *		trailing[n] := (( n * pi/2 - leading[n]) - middle[n])  rounded .
    167  */
    168 trailing:
    169 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  trailing
    170 	.double	0d+4.33590506506189049611e-35	#  1 * pi/2  trailing
    171 	.double	0d+8.67181013012378099223e-35	#  2 * pi/2  trailing
    172 	.double	0d+1.30077151951856714215e-34	#  3 * pi/2  trailing
    173 	.double	0d+1.73436202602475619845e-34	#  4 * pi/2  trailing
    174 	.double	0d-1.68390735624352669192e-34	#  5 * pi/2  trailing
    175 	.double	0d+2.60154303903713428430e-34	#  6 * pi/2  trailing
    176 	.double	0d-8.16726343231148352150e-35	#  7 * pi/2  trailing
    177 	.double	0d+3.46872405204951239689e-34	#  8 * pi/2  trailing
    178 	.double	0d+3.90231455855570147991e-34	#  9 * pi/2  trailing
    179 	.double	0d-3.36781471248705338384e-34	# 10 * pi/2  trailing
    180 	.double	0d-1.06379439835298071785e-33	# 11 * pi/2  trailing
    181 	.double	0d+5.20308607807426856861e-34	# 12 * pi/2  trailing
    182 	.double	0d+5.63667658458045770509e-34	# 13 * pi/2  trailing
    183 	.double	0d-1.63345268646229670430e-34	# 14 * pi/2  trailing
    184 	.double	0d-1.19986217995610764801e-34	# 15 * pi/2  trailing
    185 	.double	0d+6.93744810409902479378e-34	# 16 * pi/2  trailing
    186 	.double	0d-8.03640094449267300110e-34	# 17 * pi/2  trailing
    187 	.double	0d+7.80462911711140295982e-34	# 18 * pi/2  trailing
    188 	.double	0d-7.16921993148029483506e-34	# 19 * pi/2  trailing
    189 	.double	0d-6.73562942497410676769e-34	# 20 * pi/2  trailing
    190 	.double	0d-6.30203891846791677593e-34	# 21 * pi/2  trailing
    191 	.double	0d-2.12758879670596143570e-33	# 22 * pi/2  trailing
    192 	.double	0d+2.53800212047402350390e-33	# 23 * pi/2  trailing
    193 	.double	0d+1.04061721561485371372e-33	# 24 * pi/2  trailing
    194 	.double	0d+6.11729905311472319056e-32	# 25 * pi/2  trailing
    195 	.double	0d+1.12733531691609154102e-33	# 26 * pi/2  trailing
    196 	.double	0d-3.70049587943078297272e-34	# 27 * pi/2  trailing
    197 	.double	0d-3.26690537292459340860e-34	# 28 * pi/2  trailing
    198 	.double	0d-1.14812616507957271361e-34	# 29 * pi/2  trailing
    199 
    200 middle:
    201 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  middle
    202 	.double	0d+5.72118872610983179676e-18	#  1 * pi/2  middle
    203 	.double	0d+1.14423774522196635935e-17	#  2 * pi/2  middle
    204 	.double	0d-3.83475850529283316309e-17	#  3 * pi/2  middle
    205 	.double	0d+2.28847549044393271871e-17	#  4 * pi/2  middle
    206 	.double	0d-2.69052076007086676522e-17	#  5 * pi/2  middle
    207 	.double	0d-7.66951701058566632618e-17	#  6 * pi/2  middle
    208 	.double	0d-1.54628301484890040587e-17	#  7 * pi/2  middle
    209 	.double	0d+4.57695098088786543741e-17	#  8 * pi/2  middle
    210 	.double	0d+1.07001849766246313192e-16	#  9 * pi/2  middle
    211 	.double	0d-5.38104152014173353044e-17	# 10 * pi/2  middle
    212 	.double	0d-2.14622680169080983801e-16	# 11 * pi/2  middle
    213 	.double	0d-1.53390340211713326524e-16	# 12 * pi/2  middle
    214 	.double	0d-9.21580002543456677056e-17	# 13 * pi/2  middle
    215 	.double	0d-3.09256602969780081173e-17	# 14 * pi/2  middle
    216 	.double	0d+3.03066796603896507006e-17	# 15 * pi/2  middle
    217 	.double	0d+9.15390196177573087482e-17	# 16 * pi/2  middle
    218 	.double	0d+1.52771359575124969107e-16	# 17 * pi/2  middle
    219 	.double	0d+2.14003699532492626384e-16	# 18 * pi/2  middle
    220 	.double	0d-1.68853170360202329427e-16	# 19 * pi/2  middle
    221 	.double	0d-1.07620830402834670609e-16	# 20 * pi/2  middle
    222 	.double	0d+3.97700719404595604379e-16	# 21 * pi/2  middle
    223 	.double	0d-4.29245360338161967602e-16	# 22 * pi/2  middle
    224 	.double	0d-3.68013020380794313406e-16	# 23 * pi/2  middle
    225 	.double	0d-3.06780680423426653047e-16	# 24 * pi/2  middle
    226 	.double	0d-2.45548340466059054318e-16	# 25 * pi/2  middle
    227 	.double	0d-1.84316000508691335411e-16	# 26 * pi/2  middle
    228 	.double	0d-1.23083660551323675053e-16	# 27 * pi/2  middle
    229 	.double	0d-6.18513205939560162346e-17	# 28 * pi/2  middle
    230 	.double	0d-6.18980636588357585202e-19	# 29 * pi/2  middle
    231 
    232 leading:
    233 	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  leading
    234 	.double	0d+1.57079632679489661351e+00	#  1 * pi/2  leading
    235 	.double	0d+3.14159265358979322702e+00	#  2 * pi/2  leading
    236 	.double	0d+4.71238898038468989604e+00	#  3 * pi/2  leading
    237 	.double	0d+6.28318530717958645404e+00	#  4 * pi/2  leading
    238 	.double	0d+7.85398163397448312306e+00	#  5 * pi/2  leading
    239 	.double	0d+9.42477796076937979208e+00	#  6 * pi/2  leading
    240 	.double	0d+1.09955742875642763501e+01	#  7 * pi/2  leading
    241 	.double	0d+1.25663706143591729081e+01	#  8 * pi/2  leading
    242 	.double	0d+1.41371669411540694661e+01	#  9 * pi/2  leading
    243 	.double	0d+1.57079632679489662461e+01	# 10 * pi/2  leading
    244 	.double	0d+1.72787595947438630262e+01	# 11 * pi/2  leading
    245 	.double	0d+1.88495559215387595842e+01	# 12 * pi/2  leading
    246 	.double	0d+2.04203522483336561422e+01	# 13 * pi/2  leading
    247 	.double	0d+2.19911485751285527002e+01	# 14 * pi/2  leading
    248 	.double	0d+2.35619449019234492582e+01	# 15 * pi/2  leading
    249 	.double	0d+2.51327412287183458162e+01	# 16 * pi/2  leading
    250 	.double	0d+2.67035375555132423742e+01	# 17 * pi/2  leading
    251 	.double	0d+2.82743338823081389322e+01	# 18 * pi/2  leading
    252 	.double	0d+2.98451302091030359342e+01	# 19 * pi/2  leading
    253 	.double	0d+3.14159265358979324922e+01	# 20 * pi/2  leading
    254 	.double	0d+3.29867228626928286062e+01	# 21 * pi/2  leading
    255 	.double	0d+3.45575191894877260523e+01	# 22 * pi/2  leading
    256 	.double	0d+3.61283155162826226103e+01	# 23 * pi/2  leading
    257 	.double	0d+3.76991118430775191683e+01	# 24 * pi/2  leading
    258 	.double	0d+3.92699081698724157263e+01	# 25 * pi/2  leading
    259 	.double	0d+4.08407044966673122843e+01	# 26 * pi/2  leading
    260 	.double	0d+4.24115008234622088423e+01	# 27 * pi/2  leading
    261 	.double	0d+4.39822971502571054003e+01	# 28 * pi/2  leading
    262 	.double	0d+4.55530934770520019583e+01	# 29 * pi/2  leading
    263 
    264 twoOverPi:
    265 	.double	0d+6.36619772367581343076e-01
    266 
    267 	.text
    268 	_ALIGN_TEXT
    269 
    270 table_lookup:
    271 	muld3	%r3,twoOverPi,%r0
    272 	cvtrdl	%r0,%r0			# n = nearest int to ((2/pi)*|x|) rnded
    273 	subd2	leading[%r0],%r3		# p = (|x| - leading n*pi/2) exactly
    274 	subd3	middle[%r0],%r3,%r1	# q = (p - middle  n*pi/2) rounded
    275 	subd2	%r1,%r3			# r = (p - q)
    276 	subd2	middle[%r0],%r3		# r =  r - middle  n*pi/2
    277 	subd2	trailing[%r0],%r3		# r =  r - trailing n*pi/2  rounded
    278 /*
    279  *  If the original argument was negative,
    280  *  negate the reduce argument and
    281  *  adjust the octant/quadrant number.
    282  */
    283 	tstw	4(%ap)
    284 	bgeq	abs2
    285 	mnegf	%r1,%r1
    286 	mnegf	%r3,%r3
    287 /*	subb3	%r0,$8,%r0	...used for  pi/4  reduction -S.McD */
    288 	subb3	%r0,$4,%r0
    289 abs2:
    290 /*
    291  *  Clear all unneeded octant/quadrant bits.
    292  */
    293 /*	bicb2	$0xf8,%r0	...used for  pi/4  reduction -S.McD */
    294 	bicb2	$0xfc,%r0
    295 	rsb
    296 /*
    297  *						p.0
    298  */
    299 #ifdef __ELF__
    300 	.section .rodata
    301 #else
    302 	.text
    303 #endif
    304 	_ALIGN_TEXT
    305 /*
    306  * Only 256 (actually 225) bits of 2/pi are needed for VAX double
    307  * precision; this was determined by enumerating all the nearest
    308  * machine integer multiples of pi/2 using continued fractions.
    309  * (8a8d3673775b7ff7 required the most bits.)		-S.McD
    310  */
    311 	.long	0
    312 	.long	0
    313 	.long	0xaef1586d
    314 	.long	0x9458eaf7
    315 	.long	0x10e4107f
    316 	.long	0xd8a5664f
    317 	.long	0x4d377036
    318 	.long	0x09d5f47d
    319 	.long	0x91054a7f
    320 	.long	0xbe60db93
    321 bits2opi:
    322 	.long	0x00000028
    323 	.long	0
    324 /*
    325  *  Note: wherever you see the word `octant', read `quadrant'.
    326  *  Currently this code is set up for  pi/2  argument reduction.
    327  *  By uncommenting/commenting the appropriate lines, it will
    328  *  also serve as a  pi/4  argument reduction code.
    329  */
    330 	.text
    331 
    332 /*						p.1
    333  *  Trigred  preforms argument reduction
    334  *  for the trigonometric functions.  It
    335  *  takes one input argument, a D-format
    336  *  number in  %r1/%r0 .  The magnitude of
    337  *  the input argument must be greater
    338  *  than or equal to  1/2 .  Trigred produces
    339  *  three results:  the number of the octant
    340  *  occupied by the argument, the reduced
    341  *  argument, and an extension of the
    342  *  reduced argument.  The octant number is
    343  *  returned in  %r0 .  The reduced argument
    344  *  is returned as a D-format number in
    345  *  %r2/%r1 .  An 8 bit extension of the
    346  *  reduced argument is returned as an
    347  *  F-format number in %r3.
    348  *						p.2
    349  */
    350 trigred:
    351 /*
    352  *  Save the sign of the input argument.
    353  */
    354 	movw	%r0,-(%sp)
    355 /*
    356  *  Extract the exponent field.
    357  */
    358 	extzv	$7,$7,%r0,%r2
    359 /*
    360  *  Convert the fraction part of the input
    361  *  argument into a quadword integer.
    362  */
    363 	bicw2	$0xff80,%r0
    364 	bisb2	$0x80,%r0	# -S.McD
    365 	rotl	$16,%r0,%r0
    366 	rotl	$16,%r1,%r1
    367 /*
    368  *  If  %r1  is negative, add  1  to  %r0 .  This
    369  *  adjustment is made so that the two's
    370  *  complement multiplications done later
    371  *  will produce unsigned results.
    372  */
    373 	bgeq	posmid
    374 	incl	%r0
    375 posmid:
    376 /*						p.3
    377  *
    378  *  Set  %r3  to the address of the first quadword
    379  *  used to obtain the needed portion of  2/pi .
    380  *  The address is longword aligned to ensure
    381  *  efficient access.
    382  */
    383 	ashl	$-3,%r2,%r3
    384 	bicb2	$3,%r3
    385 	mnegl	%r3,%r3
    386 	movab	bits2opi[%r3],%r3
    387 /*
    388  *  Set  %r2  to the size of the shift needed to
    389  *  obtain the correct portion of  2/pi .
    390  */
    391 	bicb2	$0xe0,%r2
    392 /*						p.4
    393  *
    394  *  Move the needed  128  bits of  2/pi  into
    395  *  %r11 - %r8 .  Adjust the numbers to allow
    396  *  for unsigned multiplication.
    397  */
    398 	ashq	%r2,(%r3),%r10
    399 
    400 	subl2	$4,%r3
    401 	ashq	%r2,(%r3),%r9
    402 	bgeq	signoff1
    403 	incl	%r11
    404 signoff1:
    405 	subl2	$4,%r3
    406 	ashq	%r2,(%r3),%r8
    407 	bgeq	signoff2
    408 	incl	%r10
    409 signoff2:
    410 	subl2	$4,%r3
    411 	ashq	%r2,(%r3),%r7
    412 	bgeq	signoff3
    413 	incl	%r9
    414 signoff3:
    415 /*						p.5
    416  *
    417  *  Multiply the contents of  %r0/%r1  by the
    418  *  slice of  2/pi  in  %r11 - %r8 .
    419  */
    420 	emul	%r0,%r8,$0,%r4
    421 	emul	%r0,%r9,%r5,%r5
    422 	emul	%r0,%r10,%r6,%r6
    423 
    424 	emul	%r1,%r8,$0,%r7
    425 	emul	%r1,%r9,%r8,%r8
    426 	emul	%r1,%r10,%r9,%r9
    427 	emul	%r1,%r11,%r10,%r10
    428 
    429 	addl2	%r4,%r8
    430 	adwc	%r5,%r9
    431 	adwc	%r6,%r10
    432 /*						p.6
    433  *
    434  *  If there are more than five leading zeros
    435  *  after the first two quotient bits or if there
    436  *  are more than five leading ones after the first
    437  *  two quotient bits, generate more fraction bits.
    438  *  Otherwise, branch to code to produce the result.
    439  */
    440 	bicl3	$0xc1ffffff,%r10,%r4
    441 	beql	more1
    442 	cmpl	$0x3e000000,%r4
    443 	bneq	result
    444 more1:
    445 /*						p.7
    446  *
    447  *  generate another  32  result bits.
    448  */
    449 	subl2	$4,%r3
    450 	ashq	%r2,(%r3),%r5
    451 	bgeq	signoff4
    452 
    453 	emul	%r1,%r6,$0,%r4
    454 	addl2	%r1,%r5
    455 	emul	%r0,%r6,%r5,%r5
    456 	addl2	%r0,%r6
    457 	jbr	addbits1
    458 
    459 signoff4:
    460 	emul	%r1,%r6,$0,%r4
    461 	emul	%r0,%r6,%r5,%r5
    462 
    463 addbits1:
    464 	addl2	%r5,%r7
    465 	adwc	%r6,%r8
    466 	adwc	$0,%r9
    467 	adwc	$0,%r10
    468 /*						p.8
    469  *
    470  *  Check for massive cancellation.
    471  */
    472 	bicl3	$0xc0000000,%r10,%r6
    473 /*	bneq	more2			-S.McD  Test was backwards */
    474 	beql	more2
    475 	cmpl	$0x3fffffff,%r6
    476 	bneq	result
    477 more2:
    478 /*						p.9
    479  *
    480  *  If massive cancellation has occurred,
    481  *  generate another  24  result bits.
    482  *  Testing has shown there will always be
    483  *  enough bits after this point.
    484  */
    485 	subl2	$4,%r3
    486 	ashq	%r2,(%r3),%r5
    487 	bgeq	signoff5
    488 
    489 	emul	%r0,%r6,%r4,%r5
    490 	addl2	%r0,%r6
    491 	jbr	addbits2
    492 
    493 signoff5:
    494 	emul	%r0,%r6,%r4,%r5
    495 
    496 addbits2:
    497 	addl2	%r6,%r7
    498 	adwc	$0,%r8
    499 	adwc	$0,%r9
    500 	adwc	$0,%r10
    501 /*						p.10
    502  *
    503  *  The following code produces the reduced
    504  *  argument from the product bits contained
    505  *  in  %r10 - %r7 .
    506  */
    507 result:
    508 /*
    509  *  Extract the octant number from  %r10 .
    510  */
    511 /*	extzv	$29,$3,%r10,%r0	...used for  pi/4  reduction -S.McD */
    512 	extzv	$30,$2,%r10,%r0
    513 /*
    514  *  Clear the octant bits in  %r10 .
    515  */
    516 /*	bicl2	$0xe0000000,%r10	...used for  pi/4  reduction -S.McD */
    517 	bicl2	$0xc0000000,%r10
    518 /*
    519  *  Zero the sign flag.
    520  */
    521 	clrl	%r5
    522 /*						p.11
    523  *
    524  *  Check to see if the fraction is greater than
    525  *  or equal to one-half.  If it is, add one
    526  *  to the octant number, set the sign flag
    527  *  on, and replace the fraction with  1 minus
    528  *  the fraction.
    529  */
    530 /*	bitl	$0x10000000,%r10		...used for  pi/4  reduction -S.McD */
    531 	bitl	$0x20000000,%r10
    532 	beql	small
    533 	incl	%r0
    534 	incl	%r5
    535 /*	subl3	%r10,$0x1fffffff,%r10	...used for  pi/4  reduction -S.McD */
    536 	subl3	%r10,$0x3fffffff,%r10
    537 	mcoml	%r9,%r9
    538 	mcoml	%r8,%r8
    539 	mcoml	%r7,%r7
    540 small:
    541 /*						p.12
    542  *
    543  *  Test whether the first  29  bits of the ...used for  pi/4  reduction -S.McD
    544  *  Test whether the first  30  bits of the
    545  *  fraction are zero.
    546  */
    547 	tstl	%r10
    548 	beql	tiny
    549 /*
    550  *  Find the position of the first one bit in  %r10 .
    551  */
    552 	cvtld	%r10,%r1
    553 	extzv	$7,$7,%r1,%r1
    554 /*
    555  *  Compute the size of the shift needed.
    556  */
    557 	subl3	%r1,$32,%r6
    558 /*
    559  *  Shift up the high order  64  bits of the
    560  *  product.
    561  */
    562 	ashq	%r6,%r9,%r10
    563 	ashq	%r6,%r8,%r9
    564 	jbr	mult
    565 /*						p.13
    566  *
    567  *  Test to see if the sign bit of  %r9  is on.
    568  */
    569 tiny:
    570 	tstl	%r9
    571 	bgeq	tinier
    572 /*
    573  *  If it is, shift the product bits up  32  bits.
    574  */
    575 	movl	$32,%r6
    576 	movq	%r8,%r10
    577 	tstl	%r10
    578 	jbr	mult
    579 /*						p.14
    580  *
    581  *  Test whether  %r9  is zero.  It is probably
    582  *  impossible for both  %r10  and  %r9  to be
    583  *  zero, but until proven to be so, the test
    584  *  must be made.
    585  */
    586 tinier:
    587 	beql	zero
    588 /*
    589  *  Find the position of the first one bit in  %r9 .
    590  */
    591 	cvtld	%r9,%r1
    592 	extzv	$7,$7,%r1,%r1
    593 /*
    594  *  Compute the size of the shift needed.
    595  */
    596 	subl3	%r1,$32,%r1
    597 	addl3	$32,%r1,%r6
    598 /*
    599  *  Shift up the high order  64  bits of the
    600  *  product.
    601  */
    602 	ashq	%r1,%r8,%r10
    603 	ashq	%r1,%r7,%r9
    604 	jbr	mult
    605 /*						p.15
    606  *
    607  *  The following code sets the reduced
    608  *  argument to zero.
    609  */
    610 zero:
    611 	clrl	%r1
    612 	clrl	%r2
    613 	clrl	%r3
    614 	jbr	return
    615 /*						p.16
    616  *
    617  *  At this point,  %r0  contains the octant number,
    618  *  %r6  indicates the number of bits the fraction
    619  *  has been shifted,  %r5  indicates the sign of
    620  *  the fraction,  %r11/%r10  contain the high order
    621  *  64  bits of the fraction, and the condition
    622  *  codes indicate where the sign bit of  %r10
    623  *  is on.  The following code multiplies the
    624  *  fraction by  pi/2 .
    625  */
    626 mult:
    627 /*
    628  *  Save  %r11/%r10  in  %r4/%r1 .		-S.McD
    629  */
    630 	movl	%r11,%r4
    631 	movl	%r10,%r1
    632 /*
    633  *  If the sign bit of  %r10  is on, add  1  to  %r11 .
    634  */
    635 	bgeq	signoff6
    636 	incl	%r11
    637 signoff6:
    638 /*						p.17
    639  *
    640  *  Move  pi/2  into  %r3/%r2 .
    641  */
    642 	movq	$0xc90fdaa22168c235,%r2
    643 /*
    644  *  Multiply the fraction by the portion of  pi/2
    645  *  in  %r2 .
    646  */
    647 	emul	%r2,%r10,$0,%r7
    648 	emul	%r2,%r11,%r8,%r7
    649 /*
    650  *  Multiply the fraction by the portion of  pi/2
    651  *  in  %r3 .
    652  */
    653 	emul	%r3,%r10,$0,%r9
    654 	emul	%r3,%r11,%r10,%r10
    655 /*
    656  *  Add the product bits together.
    657  */
    658 	addl2	%r7,%r9
    659 	adwc	%r8,%r10
    660 	adwc	$0,%r11
    661 /*
    662  *  Compensate for not sign extending  %r8  above.-S.McD
    663  */
    664 	tstl	%r8
    665 	bgeq	signoff6a
    666 	decl	%r11
    667 signoff6a:
    668 /*
    669  *  Compensate for  %r11/%r10  being unsigned.	-S.McD
    670  */
    671 	addl2	%r2,%r10
    672 	adwc	%r3,%r11
    673 /*
    674  *  Compensate for  %r3/%r2  being unsigned.	-S.McD
    675  */
    676 	addl2	%r1,%r10
    677 	adwc	%r4,%r11
    678 /*						p.18
    679  *
    680  *  If the sign bit of  %r11  is zero, shift the
    681  *  product bits up one bit and increment  %r6 .
    682  */
    683 	blss	signon
    684 	incl	%r6
    685 	ashq	$1,%r10,%r10
    686 	tstl	%r9
    687 	bgeq	signoff7
    688 	incl	%r10
    689 signoff7:
    690 signon:
    691 /*						p.19
    692  *
    693  *  Shift the  56  most significant product
    694  *  bits into  %r9/%r8 .  The sign extension
    695  *  will be handled later.
    696  */
    697 	ashq	$-8,%r10,%r8
    698 /*
    699  *  Convert the low order  8  bits of  %r10
    700  *  into an F-format number.
    701  */
    702 	cvtbf	%r10,%r3
    703 /*
    704  *  If the result of the conversion was
    705  *  negative, add  1  to  %r9/%r8 .
    706  */
    707 	bgeq	chop
    708 	incl	%r8
    709 	adwc	$0,%r9
    710 /*
    711  *  If  %r9  is now zero, branch to special
    712  *  code to handle that possibility.
    713  */
    714 	beql	carryout
    715 chop:
    716 /*						p.20
    717  *
    718  *  Convert the number in  %r9/%r8  into
    719  *  D-format number in  %r2/%r1 .
    720  */
    721 	rotl	$16,%r8,%r2
    722 	rotl	$16,%r9,%r1
    723 /*
    724  *  Set the exponent field to the appropriate
    725  *  value.  Note that the extra bits created by
    726  *  sign extension are now eliminated.
    727  */
    728 	subw3	%r6,$131,%r6
    729 	insv	%r6,$7,$9,%r1
    730 /*
    731  *  Set the exponent field of the F-format
    732  *  number in  %r3  to the appropriate value.
    733  */
    734 	tstf	%r3
    735 	beql	return
    736 /*	extzv	$7,$8,%r3,%r4	-S.McD */
    737 	extzv	$7,$7,%r3,%r4
    738 	addw2	%r4,%r6
    739 /*	subw2	$217,%r6		-S.McD */
    740 	subw2	$64,%r6
    741 	insv	%r6,$7,$8,%r3
    742 	jbr	return
    743 /*						p.21
    744  *
    745  *  The following code generates the appropriate
    746  *  result for the unlikely possibility that
    747  *  rounding the number in  %r9/%r8  resulted in
    748  *  a carry out.
    749  */
    750 carryout:
    751 	clrl	%r1
    752 	clrl	%r2
    753 	subw3	%r6,$132,%r6
    754 	insv	%r6,$7,$9,%r1
    755 	tstf	%r3
    756 	beql	return
    757 	extzv	$7,$8,%r3,%r4
    758 	addw2	%r4,%r6
    759 	subw2	$218,%r6
    760 	insv	%r6,$7,$8,%r3
    761 /*						p.22
    762  *
    763  *  The following code makes an needed
    764  *  adjustments to the signs of the
    765  *  results or to the octant number, and
    766  *  then returns.
    767  */
    768 return:
    769 /*
    770  *  Test if the fraction was greater than or
    771  *  equal to  1/2 .  If so, negate the reduced
    772  *  argument.
    773  */
    774 	blbc	%r5,signoff8
    775 	mnegf	%r1,%r1
    776 	mnegf	%r3,%r3
    777 signoff8:
    778 /*						p.23
    779  *
    780  *  If the original argument was negative,
    781  *  negate the reduce argument and
    782  *  adjust the octant number.
    783  */
    784 	tstw	(%sp)+
    785 	bgeq	signoff9
    786 	mnegf	%r1,%r1
    787 	mnegf	%r3,%r3
    788 /*	subb3	%r0,$8,%r0	...used for  pi/4  reduction -S.McD */
    789 	subb3	%r0,$4,%r0
    790 signoff9:
    791 /*
    792  *  Clear all unneeded octant bits.
    793  *
    794  *	bicb2	$0xf8,%r0	...used for  pi/4  reduction -S.McD */
    795 	bicb2	$0xfc,%r0
    796 /*
    797  *  Return.
    798  */
    799 	rsb
    800