Home | History | Annotate | Line # | Download | only in vax
n_atan2.S revision 1.5
      1  1.5    matt /*	$NetBSD: n_atan2.S,v 1.5 2002/02/24 01:06:21 matt Exp $	*/
      2  1.1   ragge /*
      3  1.1   ragge  * Copyright (c) 1985, 1993
      4  1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1   ragge  *
      6  1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1   ragge  * modification, are permitted provided that the following conditions
      8  1.1   ragge  * are met:
      9  1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14  1.1   ragge  * 3. All advertising materials mentioning features or use of this software
     15  1.1   ragge  *    must display the following acknowledgement:
     16  1.1   ragge  *	This product includes software developed by the University of
     17  1.1   ragge  *	California, Berkeley and its contributors.
     18  1.1   ragge  * 4. Neither the name of the University nor the names of its contributors
     19  1.1   ragge  *    may be used to endorse or promote products derived from this software
     20  1.1   ragge  *    without specific prior written permission.
     21  1.1   ragge  *
     22  1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  1.1   ragge  * SUCH DAMAGE.
     33  1.1   ragge  *
     34  1.1   ragge  *	@(#)atan2.s	8.1 (Berkeley) 6/4/93
     35  1.1   ragge  */
     36  1.1   ragge 
     37  1.4    matt #include <machine/asm.h>
     38  1.4    matt 
     39  1.1   ragge /*
     40  1.1   ragge  * ATAN2(Y,X)
     41  1.1   ragge  * RETURN ARG (X+iY)
     42  1.1   ragge  * VAX D FORMAT (56 BITS PRECISION)
     43  1.3  simonb  * CODED IN VAX ASSEMBLY LANGUAGE BY K.C. NG, 4/16/85;
     44  1.3  simonb  *
     45  1.1   ragge  *
     46  1.1   ragge  * Method :
     47  1.1   ragge  *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
     48  1.3  simonb  *	2. Reduce x to positive by (if x and y are unexceptional):
     49  1.1   ragge  *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
     50  1.1   ragge  *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
     51  1.3  simonb  *	3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
     52  1.3  simonb  *	   is further reduced to one of the following intervals and the
     53  1.1   ragge  *	   arctangent of y/x is evaluated by the corresponding formula:
     54  1.1   ragge  *
     55  1.1   ragge  *          [0,7/16]	   atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
     56  1.1   ragge  *	   [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
     57  1.1   ragge  *	   [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
     58  1.1   ragge  *	   [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
     59  1.1   ragge  *	   [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
     60  1.1   ragge  *
     61  1.1   ragge  * Special cases:
     62  1.1   ragge  * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
     63  1.1   ragge  *
     64  1.1   ragge  *	ARG( NAN , (anything) ) is NaN;
     65  1.1   ragge  *	ARG( (anything), NaN ) is NaN;
     66  1.1   ragge  *	ARG(+(anything but NaN), +-0) is +-0  ;
     67  1.1   ragge  *	ARG(-(anything but NaN), +-0) is +-PI ;
     68  1.1   ragge  *	ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
     69  1.1   ragge  *	ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
     70  1.1   ragge  *	ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
     71  1.1   ragge  *	ARG( +INF,+-INF ) is +-PI/4 ;
     72  1.1   ragge  *	ARG( -INF,+-INF ) is +-3PI/4;
     73  1.1   ragge  *	ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
     74  1.1   ragge  *
     75  1.1   ragge  * Accuracy:
     76  1.3  simonb  *	atan2(y,x) returns the exact ARG(x+iy) nearly rounded.
     77  1.1   ragge  */
     78  1.1   ragge 
     79  1.4    matt ENTRY(atan2, 0x0fc0)
     80  1.5    matt 	movq	4(%ap),%r2		# %r2 = y
     81  1.5    matt 	movq	12(%ap),%r4		# %r4 = x
     82  1.5    matt 	bicw3	$0x7f,%r2,%r0
     83  1.5    matt 	bicw3	$0x7f,%r4,%r1
     84  1.5    matt 	cmpw	%r0,$0x8000		# y is the reserved operand
     85  1.1   ragge 	jeql	resop
     86  1.5    matt 	cmpw	%r1,$0x8000		# x is the reserved operand
     87  1.1   ragge 	jeql	resop
     88  1.5    matt 	subl2	$8,%sp
     89  1.5    matt 	bicw3	$0x7fff,%r2,-4(%fp)	# copy y sign bit to -4(%fp)
     90  1.5    matt 	bicw3	$0x7fff,%r4,-8(%fp)	# copy x sign bit to -8(%fp)
     91  1.5    matt 	cmpd	%r4,$0x4080		# x = 1.0 ?
     92  1.1   ragge 	bneq	xnot1
     93  1.5    matt 	movq	%r2,%r0
     94  1.5    matt 	bicw2	$0x8000,%r0		# t = |y|
     95  1.5    matt 	movq	%r0,%r2			# y = |y|
     96  1.4    matt 	jbr	begin
     97  1.1   ragge xnot1:
     98  1.5    matt 	bicw3	$0x807f,%r2,%r11		# yexp
     99  1.1   ragge 	jeql	yeq0			# if y=0 goto yeq0
    100  1.5    matt 	bicw3	$0x807f,%r4,%r10		# xexp
    101  1.1   ragge 	jeql	pio2			# if x=0 goto pio2
    102  1.5    matt 	subw2	%r10,%r11			# k = yexp - xexp
    103  1.5    matt 	cmpw	%r11,$0x2000		# k >= 64 (exp) ?
    104  1.1   ragge 	jgeq	pio2			# atan2 = +-pi/2
    105  1.5    matt 	divd3	%r4,%r2,%r0		# t = y/x  never overflow
    106  1.5    matt 	bicw2	$0x8000,%r0		# t > 0
    107  1.5    matt 	bicw2	$0xff80,%r2		# clear the exponent of y
    108  1.5    matt 	bicw2	$0xff80,%r4		# clear the exponent of x
    109  1.5    matt 	bisw2	$0x4080,%r2		# normalize y to [1,2)
    110  1.5    matt 	bisw2	$0x4080,%r4		# normalize x to [1,2)
    111  1.5    matt 	subw2	%r11,%r4			# scale x so that yexp-xexp=k
    112  1.1   ragge begin:
    113  1.5    matt 	cmpw	%r0,$0x411c		# t : 39/16
    114  1.1   ragge 	jgeq	L50
    115  1.5    matt 	addl3	$0x180,%r0,%r10		# 8*t
    116  1.5    matt 	cvtrfl	%r10,%r10			# [8*t] rounded to int
    117  1.5    matt 	ashl	$-1,%r10,%r10		# [8*t]/2
    118  1.5    matt 	casel	%r10,$0,$4
    119  1.3  simonb L1:
    120  1.1   ragge 	.word	L20-L1
    121  1.1   ragge 	.word	L20-L1
    122  1.1   ragge 	.word	L30-L1
    123  1.1   ragge 	.word	L40-L1
    124  1.1   ragge 	.word	L40-L1
    125  1.3  simonb L10:
    126  1.5    matt 	movq	$0xb4d9940f985e407b,%r6	# Hi=.98279372324732906796d0
    127  1.5    matt 	movq	$0x21b1879a3bc2a2fc,%r8	# Lo=-.17092002525602665777d-17
    128  1.5    matt 	subd3	%r4,%r2,%r0		# y-x
    129  1.5    matt 	addw2	$0x80,%r0		# 2(y-x)
    130  1.5    matt 	subd2	%r4,%r0			# 2(y-x)-x
    131  1.5    matt 	addw2	$0x80,%r4		# 2x
    132  1.5    matt 	movq	%r2,%r10
    133  1.5    matt 	addw2	$0x80,%r10		# 2y
    134  1.5    matt 	addd2	%r10,%r2			# 3y
    135  1.5    matt 	addd2	%r4,%r2			# 3y+2x
    136  1.5    matt 	divd2	%r2,%r0			# (2y-3x)/(2x+3y)
    137  1.4    matt 	jbr	L60
    138  1.3  simonb L20:
    139  1.5    matt 	cmpw	%r0,$0x3280		# t : 2**(-28)
    140  1.1   ragge 	jlss	L80
    141  1.5    matt 	clrq	%r6			# Hi=%r6=0, Lo=%r8=0
    142  1.5    matt 	clrq	%r8
    143  1.4    matt 	jbr	L60
    144  1.3  simonb L30:
    145  1.5    matt 	movq	$0xda7b2b0d63383fed,%r6	# Hi=.46364760900080611433d0
    146  1.5    matt 	movq	$0xf0ea17b2bf912295,%r8	# Lo=.10147340032515978826d-17
    147  1.5    matt 	movq	%r2,%r0
    148  1.5    matt 	addw2	$0x80,%r0		# 2y
    149  1.5    matt 	subd2	%r4,%r0			# 2y-x
    150  1.5    matt 	addw2	$0x80,%r4		# 2x
    151  1.5    matt 	addd2	%r2,%r4			# 2x+y
    152  1.5    matt 	divd2	%r4,%r0 			# (2y-x)/(2x+y)
    153  1.4    matt 	jbr	L60
    154  1.3  simonb L50:
    155  1.5    matt 	movq	$0x68c2a2210fda40c9,%r6	# Hi=1.5707963267948966135d1
    156  1.5    matt 	movq	$0x06e0145c26332326,%r8	# Lo=.22517417741562176079d-17
    157  1.5    matt 	cmpw	%r0,$0x5100		# y : 2**57
    158  1.1   ragge 	bgeq	L90
    159  1.5    matt 	divd3	%r2,%r4,%r0
    160  1.5    matt 	bisw2	$0x8000,%r0 		# -x/y
    161  1.4    matt 	jbr	L60
    162  1.3  simonb L40:
    163  1.5    matt 	movq	$0x68c2a2210fda4049,%r6	# Hi=.78539816339744830676d0
    164  1.5    matt 	movq	$0x06e0145c263322a6,%r8	# Lo=.11258708870781088040d-17
    165  1.5    matt 	subd3	%r4,%r2,%r0		# y-x
    166  1.5    matt 	addd2	%r4,%r2			# y+x
    167  1.5    matt 	divd2	%r2,%r0			# (y-x)/(y+x)
    168  1.3  simonb L60:
    169  1.5    matt 	movq	%r0,%r10
    170  1.5    matt 	muld2	%r0,%r0
    171  1.5    matt 	polyd	%r0,$12,ptable
    172  1.5    matt 	muld2	%r10,%r0
    173  1.5    matt 	subd2	%r0,%r8
    174  1.5    matt 	addd3	%r8,%r10,%r0
    175  1.5    matt 	addd2	%r6,%r0
    176  1.3  simonb L80:
    177  1.5    matt 	movw	-8(%fp),%r2
    178  1.1   ragge 	bneq	pim
    179  1.5    matt 	bisw2	-4(%fp),%r0		# return sign(y)*%r0
    180  1.1   ragge 	ret
    181  1.3  simonb L90:					# x >= 2**25
    182  1.5    matt 	movq	%r6,%r0
    183  1.4    matt 	jbr	L80
    184  1.1   ragge pim:
    185  1.5    matt 	subd3	%r0,$0x68c2a2210fda4149,%r0	# pi-t
    186  1.5    matt 	bisw2	-4(%fp),%r0
    187  1.1   ragge 	ret
    188  1.1   ragge yeq0:
    189  1.5    matt 	movw	-8(%fp),%r2
    190  1.1   ragge 	beql	zero			# if sign(x)=1 return pi
    191  1.5    matt 	movq	$0x68c2a2210fda4149,%r0	# pi=3.1415926535897932270d1
    192  1.1   ragge 	ret
    193  1.1   ragge zero:
    194  1.5    matt 	clrq	%r0			# return 0
    195  1.1   ragge 	ret
    196  1.1   ragge pio2:
    197  1.5    matt 	movq	$0x68c2a2210fda40c9,%r0	# pi/2=1.5707963267948966135d1
    198  1.5    matt 	bisw2	-4(%fp),%r0		# return sign(y)*pi/2
    199  1.1   ragge 	ret
    200  1.1   ragge resop:
    201  1.5    matt 	movq	$0x8000,%r0		# propagate the reserved operand
    202  1.1   ragge 	ret
    203  1.4    matt 
    204  1.4    matt 	_ALIGN_TEXT
    205  1.1   ragge ptable:
    206  1.1   ragge 	.quad	0xb50f5ce96e7abd60
    207  1.1   ragge 	.quad	0x51e44a42c1073e02
    208  1.1   ragge 	.quad	0x3487e3289643be35
    209  1.1   ragge 	.quad	0xdb62066dffba3e54
    210  1.1   ragge 	.quad	0xcf8e2d5199abbe70
    211  1.1   ragge 	.quad	0x26f39cb884883e88
    212  1.1   ragge 	.quad	0x135117d18998be9d
    213  1.1   ragge 	.quad	0x602ce9742e883eba
    214  1.1   ragge 	.quad	0xa35ad0be8e38bee3
    215  1.1   ragge 	.quad	0xffac922249243f12
    216  1.1   ragge 	.quad	0x7f14ccccccccbf4c
    217  1.1   ragge 	.quad	0xaa8faaaaaaaa3faa
    218  1.1   ragge 	.quad	0x0000000000000000
    219