Home | History | Annotate | Line # | Download | only in vax
n_atan2.S revision 1.6
      1  1.6     agc /*	$NetBSD: n_atan2.S,v 1.6 2003/08/07 16:44:44 agc Exp $	*/
      2  1.1   ragge /*
      3  1.1   ragge  * Copyright (c) 1985, 1993
      4  1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1   ragge  *
      6  1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1   ragge  * modification, are permitted provided that the following conditions
      8  1.1   ragge  * are met:
      9  1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14  1.6     agc  * 3. Neither the name of the University nor the names of its contributors
     15  1.1   ragge  *    may be used to endorse or promote products derived from this software
     16  1.1   ragge  *    without specific prior written permission.
     17  1.1   ragge  *
     18  1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  1.1   ragge  * SUCH DAMAGE.
     29  1.1   ragge  *
     30  1.1   ragge  *	@(#)atan2.s	8.1 (Berkeley) 6/4/93
     31  1.1   ragge  */
     32  1.1   ragge 
     33  1.4    matt #include <machine/asm.h>
     34  1.4    matt 
     35  1.1   ragge /*
     36  1.1   ragge  * ATAN2(Y,X)
     37  1.1   ragge  * RETURN ARG (X+iY)
     38  1.1   ragge  * VAX D FORMAT (56 BITS PRECISION)
     39  1.3  simonb  * CODED IN VAX ASSEMBLY LANGUAGE BY K.C. NG, 4/16/85;
     40  1.3  simonb  *
     41  1.1   ragge  *
     42  1.1   ragge  * Method :
     43  1.1   ragge  *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
     44  1.3  simonb  *	2. Reduce x to positive by (if x and y are unexceptional):
     45  1.1   ragge  *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
     46  1.1   ragge  *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
     47  1.3  simonb  *	3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
     48  1.3  simonb  *	   is further reduced to one of the following intervals and the
     49  1.1   ragge  *	   arctangent of y/x is evaluated by the corresponding formula:
     50  1.1   ragge  *
     51  1.1   ragge  *          [0,7/16]	   atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
     52  1.1   ragge  *	   [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
     53  1.1   ragge  *	   [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
     54  1.1   ragge  *	   [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
     55  1.1   ragge  *	   [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
     56  1.1   ragge  *
     57  1.1   ragge  * Special cases:
     58  1.1   ragge  * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
     59  1.1   ragge  *
     60  1.1   ragge  *	ARG( NAN , (anything) ) is NaN;
     61  1.1   ragge  *	ARG( (anything), NaN ) is NaN;
     62  1.1   ragge  *	ARG(+(anything but NaN), +-0) is +-0  ;
     63  1.1   ragge  *	ARG(-(anything but NaN), +-0) is +-PI ;
     64  1.1   ragge  *	ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
     65  1.1   ragge  *	ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
     66  1.1   ragge  *	ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
     67  1.1   ragge  *	ARG( +INF,+-INF ) is +-PI/4 ;
     68  1.1   ragge  *	ARG( -INF,+-INF ) is +-3PI/4;
     69  1.1   ragge  *	ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
     70  1.1   ragge  *
     71  1.1   ragge  * Accuracy:
     72  1.3  simonb  *	atan2(y,x) returns the exact ARG(x+iy) nearly rounded.
     73  1.1   ragge  */
     74  1.1   ragge 
     75  1.4    matt ENTRY(atan2, 0x0fc0)
     76  1.5    matt 	movq	4(%ap),%r2		# %r2 = y
     77  1.5    matt 	movq	12(%ap),%r4		# %r4 = x
     78  1.5    matt 	bicw3	$0x7f,%r2,%r0
     79  1.5    matt 	bicw3	$0x7f,%r4,%r1
     80  1.5    matt 	cmpw	%r0,$0x8000		# y is the reserved operand
     81  1.1   ragge 	jeql	resop
     82  1.5    matt 	cmpw	%r1,$0x8000		# x is the reserved operand
     83  1.1   ragge 	jeql	resop
     84  1.5    matt 	subl2	$8,%sp
     85  1.5    matt 	bicw3	$0x7fff,%r2,-4(%fp)	# copy y sign bit to -4(%fp)
     86  1.5    matt 	bicw3	$0x7fff,%r4,-8(%fp)	# copy x sign bit to -8(%fp)
     87  1.5    matt 	cmpd	%r4,$0x4080		# x = 1.0 ?
     88  1.1   ragge 	bneq	xnot1
     89  1.5    matt 	movq	%r2,%r0
     90  1.5    matt 	bicw2	$0x8000,%r0		# t = |y|
     91  1.5    matt 	movq	%r0,%r2			# y = |y|
     92  1.4    matt 	jbr	begin
     93  1.1   ragge xnot1:
     94  1.5    matt 	bicw3	$0x807f,%r2,%r11		# yexp
     95  1.1   ragge 	jeql	yeq0			# if y=0 goto yeq0
     96  1.5    matt 	bicw3	$0x807f,%r4,%r10		# xexp
     97  1.1   ragge 	jeql	pio2			# if x=0 goto pio2
     98  1.5    matt 	subw2	%r10,%r11			# k = yexp - xexp
     99  1.5    matt 	cmpw	%r11,$0x2000		# k >= 64 (exp) ?
    100  1.1   ragge 	jgeq	pio2			# atan2 = +-pi/2
    101  1.5    matt 	divd3	%r4,%r2,%r0		# t = y/x  never overflow
    102  1.5    matt 	bicw2	$0x8000,%r0		# t > 0
    103  1.5    matt 	bicw2	$0xff80,%r2		# clear the exponent of y
    104  1.5    matt 	bicw2	$0xff80,%r4		# clear the exponent of x
    105  1.5    matt 	bisw2	$0x4080,%r2		# normalize y to [1,2)
    106  1.5    matt 	bisw2	$0x4080,%r4		# normalize x to [1,2)
    107  1.5    matt 	subw2	%r11,%r4			# scale x so that yexp-xexp=k
    108  1.1   ragge begin:
    109  1.5    matt 	cmpw	%r0,$0x411c		# t : 39/16
    110  1.1   ragge 	jgeq	L50
    111  1.5    matt 	addl3	$0x180,%r0,%r10		# 8*t
    112  1.5    matt 	cvtrfl	%r10,%r10			# [8*t] rounded to int
    113  1.5    matt 	ashl	$-1,%r10,%r10		# [8*t]/2
    114  1.5    matt 	casel	%r10,$0,$4
    115  1.3  simonb L1:
    116  1.1   ragge 	.word	L20-L1
    117  1.1   ragge 	.word	L20-L1
    118  1.1   ragge 	.word	L30-L1
    119  1.1   ragge 	.word	L40-L1
    120  1.1   ragge 	.word	L40-L1
    121  1.3  simonb L10:
    122  1.5    matt 	movq	$0xb4d9940f985e407b,%r6	# Hi=.98279372324732906796d0
    123  1.5    matt 	movq	$0x21b1879a3bc2a2fc,%r8	# Lo=-.17092002525602665777d-17
    124  1.5    matt 	subd3	%r4,%r2,%r0		# y-x
    125  1.5    matt 	addw2	$0x80,%r0		# 2(y-x)
    126  1.5    matt 	subd2	%r4,%r0			# 2(y-x)-x
    127  1.5    matt 	addw2	$0x80,%r4		# 2x
    128  1.5    matt 	movq	%r2,%r10
    129  1.5    matt 	addw2	$0x80,%r10		# 2y
    130  1.5    matt 	addd2	%r10,%r2			# 3y
    131  1.5    matt 	addd2	%r4,%r2			# 3y+2x
    132  1.5    matt 	divd2	%r2,%r0			# (2y-3x)/(2x+3y)
    133  1.4    matt 	jbr	L60
    134  1.3  simonb L20:
    135  1.5    matt 	cmpw	%r0,$0x3280		# t : 2**(-28)
    136  1.1   ragge 	jlss	L80
    137  1.5    matt 	clrq	%r6			# Hi=%r6=0, Lo=%r8=0
    138  1.5    matt 	clrq	%r8
    139  1.4    matt 	jbr	L60
    140  1.3  simonb L30:
    141  1.5    matt 	movq	$0xda7b2b0d63383fed,%r6	# Hi=.46364760900080611433d0
    142  1.5    matt 	movq	$0xf0ea17b2bf912295,%r8	# Lo=.10147340032515978826d-17
    143  1.5    matt 	movq	%r2,%r0
    144  1.5    matt 	addw2	$0x80,%r0		# 2y
    145  1.5    matt 	subd2	%r4,%r0			# 2y-x
    146  1.5    matt 	addw2	$0x80,%r4		# 2x
    147  1.5    matt 	addd2	%r2,%r4			# 2x+y
    148  1.5    matt 	divd2	%r4,%r0 			# (2y-x)/(2x+y)
    149  1.4    matt 	jbr	L60
    150  1.3  simonb L50:
    151  1.5    matt 	movq	$0x68c2a2210fda40c9,%r6	# Hi=1.5707963267948966135d1
    152  1.5    matt 	movq	$0x06e0145c26332326,%r8	# Lo=.22517417741562176079d-17
    153  1.5    matt 	cmpw	%r0,$0x5100		# y : 2**57
    154  1.1   ragge 	bgeq	L90
    155  1.5    matt 	divd3	%r2,%r4,%r0
    156  1.5    matt 	bisw2	$0x8000,%r0 		# -x/y
    157  1.4    matt 	jbr	L60
    158  1.3  simonb L40:
    159  1.5    matt 	movq	$0x68c2a2210fda4049,%r6	# Hi=.78539816339744830676d0
    160  1.5    matt 	movq	$0x06e0145c263322a6,%r8	# Lo=.11258708870781088040d-17
    161  1.5    matt 	subd3	%r4,%r2,%r0		# y-x
    162  1.5    matt 	addd2	%r4,%r2			# y+x
    163  1.5    matt 	divd2	%r2,%r0			# (y-x)/(y+x)
    164  1.3  simonb L60:
    165  1.5    matt 	movq	%r0,%r10
    166  1.5    matt 	muld2	%r0,%r0
    167  1.5    matt 	polyd	%r0,$12,ptable
    168  1.5    matt 	muld2	%r10,%r0
    169  1.5    matt 	subd2	%r0,%r8
    170  1.5    matt 	addd3	%r8,%r10,%r0
    171  1.5    matt 	addd2	%r6,%r0
    172  1.3  simonb L80:
    173  1.5    matt 	movw	-8(%fp),%r2
    174  1.1   ragge 	bneq	pim
    175  1.5    matt 	bisw2	-4(%fp),%r0		# return sign(y)*%r0
    176  1.1   ragge 	ret
    177  1.3  simonb L90:					# x >= 2**25
    178  1.5    matt 	movq	%r6,%r0
    179  1.4    matt 	jbr	L80
    180  1.1   ragge pim:
    181  1.5    matt 	subd3	%r0,$0x68c2a2210fda4149,%r0	# pi-t
    182  1.5    matt 	bisw2	-4(%fp),%r0
    183  1.1   ragge 	ret
    184  1.1   ragge yeq0:
    185  1.5    matt 	movw	-8(%fp),%r2
    186  1.1   ragge 	beql	zero			# if sign(x)=1 return pi
    187  1.5    matt 	movq	$0x68c2a2210fda4149,%r0	# pi=3.1415926535897932270d1
    188  1.1   ragge 	ret
    189  1.1   ragge zero:
    190  1.5    matt 	clrq	%r0			# return 0
    191  1.1   ragge 	ret
    192  1.1   ragge pio2:
    193  1.5    matt 	movq	$0x68c2a2210fda40c9,%r0	# pi/2=1.5707963267948966135d1
    194  1.5    matt 	bisw2	-4(%fp),%r0		# return sign(y)*pi/2
    195  1.1   ragge 	ret
    196  1.1   ragge resop:
    197  1.5    matt 	movq	$0x8000,%r0		# propagate the reserved operand
    198  1.1   ragge 	ret
    199  1.4    matt 
    200  1.4    matt 	_ALIGN_TEXT
    201  1.1   ragge ptable:
    202  1.1   ragge 	.quad	0xb50f5ce96e7abd60
    203  1.1   ragge 	.quad	0x51e44a42c1073e02
    204  1.1   ragge 	.quad	0x3487e3289643be35
    205  1.1   ragge 	.quad	0xdb62066dffba3e54
    206  1.1   ragge 	.quad	0xcf8e2d5199abbe70
    207  1.1   ragge 	.quad	0x26f39cb884883e88
    208  1.1   ragge 	.quad	0x135117d18998be9d
    209  1.1   ragge 	.quad	0x602ce9742e883eba
    210  1.1   ragge 	.quad	0xa35ad0be8e38bee3
    211  1.1   ragge 	.quad	0xffac922249243f12
    212  1.1   ragge 	.quad	0x7f14ccccccccbf4c
    213  1.1   ragge 	.quad	0xaa8faaaaaaaa3faa
    214  1.1   ragge 	.quad	0x0000000000000000
    215