Home | History | Annotate | Line # | Download | only in vax
n_atan2.S revision 1.1
      1 /*	$NetBSD: n_atan2.S,v 1.1 1995/10/10 23:40:25 ragge Exp $	*/
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)atan2.s	8.1 (Berkeley) 6/4/93
     35  */
     36 
     37 /*
     38  * ATAN2(Y,X)
     39  * RETURN ARG (X+iY)
     40  * VAX D FORMAT (56 BITS PRECISION)
     41  * CODED IN VAX ASSEMBLY LANGUAGE BY K.C. NG, 4/16/85;
     42  *
     43  *
     44  * Method :
     45  *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
     46  *	2. Reduce x to positive by (if x and y are unexceptional):
     47  *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
     48  *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
     49  *	3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
     50  *	   is further reduced to one of the following intervals and the
     51  *	   arctangent of y/x is evaluated by the corresponding formula:
     52  *
     53  *          [0,7/16]	   atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
     54  *	   [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
     55  *	   [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
     56  *	   [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
     57  *	   [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
     58  *
     59  * Special cases:
     60  * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
     61  *
     62  *	ARG( NAN , (anything) ) is NaN;
     63  *	ARG( (anything), NaN ) is NaN;
     64  *	ARG(+(anything but NaN), +-0) is +-0  ;
     65  *	ARG(-(anything but NaN), +-0) is +-PI ;
     66  *	ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
     67  *	ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
     68  *	ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
     69  *	ARG( +INF,+-INF ) is +-PI/4 ;
     70  *	ARG( -INF,+-INF ) is +-3PI/4;
     71  *	ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
     72  *
     73  * Accuracy:
     74  *	atan2(y,x) returns the exact ARG(x+iy) nearly rounded.
     75  */
     76 
     77 	.text
     78 	.align 1
     79 	.globl	_atan2
     80 _atan2 :
     81 	.word	0x0ff4
     82 	movq	4(ap),r2		# r2 = y
     83 	movq	12(ap),r4		# r4 = x
     84 	bicw3	$0x7f,r2,r0
     85 	bicw3	$0x7f,r4,r1
     86 	cmpw	r0,$0x8000		# y is the reserved operand
     87 	jeql	resop
     88 	cmpw	r1,$0x8000		# x is the reserved operand
     89 	jeql	resop
     90 	subl2	$8,sp
     91 	bicw3	$0x7fff,r2,-4(fp)	# copy y sign bit to -4(fp)
     92 	bicw3	$0x7fff,r4,-8(fp)	# copy x sign bit to -8(fp)
     93 	cmpd	r4,$0x4080		# x = 1.0 ?
     94 	bneq	xnot1
     95 	movq	r2,r0
     96 	bicw2	$0x8000,r0		# t = |y|
     97 	movq	r0,r2			# y = |y|
     98 	brb	begin
     99 xnot1:
    100 	bicw3	$0x807f,r2,r11		# yexp
    101 	jeql	yeq0			# if y=0 goto yeq0
    102 	bicw3	$0x807f,r4,r10		# xexp
    103 	jeql	pio2			# if x=0 goto pio2
    104 	subw2	r10,r11			# k = yexp - xexp
    105 	cmpw	r11,$0x2000		# k >= 64 (exp) ?
    106 	jgeq	pio2			# atan2 = +-pi/2
    107 	divd3	r4,r2,r0		# t = y/x  never overflow
    108 	bicw2	$0x8000,r0		# t > 0
    109 	bicw2	$0xff80,r2		# clear the exponent of y
    110 	bicw2	$0xff80,r4		# clear the exponent of x
    111 	bisw2	$0x4080,r2		# normalize y to [1,2)
    112 	bisw2	$0x4080,r4		# normalize x to [1,2)
    113 	subw2	r11,r4			# scale x so that yexp-xexp=k
    114 begin:
    115 	cmpw	r0,$0x411c		# t : 39/16
    116 	jgeq	L50
    117 	addl3	$0x180,r0,r10		# 8*t
    118 	cvtrfl	r10,r10			# [8*t] rounded to int
    119 	ashl	$-1,r10,r10		# [8*t]/2
    120 	casel	r10,$0,$4
    121 L1:
    122 	.word	L20-L1
    123 	.word	L20-L1
    124 	.word	L30-L1
    125 	.word	L40-L1
    126 	.word	L40-L1
    127 L10:
    128 	movq	$0xb4d9940f985e407b,r6	# Hi=.98279372324732906796d0
    129 	movq	$0x21b1879a3bc2a2fc,r8	# Lo=-.17092002525602665777d-17
    130 	subd3	r4,r2,r0		# y-x
    131 	addw2	$0x80,r0		# 2(y-x)
    132 	subd2	r4,r0			# 2(y-x)-x
    133 	addw2	$0x80,r4		# 2x
    134 	movq	r2,r10
    135 	addw2	$0x80,r10		# 2y
    136 	addd2	r10,r2			# 3y
    137 	addd2	r4,r2			# 3y+2x
    138 	divd2	r2,r0			# (2y-3x)/(2x+3y)
    139 	brw	L60
    140 L20:
    141 	cmpw	r0,$0x3280		# t : 2**(-28)
    142 	jlss	L80
    143 	clrq	r6			# Hi=r6=0, Lo=r8=0
    144 	clrq	r8
    145 	brw	L60
    146 L30:
    147 	movq	$0xda7b2b0d63383fed,r6	# Hi=.46364760900080611433d0
    148 	movq	$0xf0ea17b2bf912295,r8	# Lo=.10147340032515978826d-17
    149 	movq	r2,r0
    150 	addw2	$0x80,r0		# 2y
    151 	subd2	r4,r0			# 2y-x
    152 	addw2	$0x80,r4		# 2x
    153 	addd2	r2,r4			# 2x+y
    154 	divd2	r4,r0 			# (2y-x)/(2x+y)
    155 	brb	L60
    156 L50:
    157 	movq	$0x68c2a2210fda40c9,r6	# Hi=1.5707963267948966135d1
    158 	movq	$0x06e0145c26332326,r8	# Lo=.22517417741562176079d-17
    159 	cmpw	r0,$0x5100		# y : 2**57
    160 	bgeq	L90
    161 	divd3	r2,r4,r0
    162 	bisw2	$0x8000,r0 		# -x/y
    163 	brb	L60
    164 L40:
    165 	movq	$0x68c2a2210fda4049,r6	# Hi=.78539816339744830676d0
    166 	movq	$0x06e0145c263322a6,r8	# Lo=.11258708870781088040d-17
    167 	subd3	r4,r2,r0		# y-x
    168 	addd2	r4,r2			# y+x
    169 	divd2	r2,r0			# (y-x)/(y+x)
    170 L60:
    171 	movq	r0,r10
    172 	muld2	r0,r0
    173 	polyd	r0,$12,ptable
    174 	muld2	r10,r0
    175 	subd2	r0,r8
    176 	addd3	r8,r10,r0
    177 	addd2	r6,r0
    178 L80:
    179 	movw	-8(fp),r2
    180 	bneq	pim
    181 	bisw2	-4(fp),r0		# return sign(y)*r0
    182 	ret
    183 L90:					# x >= 2**25
    184 	movq	r6,r0
    185 	brb	L80
    186 pim:
    187 	subd3	r0,$0x68c2a2210fda4149,r0	# pi-t
    188 	bisw2	-4(fp),r0
    189 	ret
    190 yeq0:
    191 	movw	-8(fp),r2
    192 	beql	zero			# if sign(x)=1 return pi
    193 	movq	$0x68c2a2210fda4149,r0	# pi=3.1415926535897932270d1
    194 	ret
    195 zero:
    196 	clrq	r0			# return 0
    197 	ret
    198 pio2:
    199 	movq	$0x68c2a2210fda40c9,r0	# pi/2=1.5707963267948966135d1
    200 	bisw2	-4(fp),r0		# return sign(y)*pi/2
    201 	ret
    202 resop:
    203 	movq	$0x8000,r0		# propagate the reserved operand
    204 	ret
    205 	.align 2
    206 ptable:
    207 	.quad	0xb50f5ce96e7abd60
    208 	.quad	0x51e44a42c1073e02
    209 	.quad	0x3487e3289643be35
    210 	.quad	0xdb62066dffba3e54
    211 	.quad	0xcf8e2d5199abbe70
    212 	.quad	0x26f39cb884883e88
    213 	.quad	0x135117d18998be9d
    214 	.quad	0x602ce9742e883eba
    215 	.quad	0xa35ad0be8e38bee3
    216 	.quad	0xffac922249243f12
    217 	.quad	0x7f14ccccccccbf4c
    218 	.quad	0xaa8faaaaaaaa3faa
    219 	.quad	0x0000000000000000
    220