n_sqrt.S revision 1.2 1 1.2 matt /* $NetBSD: n_sqrt.S,v 1.2 1998/10/31 02:06:02 matt Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1985, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge *
34 1.1 ragge * @(#)sqrt.s 8.1 (Berkeley) 6/4/93
35 1.1 ragge */
36 1.1 ragge
37 1.1 ragge /*
38 1.1 ragge * double sqrt(arg) revised August 15,1982
39 1.1 ragge * double arg;
40 1.1 ragge * if(arg<0.0) { _errno = EDOM; return(<a reserved operand>); }
41 1.1 ragge * if arg is a reserved operand it is returned as it is
42 1.1 ragge * W. Kahan's magic square root
43 1.1 ragge * coded by Heidi Stettner and revised by Emile LeBlanc 8/18/82
44 1.1 ragge *
45 1.1 ragge * entry points:_d_sqrt address of double arg is on the stack
46 1.1 ragge * _sqrt double arg is on the stack
47 1.1 ragge */
48 1.1 ragge .text
49 1.1 ragge .align 1
50 1.1 ragge .globl _sqrt
51 1.2 matt .type _sqrt,@function
52 1.1 ragge .globl _d_sqrt
53 1.2 matt .type _d_sqrt,@function
54 1.1 ragge .globl libm$dsqrt_r5
55 1.2 matt .type libm$dsqrt_r5,@label
56 1.1 ragge .set EDOM,33
57 1.1 ragge
58 1.1 ragge _d_sqrt:
59 1.1 ragge .word 0x003c # save r5,r4,r3,r2
60 1.1 ragge movq *4(ap),r0
61 1.1 ragge jmp dsqrt2
62 1.1 ragge _sqrt:
63 1.1 ragge .word 0x003c # save r5,r4,r3,r2
64 1.1 ragge movq 4(ap),r0
65 1.1 ragge dsqrt2: bicw3 $0x807f,r0,r2 # check exponent of input
66 1.1 ragge jeql noexp # biased exponent is zero -> 0.0 or reserved
67 1.1 ragge bsbb libm$dsqrt_r5
68 1.1 ragge noexp: ret
69 1.1 ragge
70 1.1 ragge /* **************************** internal procedure */
71 1.1 ragge
72 1.1 ragge libm$dsqrt_r5: /* ENTRY POINT FOR cdabs and cdsqrt */
73 1.1 ragge /* returns double square root scaled by */
74 1.1 ragge /* 2^r6 */
75 1.1 ragge
76 1.1 ragge movd r0,r4
77 1.1 ragge jleq nonpos # argument is not positive
78 1.1 ragge movzwl r4,r2
79 1.1 ragge ashl $-1,r2,r0
80 1.1 ragge addw2 $0x203c,r0 # r0 has magic initial approximation
81 1.1 ragge /*
82 1.1 ragge * Do two steps of Heron's rule
83 1.1 ragge * ((arg/guess) + guess) / 2 = better guess
84 1.1 ragge */
85 1.1 ragge divf3 r0,r4,r2
86 1.1 ragge addf2 r2,r0
87 1.1 ragge subw2 $0x80,r0 # divide by two
88 1.1 ragge
89 1.1 ragge divf3 r0,r4,r2
90 1.1 ragge addf2 r2,r0
91 1.1 ragge subw2 $0x80,r0 # divide by two
92 1.1 ragge
93 1.1 ragge /* Scale argument and approximation to prevent over/underflow */
94 1.1 ragge
95 1.1 ragge bicw3 $0x807f,r4,r1
96 1.1 ragge subw2 $0x4080,r1 # r1 contains scaling factor
97 1.1 ragge subw2 r1,r4
98 1.1 ragge movl r0,r2
99 1.1 ragge subw2 r1,r2
100 1.1 ragge
101 1.1 ragge /* Cubic step
102 1.1 ragge *
103 1.1 ragge * b = a + 2*a*(n-a*a)/(n+3*a*a) where b is better approximation,
104 1.1 ragge * a is approximation, and n is the original argument.
105 1.1 ragge * (let s be scale factor in the following comments)
106 1.1 ragge */
107 1.1 ragge clrl r1
108 1.1 ragge clrl r3
109 1.1 ragge muld2 r0,r2 # r2:r3 = a*a/s
110 1.1 ragge subd2 r2,r4 # r4:r5 = n/s - a*a/s
111 1.1 ragge addw2 $0x100,r2 # r2:r3 = 4*a*a/s
112 1.1 ragge addd2 r4,r2 # r2:r3 = n/s + 3*a*a/s
113 1.1 ragge muld2 r0,r4 # r4:r5 = a*n/s - a*a*a/s
114 1.1 ragge divd2 r2,r4 # r4:r5 = a*(n-a*a)/(n+3*a*a)
115 1.1 ragge addw2 $0x80,r4 # r4:r5 = 2*a*(n-a*a)/(n+3*a*a)
116 1.1 ragge addd2 r4,r0 # r0:r1 = a + 2*a*(n-a*a)/(n+3*a*a)
117 1.1 ragge rsb # DONE!
118 1.1 ragge nonpos:
119 1.1 ragge jneq negarg
120 1.1 ragge ret # argument and root are zero
121 1.1 ragge negarg:
122 1.1 ragge pushl $EDOM
123 1.1 ragge calls $1,_infnan # generate the reserved op fault
124 1.1 ragge ret
125