Home | History | Annotate | Line # | Download | only in vax
n_sqrt.S revision 1.4
      1  1.4   matt /*	$NetBSD: n_sqrt.S,v 1.4 2002/02/21 07:49:55 matt Exp $	*/
      2  1.1  ragge /*
      3  1.1  ragge  * Copyright (c) 1985, 1993
      4  1.1  ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1  ragge  *
      6  1.1  ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1  ragge  * modification, are permitted provided that the following conditions
      8  1.1  ragge  * are met:
      9  1.1  ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1  ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1  ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1  ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1  ragge  *    documentation and/or other materials provided with the distribution.
     14  1.1  ragge  * 3. All advertising materials mentioning features or use of this software
     15  1.1  ragge  *    must display the following acknowledgement:
     16  1.1  ragge  *	This product includes software developed by the University of
     17  1.1  ragge  *	California, Berkeley and its contributors.
     18  1.1  ragge  * 4. Neither the name of the University nor the names of its contributors
     19  1.1  ragge  *    may be used to endorse or promote products derived from this software
     20  1.1  ragge  *    without specific prior written permission.
     21  1.1  ragge  *
     22  1.1  ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  1.1  ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1  ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1  ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  1.1  ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  1.1  ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  1.1  ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  1.1  ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  1.1  ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  1.1  ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  1.1  ragge  * SUCH DAMAGE.
     33  1.1  ragge  *
     34  1.1  ragge  *	@(#)sqrt.s	8.1 (Berkeley) 6/4/93
     35  1.1  ragge  */
     36  1.1  ragge 
     37  1.3   matt #include <machine/asm.h>
     38  1.3   matt 
     39  1.1  ragge /*
     40  1.1  ragge  * double sqrt(arg)   revised August 15,1982
     41  1.1  ragge  * double arg;
     42  1.1  ragge  * if(arg<0.0) { _errno = EDOM; return(<a reserved operand>); }
     43  1.1  ragge  * if arg is a reserved operand it is returned as it is
     44  1.1  ragge  * W. Kahan's magic square root
     45  1.1  ragge  * coded by Heidi Stettner and revised by Emile LeBlanc 8/18/82
     46  1.1  ragge  *
     47  1.1  ragge  * entry points:_d_sqrt		address of double arg is on the stack
     48  1.1  ragge  *		_sqrt		double arg is on the stack
     49  1.1  ragge  */
     50  1.1  ragge 	.set	EDOM,33
     51  1.1  ragge 
     52  1.3   matt ENTRY(d_sqrt, 0x003c)		# save r5,r4,r3,r2
     53  1.1  ragge 	movq	*4(ap),r0
     54  1.3   matt 	jbr  	dsqrt2
     55  1.3   matt 
     56  1.3   matt ENTRY(sqrt, 0x003c)		# save r5,r4,r3,r2
     57  1.1  ragge 	movq    4(ap),r0
     58  1.3   matt 
     59  1.1  ragge dsqrt2:	bicw3	$0x807f,r0,r2	# check exponent of input
     60  1.1  ragge 	jeql	noexp		# biased exponent is zero -> 0.0 or reserved
     61  1.4   matt 	bsbb	__libm_dsqrt_r5_lcl+2
     62  1.1  ragge noexp:	ret
     63  1.1  ragge 
     64  1.1  ragge /* **************************** internal procedure */
     65  1.1  ragge 
     66  1.4   matt __libm_dsqrt_r5_lcl:
     67  1.3   matt ALTENTRY(__libm_dsqrt_r5)
     68  1.3   matt 	nop
     69  1.3   matt 	nop
     70  1.3   matt 				/* ENTRY POINT FOR cdabs and cdsqrt	*/
     71  1.1  ragge 				/* returns double square root scaled by	*/
     72  1.1  ragge 				/* 2^r6	*/
     73  1.1  ragge 
     74  1.1  ragge 	movd	r0,r4
     75  1.1  ragge 	jleq	nonpos		# argument is not positive
     76  1.1  ragge 	movzwl	r4,r2
     77  1.1  ragge 	ashl	$-1,r2,r0
     78  1.1  ragge 	addw2	$0x203c,r0	# r0 has magic initial approximation
     79  1.1  ragge /*
     80  1.1  ragge  * Do two steps of Heron's rule
     81  1.1  ragge  * ((arg/guess) + guess) / 2 = better guess
     82  1.1  ragge  */
     83  1.1  ragge 	divf3	r0,r4,r2
     84  1.1  ragge 	addf2	r2,r0
     85  1.1  ragge 	subw2	$0x80,r0	# divide by two
     86  1.1  ragge 
     87  1.1  ragge 	divf3	r0,r4,r2
     88  1.1  ragge 	addf2	r2,r0
     89  1.1  ragge 	subw2	$0x80,r0	# divide by two
     90  1.1  ragge 
     91  1.1  ragge /* Scale argument and approximation to prevent over/underflow */
     92  1.1  ragge 
     93  1.1  ragge 	bicw3	$0x807f,r4,r1
     94  1.1  ragge 	subw2	$0x4080,r1		# r1 contains scaling factor
     95  1.1  ragge 	subw2	r1,r4
     96  1.1  ragge 	movl	r0,r2
     97  1.1  ragge 	subw2	r1,r2
     98  1.1  ragge 
     99  1.1  ragge /* Cubic step
    100  1.1  ragge  *
    101  1.1  ragge  * b = a + 2*a*(n-a*a)/(n+3*a*a) where b is better approximation,
    102  1.1  ragge  * a is approximation, and n is the original argument.
    103  1.1  ragge  * (let s be scale factor in the following comments)
    104  1.1  ragge  */
    105  1.1  ragge 	clrl	r1
    106  1.1  ragge 	clrl	r3
    107  1.1  ragge 	muld2	r0,r2			# r2:r3 = a*a/s
    108  1.1  ragge 	subd2	r2,r4			# r4:r5 = n/s - a*a/s
    109  1.1  ragge 	addw2	$0x100,r2		# r2:r3 = 4*a*a/s
    110  1.1  ragge 	addd2	r4,r2			# r2:r3 = n/s + 3*a*a/s
    111  1.1  ragge 	muld2	r0,r4			# r4:r5 = a*n/s - a*a*a/s
    112  1.1  ragge 	divd2	r2,r4			# r4:r5 = a*(n-a*a)/(n+3*a*a)
    113  1.1  ragge 	addw2	$0x80,r4		# r4:r5 = 2*a*(n-a*a)/(n+3*a*a)
    114  1.1  ragge 	addd2	r4,r0			# r0:r1 = a + 2*a*(n-a*a)/(n+3*a*a)
    115  1.1  ragge 	rsb				# DONE!
    116  1.1  ragge nonpos:
    117  1.1  ragge 	jneq	negarg
    118  1.3   matt 	ret				# argument and root are zero
    119  1.1  ragge negarg:
    120  1.1  ragge 	pushl	$EDOM
    121  1.3   matt 	calls	$1,_C_LABEL(infnan)	# generate the reserved op fault
    122  1.1  ragge 	ret
    123