Home | History | Annotate | Line # | Download | only in vax
n_sqrt.S revision 1.6.2.1
      1  1.6.2.1   tron /*	$NetBSD: n_sqrt.S,v 1.6.2.1 2004/05/15 13:46:37 tron Exp $	*/
      2      1.1  ragge /*
      3      1.1  ragge  * Copyright (c) 1985, 1993
      4      1.1  ragge  *	The Regents of the University of California.  All rights reserved.
      5      1.1  ragge  *
      6      1.1  ragge  * Redistribution and use in source and binary forms, with or without
      7      1.1  ragge  * modification, are permitted provided that the following conditions
      8      1.1  ragge  * are met:
      9      1.1  ragge  * 1. Redistributions of source code must retain the above copyright
     10      1.1  ragge  *    notice, this list of conditions and the following disclaimer.
     11      1.1  ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12      1.1  ragge  *    notice, this list of conditions and the following disclaimer in the
     13      1.1  ragge  *    documentation and/or other materials provided with the distribution.
     14      1.6    agc  * 3. Neither the name of the University nor the names of its contributors
     15      1.1  ragge  *    may be used to endorse or promote products derived from this software
     16      1.1  ragge  *    without specific prior written permission.
     17      1.1  ragge  *
     18      1.1  ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19      1.1  ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20      1.1  ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21      1.1  ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22      1.1  ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23      1.1  ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24      1.1  ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25      1.1  ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26      1.1  ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27      1.1  ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28      1.1  ragge  * SUCH DAMAGE.
     29      1.1  ragge  *
     30      1.1  ragge  *	@(#)sqrt.s	8.1 (Berkeley) 6/4/93
     31      1.1  ragge  */
     32      1.1  ragge 
     33      1.3   matt #include <machine/asm.h>
     34      1.3   matt 
     35      1.1  ragge /*
     36      1.1  ragge  * double sqrt(arg)   revised August 15,1982
     37      1.1  ragge  * double arg;
     38      1.1  ragge  * if(arg<0.0) { _errno = EDOM; return(<a reserved operand>); }
     39      1.1  ragge  * if arg is a reserved operand it is returned as it is
     40      1.1  ragge  * W. Kahan's magic square root
     41      1.1  ragge  * coded by Heidi Stettner and revised by Emile LeBlanc 8/18/82
     42      1.1  ragge  *
     43      1.1  ragge  * entry points:_d_sqrt		address of double arg is on the stack
     44      1.1  ragge  *		_sqrt		double arg is on the stack
     45      1.1  ragge  */
     46      1.1  ragge 	.set	EDOM,33
     47      1.1  ragge 
     48      1.5   matt ENTRY(d_sqrt, 0x003c)		# save %r5,%r4,%r3,%r2
     49      1.5   matt 	movq	*4(%ap),%r0
     50      1.3   matt 	jbr  	dsqrt2
     51      1.3   matt 
     52      1.5   matt ENTRY(sqrt, 0x003c)		# save %r5,%r4,%r3,%r2
     53      1.5   matt 	movq    4(%ap),%r0
     54      1.3   matt 
     55      1.5   matt dsqrt2:	bicw3	$0x807f,%r0,%r2	# check exponent of input
     56      1.1  ragge 	jeql	noexp		# biased exponent is zero -> 0.0 or reserved
     57      1.4   matt 	bsbb	__libm_dsqrt_r5_lcl+2
     58      1.1  ragge noexp:	ret
     59      1.1  ragge 
     60      1.1  ragge /* **************************** internal procedure */
     61      1.1  ragge 
     62      1.4   matt __libm_dsqrt_r5_lcl:
     63      1.3   matt ALTENTRY(__libm_dsqrt_r5)
     64      1.3   matt 	nop
     65      1.3   matt 	nop
     66      1.3   matt 				/* ENTRY POINT FOR cdabs and cdsqrt	*/
     67      1.1  ragge 				/* returns double square root scaled by	*/
     68      1.5   matt 				/* 2^%r6	*/
     69      1.1  ragge 
     70      1.5   matt 	movd	%r0,%r4
     71      1.1  ragge 	jleq	nonpos		# argument is not positive
     72      1.5   matt 	movzwl	%r4,%r2
     73      1.5   matt 	ashl	$-1,%r2,%r0
     74      1.5   matt 	addw2	$0x203c,%r0	# %r0 has magic initial approximation
     75      1.1  ragge /*
     76      1.1  ragge  * Do two steps of Heron's rule
     77      1.1  ragge  * ((arg/guess) + guess) / 2 = better guess
     78      1.1  ragge  */
     79      1.5   matt 	divf3	%r0,%r4,%r2
     80      1.5   matt 	addf2	%r2,%r0
     81      1.5   matt 	subw2	$0x80,%r0	# divide by two
     82      1.5   matt 
     83      1.5   matt 	divf3	%r0,%r4,%r2
     84      1.5   matt 	addf2	%r2,%r0
     85      1.5   matt 	subw2	$0x80,%r0	# divide by two
     86      1.1  ragge 
     87      1.1  ragge /* Scale argument and approximation to prevent over/underflow */
     88      1.1  ragge 
     89      1.5   matt 	bicw3	$0x807f,%r4,%r1
     90      1.5   matt 	subw2	$0x4080,%r1		# %r1 contains scaling factor
     91      1.5   matt 	subw2	%r1,%r4
     92      1.5   matt 	movl	%r0,%r2
     93      1.5   matt 	subw2	%r1,%r2
     94      1.1  ragge 
     95      1.1  ragge /* Cubic step
     96      1.1  ragge  *
     97      1.1  ragge  * b = a + 2*a*(n-a*a)/(n+3*a*a) where b is better approximation,
     98      1.1  ragge  * a is approximation, and n is the original argument.
     99      1.1  ragge  * (let s be scale factor in the following comments)
    100      1.1  ragge  */
    101      1.5   matt 	clrl	%r1
    102      1.5   matt 	clrl	%r3
    103      1.5   matt 	muld2	%r0,%r2			# %r2:%r3 = a*a/s
    104      1.5   matt 	subd2	%r2,%r4			# %r4:%r5 = n/s - a*a/s
    105      1.5   matt 	addw2	$0x100,%r2		# %r2:%r3 = 4*a*a/s
    106      1.5   matt 	addd2	%r4,%r2			# %r2:%r3 = n/s + 3*a*a/s
    107      1.5   matt 	muld2	%r0,%r4			# %r4:%r5 = a*n/s - a*a*a/s
    108      1.5   matt 	divd2	%r2,%r4			# %r4:%r5 = a*(n-a*a)/(n+3*a*a)
    109      1.5   matt 	addw2	$0x80,%r4		# %r4:%r5 = 2*a*(n-a*a)/(n+3*a*a)
    110      1.5   matt 	addd2	%r4,%r0			# %r0:%r1 = a + 2*a*(n-a*a)/(n+3*a*a)
    111      1.1  ragge 	rsb				# DONE!
    112      1.1  ragge nonpos:
    113      1.1  ragge 	jneq	negarg
    114      1.3   matt 	ret				# argument and root are zero
    115      1.1  ragge negarg:
    116      1.1  ragge 	pushl	$EDOM
    117      1.3   matt 	calls	$1,_C_LABEL(infnan)	# generate the reserved op fault
    118      1.1  ragge 	ret
    119  1.6.2.1   tron 
    120  1.6.2.1   tron ENTRY(sqrtf, 0)
    121  1.6.2.1   tron 	cvtfd	4(%ap),-(%sp)
    122  1.6.2.1   tron 	calls	$2,_C_LABEL(sqrt)
    123  1.6.2.1   tron 	cvtdf	%r0,%r0
    124  1.6.2.1   tron 	ret
    125