Home | History | Annotate | Line # | Download | only in vax
n_sqrt.S revision 1.7
      1  1.7  mhitch /*	$NetBSD: n_sqrt.S,v 1.7 2004/05/13 20:35:40 mhitch Exp $	*/
      2  1.1   ragge /*
      3  1.1   ragge  * Copyright (c) 1985, 1993
      4  1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1   ragge  *
      6  1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1   ragge  * modification, are permitted provided that the following conditions
      8  1.1   ragge  * are met:
      9  1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14  1.6     agc  * 3. Neither the name of the University nor the names of its contributors
     15  1.1   ragge  *    may be used to endorse or promote products derived from this software
     16  1.1   ragge  *    without specific prior written permission.
     17  1.1   ragge  *
     18  1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  1.1   ragge  * SUCH DAMAGE.
     29  1.1   ragge  *
     30  1.1   ragge  *	@(#)sqrt.s	8.1 (Berkeley) 6/4/93
     31  1.1   ragge  */
     32  1.1   ragge 
     33  1.3    matt #include <machine/asm.h>
     34  1.3    matt 
     35  1.1   ragge /*
     36  1.1   ragge  * double sqrt(arg)   revised August 15,1982
     37  1.1   ragge  * double arg;
     38  1.1   ragge  * if(arg<0.0) { _errno = EDOM; return(<a reserved operand>); }
     39  1.1   ragge  * if arg is a reserved operand it is returned as it is
     40  1.1   ragge  * W. Kahan's magic square root
     41  1.1   ragge  * coded by Heidi Stettner and revised by Emile LeBlanc 8/18/82
     42  1.1   ragge  *
     43  1.1   ragge  * entry points:_d_sqrt		address of double arg is on the stack
     44  1.1   ragge  *		_sqrt		double arg is on the stack
     45  1.1   ragge  */
     46  1.1   ragge 	.set	EDOM,33
     47  1.1   ragge 
     48  1.5    matt ENTRY(d_sqrt, 0x003c)		# save %r5,%r4,%r3,%r2
     49  1.5    matt 	movq	*4(%ap),%r0
     50  1.3    matt 	jbr  	dsqrt2
     51  1.3    matt 
     52  1.5    matt ENTRY(sqrt, 0x003c)		# save %r5,%r4,%r3,%r2
     53  1.5    matt 	movq    4(%ap),%r0
     54  1.3    matt 
     55  1.5    matt dsqrt2:	bicw3	$0x807f,%r0,%r2	# check exponent of input
     56  1.1   ragge 	jeql	noexp		# biased exponent is zero -> 0.0 or reserved
     57  1.4    matt 	bsbb	__libm_dsqrt_r5_lcl+2
     58  1.1   ragge noexp:	ret
     59  1.1   ragge 
     60  1.1   ragge /* **************************** internal procedure */
     61  1.1   ragge 
     62  1.4    matt __libm_dsqrt_r5_lcl:
     63  1.3    matt ALTENTRY(__libm_dsqrt_r5)
     64  1.3    matt 	nop
     65  1.3    matt 	nop
     66  1.3    matt 				/* ENTRY POINT FOR cdabs and cdsqrt	*/
     67  1.1   ragge 				/* returns double square root scaled by	*/
     68  1.5    matt 				/* 2^%r6	*/
     69  1.1   ragge 
     70  1.5    matt 	movd	%r0,%r4
     71  1.1   ragge 	jleq	nonpos		# argument is not positive
     72  1.5    matt 	movzwl	%r4,%r2
     73  1.5    matt 	ashl	$-1,%r2,%r0
     74  1.5    matt 	addw2	$0x203c,%r0	# %r0 has magic initial approximation
     75  1.1   ragge /*
     76  1.1   ragge  * Do two steps of Heron's rule
     77  1.1   ragge  * ((arg/guess) + guess) / 2 = better guess
     78  1.1   ragge  */
     79  1.5    matt 	divf3	%r0,%r4,%r2
     80  1.5    matt 	addf2	%r2,%r0
     81  1.5    matt 	subw2	$0x80,%r0	# divide by two
     82  1.5    matt 
     83  1.5    matt 	divf3	%r0,%r4,%r2
     84  1.5    matt 	addf2	%r2,%r0
     85  1.5    matt 	subw2	$0x80,%r0	# divide by two
     86  1.1   ragge 
     87  1.1   ragge /* Scale argument and approximation to prevent over/underflow */
     88  1.1   ragge 
     89  1.5    matt 	bicw3	$0x807f,%r4,%r1
     90  1.5    matt 	subw2	$0x4080,%r1		# %r1 contains scaling factor
     91  1.5    matt 	subw2	%r1,%r4
     92  1.5    matt 	movl	%r0,%r2
     93  1.5    matt 	subw2	%r1,%r2
     94  1.1   ragge 
     95  1.1   ragge /* Cubic step
     96  1.1   ragge  *
     97  1.1   ragge  * b = a + 2*a*(n-a*a)/(n+3*a*a) where b is better approximation,
     98  1.1   ragge  * a is approximation, and n is the original argument.
     99  1.1   ragge  * (let s be scale factor in the following comments)
    100  1.1   ragge  */
    101  1.5    matt 	clrl	%r1
    102  1.5    matt 	clrl	%r3
    103  1.5    matt 	muld2	%r0,%r2			# %r2:%r3 = a*a/s
    104  1.5    matt 	subd2	%r2,%r4			# %r4:%r5 = n/s - a*a/s
    105  1.5    matt 	addw2	$0x100,%r2		# %r2:%r3 = 4*a*a/s
    106  1.5    matt 	addd2	%r4,%r2			# %r2:%r3 = n/s + 3*a*a/s
    107  1.5    matt 	muld2	%r0,%r4			# %r4:%r5 = a*n/s - a*a*a/s
    108  1.5    matt 	divd2	%r2,%r4			# %r4:%r5 = a*(n-a*a)/(n+3*a*a)
    109  1.5    matt 	addw2	$0x80,%r4		# %r4:%r5 = 2*a*(n-a*a)/(n+3*a*a)
    110  1.5    matt 	addd2	%r4,%r0			# %r0:%r1 = a + 2*a*(n-a*a)/(n+3*a*a)
    111  1.1   ragge 	rsb				# DONE!
    112  1.1   ragge nonpos:
    113  1.1   ragge 	jneq	negarg
    114  1.3    matt 	ret				# argument and root are zero
    115  1.1   ragge negarg:
    116  1.1   ragge 	pushl	$EDOM
    117  1.3    matt 	calls	$1,_C_LABEL(infnan)	# generate the reserved op fault
    118  1.1   ragge 	ret
    119  1.7  mhitch 
    120  1.7  mhitch ENTRY(sqrtf, 0)
    121  1.7  mhitch 	cvtfd	4(%ap),-(%sp)
    122  1.7  mhitch 	calls	$2,_C_LABEL(sqrt)
    123  1.7  mhitch 	cvtdf	%r0,%r0
    124  1.7  mhitch 	ret
    125