n_sqrt.S revision 1.11 1 /* $NetBSD: n_sqrt.S,v 1.11 2014/10/11 06:59:29 martin Exp $ */
2 /*
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * @(#)sqrt.s 8.1 (Berkeley) 6/4/93
31 */
32
33 #include <machine/asm.h>
34
35 #ifdef WEAK_ALIAS
36 WEAK_ALIAS(_sqrtl, sqrt)
37 WEAK_ALIAS(sqrtl, sqrt)
38 #endif
39
40 /*
41 * double sqrt(arg) revised August 15,1982
42 * double arg;
43 * if(arg<0.0) { _errno = EDOM; return(<a reserved operand>); }
44 * if arg is a reserved operand it is returned as it is
45 * W. Kahan's magic square root
46 * coded by Heidi Stettner and revised by Emile LeBlanc 8/18/82
47 *
48 * entry points:_d_sqrt address of double arg is on the stack
49 * _sqrt double arg is on the stack
50 */
51 .set EDOM,33
52
53 ENTRY(d_sqrt, 0x003c) # save %r5,%r4,%r3,%r2
54 movq *4(%ap),%r0
55 jbr dsqrt2
56
57 ENTRY(sqrt, 0x003c) # save %r5,%r4,%r3,%r2
58 movq 4(%ap),%r0
59
60 dsqrt2: bicw3 $0x807f,%r0,%r2 # check exponent of input
61 jeql noexp # biased exponent is zero -> 0.0 or reserved
62 bsbb __libm_dsqrt_r5_lcl
63 noexp: ret
64
65 /* **************************** internal procedure */
66
67 .hidden __libm_dsqrt_r5
68 ALTENTRY(__libm_dsqrt_r5)
69 halt
70 halt
71 __libm_dsqrt_r5_lcl:
72 /* ENTRY POINT FOR cdabs and cdsqrt */
73 /* returns double square root scaled by */
74 /* 2^%r6 */
75
76 movd %r0,%r4
77 jleq nonpos # argument is not positive
78 movzwl %r4,%r2
79 ashl $-1,%r2,%r0
80 addw2 $0x203c,%r0 # %r0 has magic initial approximation
81 /*
82 * Do two steps of Heron's rule
83 * ((arg/guess) + guess) / 2 = better guess
84 */
85 divf3 %r0,%r4,%r2
86 addf2 %r2,%r0
87 subw2 $0x80,%r0 # divide by two
88
89 divf3 %r0,%r4,%r2
90 addf2 %r2,%r0
91 subw2 $0x80,%r0 # divide by two
92
93 /* Scale argument and approximation to prevent over/underflow */
94
95 bicw3 $0x807f,%r4,%r1
96 subw2 $0x4080,%r1 # %r1 contains scaling factor
97 subw2 %r1,%r4
98 movl %r0,%r2
99 subw2 %r1,%r2
100
101 /* Cubic step
102 *
103 * b = a + 2*a*(n-a*a)/(n+3*a*a) where b is better approximation,
104 * a is approximation, and n is the original argument.
105 * (let s be scale factor in the following comments)
106 */
107 clrl %r1
108 clrl %r3
109 muld2 %r0,%r2 # %r2:%r3 = a*a/s
110 subd2 %r2,%r4 # %r4:%r5 = n/s - a*a/s
111 addw2 $0x100,%r2 # %r2:%r3 = 4*a*a/s
112 addd2 %r4,%r2 # %r2:%r3 = n/s + 3*a*a/s
113 muld2 %r0,%r4 # %r4:%r5 = a*n/s - a*a*a/s
114 divd2 %r2,%r4 # %r4:%r5 = a*(n-a*a)/(n+3*a*a)
115 addw2 $0x80,%r4 # %r4:%r5 = 2*a*(n-a*a)/(n+3*a*a)
116 addd2 %r4,%r0 # %r0:%r1 = a + 2*a*(n-a*a)/(n+3*a*a)
117 rsb # DONE!
118 nonpos:
119 jneq negarg
120 ret # argument and root are zero
121 negarg:
122 pushl $EDOM
123 calls $1,_C_LABEL(infnan) # generate the reserved op fault
124 ret
125
126 ENTRY(sqrtf, 0)
127 cvtfd 4(%ap),-(%sp)
128 calls $2,_C_LABEL(sqrt)
129 cvtdf %r0,%r0
130 ret
131